Synthesis of Graphene and its potential application in SERS for glucose detection

ACP, 25-29 Sept 2023

Presenter: Hleko Chauke

Prof L Sikhwivhilu Prof N Moloto Dr S Nyembe

Introduction

- Glucose is the main source of fuel for the brain and Cells uses glucose for energy, however when in access, it can cause life-threatening complications such as diabetes, kidney failure, cardiovascular diseases, and nerve damage.
- Several techniques have been developed to detect and diagnose glucose

• This study proposes 2D carbon nanomaterial, specifically graphene.

Surface enhance Raman spectroscopy

Graphene

Introduction Cont'd

Synthesis Methods		
	Advantages	Disadvantages
Mechanical Exfoliation	Simple process High quality	Produces only few micron sheets Limited applications Time consuming Low reproducibility Unscalable
Chemical methods	Disperse easily in different mediums Easy surface functionalisation	Significant structural damages Poor electrical properties Limited applications
Epitaxial growth	High quality Highly applicable in electronics	Requires High temperatures (>1300°C) High energy High substrate cost Hard to transfer Requires vacuum
Chemical Vapour Deposition (CVD)	High quality Controllable number of layers Can produce large area graphene Scalability Low-cost substrate Reproducibility	High temperatures (±1000°C) Graphene transfer (induce defects)

Aim

Synthesise graphene with controllable number of layers and varying quality

Methodology

Figure 1: a)schematic diagram of CVD and b) the temperature profile of CVD process

Results and discussion

Figure 2: SEM images of materials synthesised at different flowrates for 10 minutes

Results and discussion

Figure 3: a) Raman spectra of graphene synthesised for 10 minutes at different flowrates, and b) D,G and 2D ratios at different flowrates.

Results and discussion

Figure 4: SEM images of materials synthesised at different flowrates for 20 minutes

Results and discussion cont'd

a) b) 0,50 3,0 G **−■−** ID/IG ---- IG/I2D 0,45 - 2,5 D **2D** 0,40 - 2,0 Intesinty (A.U) ~78.4 30 sccm 0,35 - 1,5 **–**²0 ارا 1م -79,9 20 sccm 0,30 ~56.2 MM 15 sccm - 1,0 0,25 -~50,1 10 sccm - 0,5 0,20 Man May 15 sccm 5 10 15 20 25 30 CH₄Flowrate (sccm) 2800 3000 1200 1400 2600 1600 1800 2000 2200 2400 Raman shift (cm⁻¹)

Figure 5: a) Raman spectra of graphene synthesised for 20 minutes at different flowrates, and b) D,G and 2D ratios at different flowrates.

Results and discussion cont'd

Results and discussion cont'd

Figure 7: XPS C1s spectrum of graphene

Conclusion

Conclusion

- Different flowrates and reaction times were investigated yielding different quality of graphene
- Bi-layer to multilayer graphene was successfully synthesised.

Ongoing work

• Testing graphene as a surface enhanced graphene spectroscopy (SERS) substrate

Acknowledgements

Thank You

www.mintek.co.za

0,

Mintek_RSA

Mintek_RSA

f

MintekSA

A global leader in mineral and metallurgical innovation

Mintek

in

References

- Y. Yuan, N. Panwar, S.H.K. Yap, Q. Wu, S. Zeng, J. Xu, S.C. Tjin, J. Song, J. Qu, K.T. Yong (2017). SERS-based ultrasensitive sensing platform: An insight into design and practical applications, Coord. Chem. Rev. 337, 1–33.
- 2. Lai, H., Xu, F., Zhang, Y., & Wang, L. (2018). Recent progress on graphene-based substrates for surfaceenhanced Raman scattering applications. Journal of Materials Chemistry B, 6(24), 4008-4028.
- 3. Saeed, M., Alshammari, Y., Majeed, S. A., & Al-Nasrallah, E. (2020). Chemical vapour deposition of graphene—synthesis, characterisation, and applications: a review. Molecules, 25(17), 3856.
- 4. Xia M. (2018). A Review on Applications of Two-Dimensional Materials in Surface-Enhanced Raman Spectroscopy. Spectroscopy: An International Journal, 1-14.
- Xu, W., Ling, X., Xiao, J., Dresselhaus, M. S., Kong, J., Xu, H., ... & Zhang, J. (2012). Surface enhanced Raman spectroscopy on a flat graphene surface. Proceedings of the National Academy of Sciences, 109(24), 9281-9286.