Latest measurements of the electroweak cross-section for $W^{\pm}W^{\pm}jj$ production using 139 fb⁻¹ of ATLAS data

Chilufya Mwewa

Brookhaven National Laboratory

25 September 2023

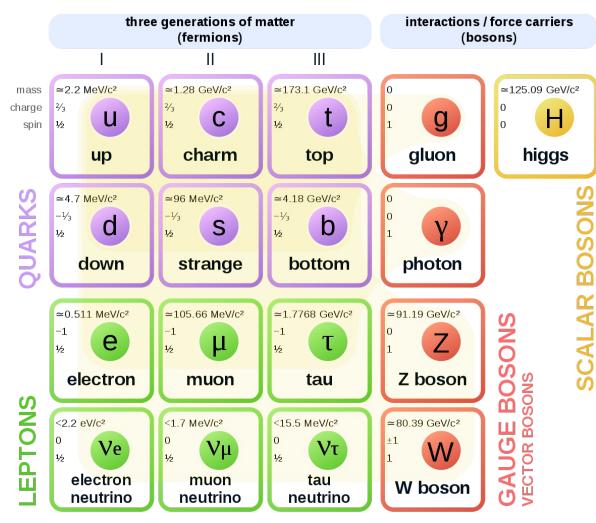
3rd African Conference on Fundamental and Applied Physics

Outline

***** Why are we interested in this measurement?

- Electroweak interactions
- Vector Boson Scattering (VBS)
- Same-sign WW scattering $(W^{\pm}W^{\pm}jj)$

Measurement procedure and results

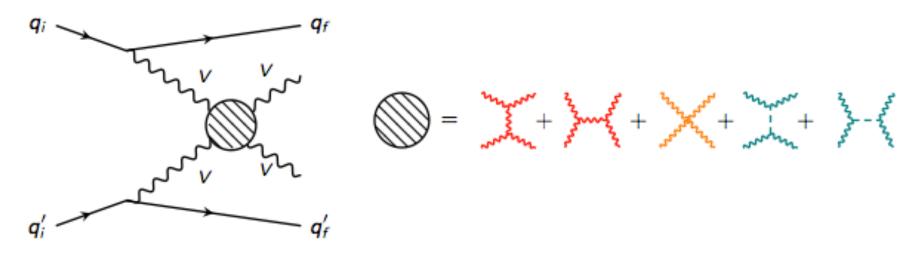

- Data accumulated by ATLAS during Run II of the LHC
- Event selection and background estimation
- Fiducial and differential cross-section measurements
- Interpreting results for BSM searches

***** Summary

Why are we interested in this measurement?

Electroweak interactions

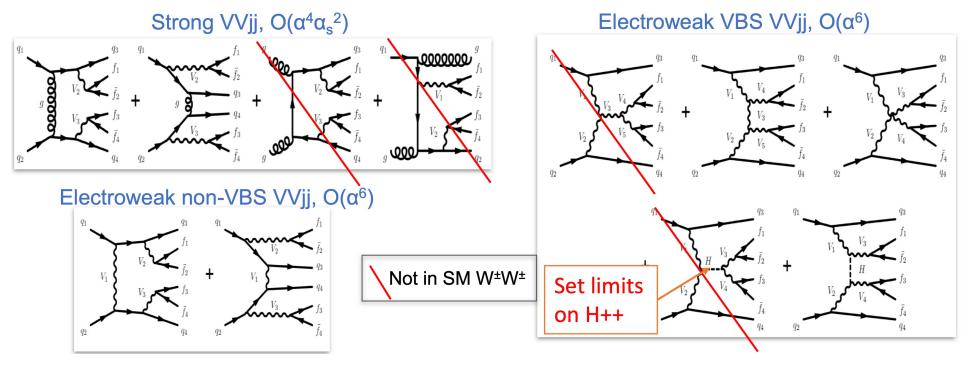
The Standard Model (SM) of particle physics


Source: https://en.wikipedia.org/wiki/Standard_Model

- Electromagnetic force: mediated by photons
- Weak force: mediated by W and Z bosons
- 1970's: Glashow, Weinberg and Salam showed that electromagnetic and weak forces could be described as a single electroweak interaction (electroweak unification)
- The Higgs mechanism takes credit for the electroweak separation; W and Z bosons acquire mass while the photon remains massless when they interact with the Higgs field
 - ElectroWeak (EW) symmetry is broken
 - The exact nature of the EW symmetry breaking process is not very well understood
 - VBS processes can help us probe its nature 4

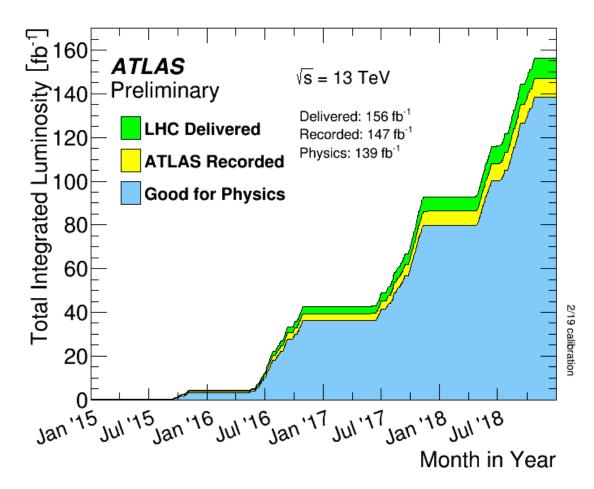
Vector Boson Scattering (VBS)

VBS measurements are important in our understanding of the nature of electroweak symmetry breaking


If the Higgs potential has a different shape from what the SM predicts, we expect to see some deviations from SM predictions in these measurements

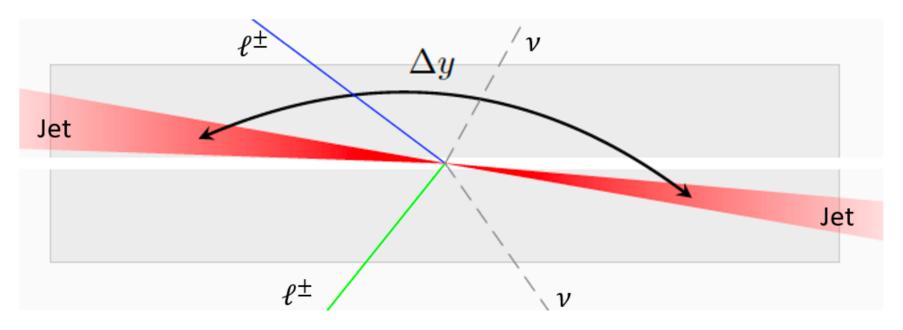
- VBS requires the presence of Higgs couplings for unitarity to be preserved at high energies
 - > Unitarity: Probabilities of all diagrams contributing to a particular VBS process should add up to one
 - In the absence of Higgs diagrams, probability keeps growing with energy leading to probabilities > 1
- Studied in various processes; same-charge WW, opposite charge WW, WZ, ZZ
 - Next slides: Same-sign W boson scattering $(W^{\pm}W^{\pm}jj)$

W[±]*W*[±]*jj* production


- This process has the largest EW to strong production ratio among VBS processes, hence the QCD-induced background is suppressed.
 - Gluons in the initial state are not allowed

- EW VBS and EW non-VBS diagrams can not be separated in a gauge invariant way
 - EW measurement includes both
- This measurement is also sensitive to doubly charged Higgs production

Measurement procedure and results


Run II ATLAS data (2015 - 2018)

- 2015 2016: 36 fb⁻¹ (Observation of $W^{\pm}W^{\pm}jj$)
 - > Cross-section: $2.91^{+0.51}_{-0.47}$ (stat) ± 0.23 (sys) fb
- 2015 2018: 139 fb⁻¹ (precision measurement)
 - Cross-section: next slides

$W^{\pm}W^{\pm}jj$ signal event selection

- Two isolated same-sign leptons (electrons or muons) with high transverse momentum ($p_T > 27$ GeV)
- Large missing transverse energy ($E_{T,miss} > 30 \text{ GeV}$)
- VBS topology:
 - > Two forward jets with high transverse momentum ($p_T > 65$ [30] GeV)
 - > Large di-jet invariant mass ($m_{jj} > 500 \text{ GeV}$)
 - ► Large separation in rapidity $(|\Delta y_{jj} > 2|)$

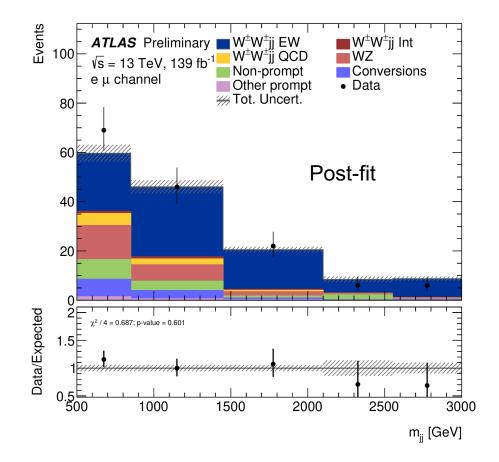
W[±]W[±]jj Background estimation

WZ EW and WZ QCD background

- WZ QCD is the most dominant background
- Two same-charge leptons are picked up as signal
- WZ final states are modelled using Monte-Carlo (MC) simulations and are dominated by WZ QCD
- The normalization of the WZ QCD process is estimated from data in a dedicated WZ control region

\Rightarrow Charge flip and γ conversions background

- Main sources: $W^{\pm} W^{\mp}$ and $V\gamma$ processes
- One lepton is assigned the wrong charge or γ is mis-identified as an electron
- This is the third-largest background source
- Charge flip is estimated using a data-driven method
- $V\gamma$ processes are estimated from MC simulation


Non-prompt background

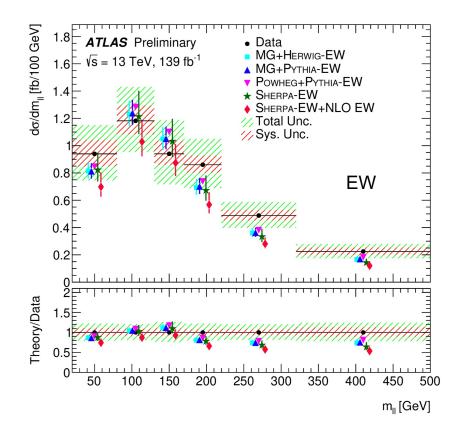
- Main sources: Semi-leptonic $t\bar{t}$, W+jets processes, single top processes
- t → W + bjet, one lepton from W and the other from the bjet are picked up
- This is the second-largest background
- Estimated using a data-driven method

- Other prompt background
- Main sources: ZZ and VVV processes
- Two same-charge leptons are picked up as signal
- Smallest background contribution
- Estimated from simulation

W[±]W[±]jj Fiducial cross section measurement

- Measured in a fiducial phase space which closely follows the signal region selection (see back-up)
- To extract the cross-section, a maximum likelihood fit is performed in bins of the di-jet invariant mass (m_{jj})
- The fit is done in four regions depending on lepton flavor $(e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}e^{\pm}, \mu^{\pm}\mu^{\pm})$

Good agreement between data and MC

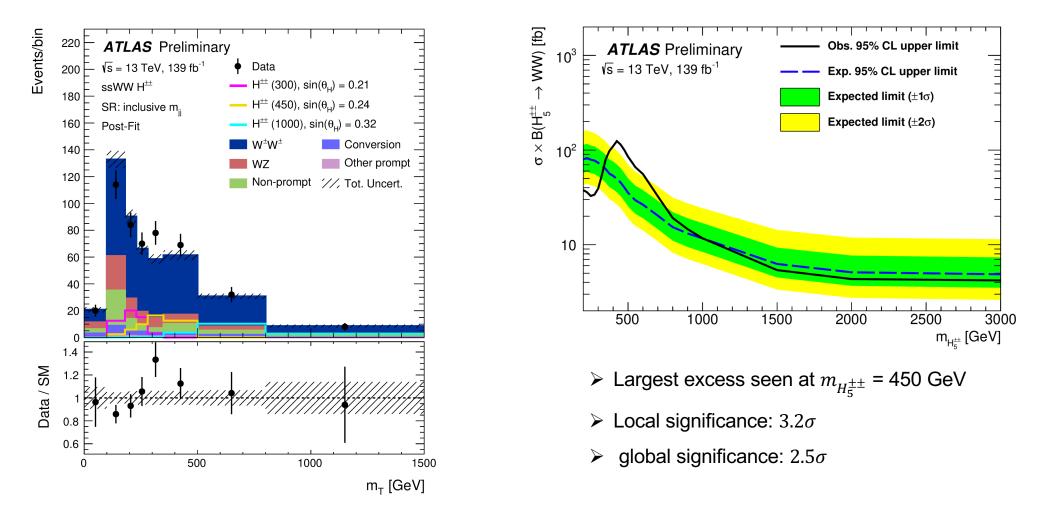

Good EW signal purity

Description	$\sigma_{ m fid}^{ m EW}$, fb
Measured cross section	2.88 ± 0.22 (stat.) ± 0.19 (syst.)
MG_AMC@NLO+Herwig	$2.53 \pm 0.04 (\text{PDF}) \pm_{0.19}^{0.22} (\text{scale})$
MG_AMC@NLO+Pythia	$2.55 \pm 0.04 (\text{PDF}) \pm_{0.19}^{0.22} (\text{scale})$
Sherpa	$2.53 \pm 0.04 \text{ (PDF)} \pm_{0.19}^{0.22} \text{ (scale)}$ 2.55 ± 0.04 (PDF) $\pm_{0.19}^{0.22} \text{ (scale)}$ 2.44 ± 0.03 (PDF) $\pm_{0.27}^{0.40} \text{ (scale)}$
Powheg Box +Pythia	2.67

- > The measured cross-section agrees with SM prediction within uncertainties
- > This measurement is more precise than the previous one

$W^{\pm}W^{\pm}jj$ Differential cross section measurement

• Measured in the same fiducial phase space mentioned previously (no split in lepton flavor)


- Five observables measured
- χ^2 and *p*-values quantify data/MC compatibility

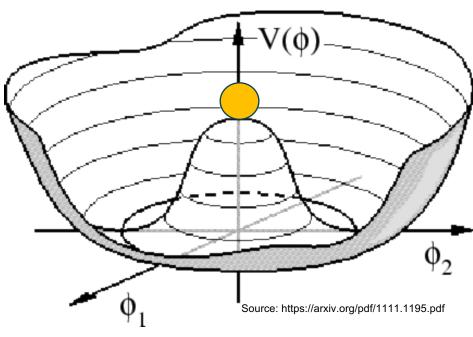
Variable	$\begin{bmatrix} \text{EW } W^{\pm}W^{\pm}jj \\ \chi^2/N_{\text{dof}} & p\text{-value} \end{bmatrix}$	
mff	4.4/6	0.623
m_{T}	12.9/6	0.045
$m_{ m jj}$	7.2/6	0.300
$N_{\text{gap jets}}$	2.3/2	0.316
ξ_{j_3}	4.3/5	0.511

- Prediction generally underestimates data but good agreement within uncertainties
- > p-values range between 0.3 and 0.62 indicating reasonable agreement. p-value for m_T is 0.045

H^{±±} Searches

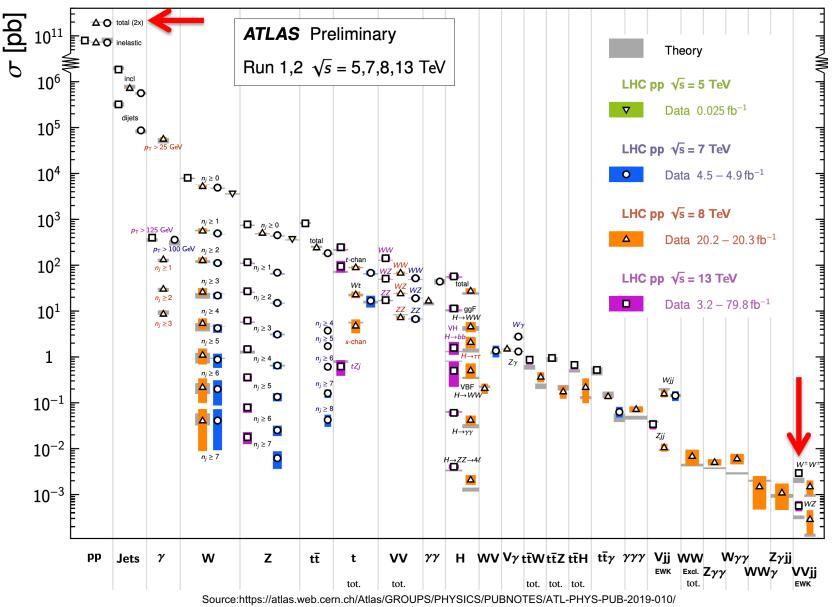
- Model independent upper limits at 95% CL on $\sigma_{VBF} \times \mathcal{B}(H_5^{\pm\pm} \to W^{\pm} W^{\pm})$ were extracted
- Limit setting: maximum likelihood fit to the distribution for transverse mass (m_T) of the dilepton and $E_{T,miss}$ system

Summary


- The scattering of two same-sign W bosons is an important VBS process to probe electroweak symmetry breaking
- The electroweak $W^{\pm}W^{\pm}jj$ fiducial cross section has been measured and found to be consistent with the SM
- $W^{\pm}W^{\pm}jj$ differential cross sections are also measured as a function of five observables sensitive to VBS
 - Also found to be consistent with the SM
- ✤ Results are also interpreted to set limits on doubly charged Higgs boson production
 - ➤ Model independent upper limits at 95% CL on $\sigma_{VBF} \times \mathcal{B}(H_5^{\pm\pm} \to W^{\pm} W^{\pm})$ are extracted for $m_{H_5^{\pm\pm}}$ between 200 GeV and 3 TeV
 - > A local excess of events at 450 GeV is noted with a global significance of 2.5σ

Electroweak symmetry breaking

- The Standard Model (SM) is based on gauge theories
 - certain symmetries must be obeyed
- To write the SM Lagrangian in such a way that it obeys the underlying symmetry, mass terms for vector bosons are not allowed
 - Electroweak force carriers must have the same (or symmetric) zero mass, but W and Z bosons are massive
- To keep the Lagrangian invariant despite the massive W and Z bosons, a spontaneous symmetry breaking mechanism is introduced
- Higgs mechanism: Higgs boson interacts with W and Z bosons, making them massive, hence breaking electroweak symmetry
- The exact nature of this process is not very well understood


Spontaneous symmetry breaking happens when the Higgs rolls down to the circle of minimum potential

***** VBS measurements are important in our understanding of the nature of electroweak symmetry breaking

If the Higgs potential has a different shape from what the SM predicts, we expect to see some deviations from SM predictions in these measurements

W[±]W[±]jj electroweak cross-section

• Cross-section for same-charge WW boson $(W^{\pm}W^{\pm}jj)$ production is small \Rightarrow precision measurements require lots of data

Same-sign WW object and event selection

Signal electrons:

- LHTight
- Gradient isolation
- ECIDS (charge ID selector)
- p_T > 27 GeV
- $|\eta_{\rm e}|$ < 2.47 excluding 1.37 < $|\eta_{\rm e}|$ < 1.52

Jets:

- AntiKt4EMPFlowJets
- p_T > 25 GeV
- $|\eta_{\rm j}| < 4.5$
- JVT

Signal muons:

- Medium ID
- FixedCutPflowTight isolation
- p_T > 27 GeV
- $|\eta_{\mu}|$ <2.5

<u>b-jets (for b-veto)</u>:

- AntiKt4EMPFlowJets
- p_T > 20 GeV
- |η_j|<2.5
- DL1r @ 85% efficiency WP

Analysis objects are after passing overlap removal (OR)

Event selection:

- Two same-sign signal leptons; 3rd lepton veto
- m_{||} >= 20 GeV
- $|m_{ee} m_{Z}|$ > 15 GeV, $|\eta_{e}|$ <1.37 in the ee channel
- E_{T,miss} > 30 GeV
- p_{T,jet,1(2)} > 65 (35) GeV
- m_{jj} > 500 GeV
- $|\Delta y_{jj}| > 2$

<u>3rd lepton veto:</u>

Reject event if there is a 3rd lepton surviving the OR, with:

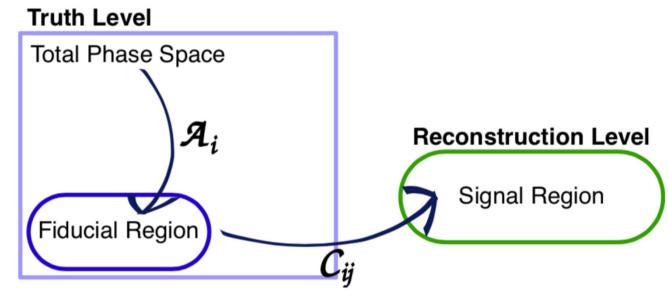
- p_{T,e} > 4.5 GeV
- p_{T, μ} > 3 GeV

or if there is a lepton not surviving the OR and is forming a dilepton with one of the signal leptons, with

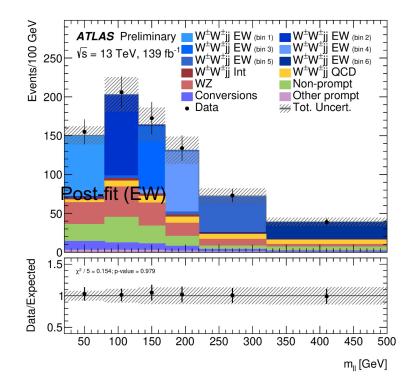
• |m_{II} – m_z|< 15 GeV

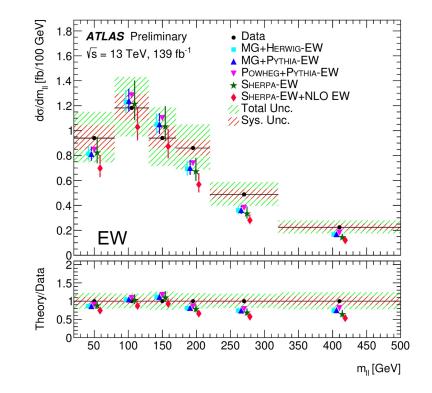
Same-sign WW samples

Process, short description	ME Generator + parton shower	Order	Tune	PDF set in ME
EW, Int, QCD $W^{\pm}W^{\pm}jj$, nominal signal	MadGraph5_aMC@NLO2.6.7 + Herwig7.2	LO	default	NNPDF3.0nlo
EW, Int, QCD $W^{\pm}W^{\pm}jj$, alternative shower	MadGraph5_aMC@NLO2.6.7 + Pythia8.244	LO	A14	NNPDF3.0nlo
EW $W^{\pm}W^{\pm}jj$, NLO QCD approx.	Sherpa2.2.11	+0,1j@LO	Sherpa	NNPDF3.0nnlo
EW $W^{\pm}W^{\pm}jj$, NLO QCD approx.	Powheg Boxv2 + Pythia8.230	NLO (VBS approx.)	AZNLO	NNPDF3.0nlo
QCD $W^{\pm}W^{\pm}jj$, NLO QCD approx.	Sherpa2.2.2	+0,1j@LO	Sherpa	NNPDF3.0nnlo
VV (leptonic)	Sherpa2.2.2	+0,1j@NLO; +2,3j@LO	Sherpa	NNPDF3.0nnlo
VVV	SHERPA2.2.1 (leptonic) & SHERPA2.2.2 (one $V \rightarrow jj$)	+0,1j@LO	Sherpa	NNPDF3.0nnlo
W/Z + jets	MadGraph5_aMC@NLO2.3.2.p1 + Pythia8.210	+0,1,2,3,4j@LO	A14	NNPDF3.0nlo
$t\overline{t}$ Single <i>t</i> (<i>s</i> - and <i>Wt</i> -channel)	Powheg Boxv2 + Pythia8	NLO	A14	NNPDF3.0nlo
Single <i>t</i> (<i>t</i> -channel)	Powheg Boxv2 + Pythia8	NLO	A14	NNPDF3.0nlo4f
$t\bar{t}V$	MadGraph5_aMC@NLO2.3.3.p0 + Pythia8.210	NLO	A14	NNPDF3.0nlo
$V\gamma$	Sherpa2.2.11	MEPS@NLO	A14	NNPDF3.0nnlo

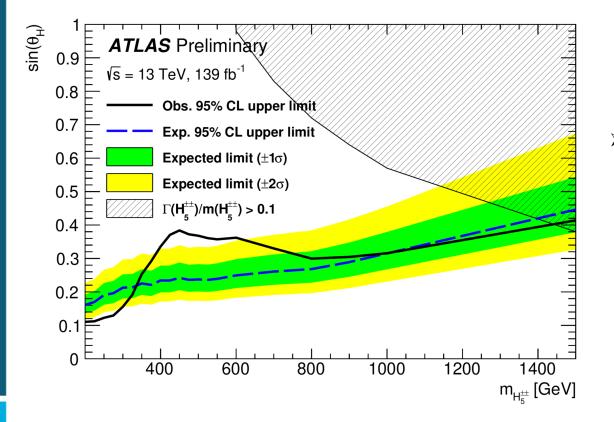

Same-sign yields and systematics

Source	Impact [%]	
Experimental		
Electron calibration	0.4	
Muon calibration	0.5	
Jet energy scale and resolution	1.8	
$E_{\rm T}^{\rm miss}$ scale and resolution	0.2	
<i>b</i> -tagging inefficiency	0.7	
Background, misid. leptons	3.1	
Background, charge misrec.	0.8	
Pileup modelling	0.2	
Modelling		
EW $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.8	
EW $W^{\pm}W^{\pm}jj$, QCD corrections	3.5	
EW $W^{\pm}W^{\pm}jj$, EW corrections	0.8	
Int $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.1	
QCD $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	2.3	
QCD $W^{\pm}W^{\pm}jj$, QCD corrections	0.9	
Background, WZ scale, PDF & α_s	0.2	
Background, WZ reweighting	1.7	
Background, other	1.0	
Model statistical	1.8	
Experimental and modelling	6.7	
Luminosity	1.9	
Data statistical	7.4	
Total	10.0	


Process	Pre-fit yield	Post-fit yield
$W^{\pm}W^{\pm}jj$ EW	235 ± 27	278 ± 30
$W^{\pm}W^{\pm}jj$ QCD	24 ± 6	27 ± 7
$W^{\pm}W^{\pm}jj$ Int	7.6 ± 0.6	8.1 ± 0.7
$W^{\pm}Zjj$	98 ± 11	71 ± 8
Non-prompt	56 ± 11	55 ± 11
$V\gamma$	11 ± 4	13 ± 5
Charge mis-ID	10.1 ± 3.4	11.0 ± 3.5
Other prompt	7.1 ± 2.4	6.7 ± 1.9
Total Expected	448 ± 34	470 ± 40
Data	475	


Same-sign fiducial region definition

- Two same-sign leptons (e or μ), dressed
- e or μ from tau lepton decays are excluded
- $p_{T,lep1,2}$ > 27 GeV, $|\eta_{lep1,2}|$ <2.5
- m_{II} >= 20 GeV
- |m_{ee}-m_z|>15 GeV
- E_{T,miss} > 30 GeV
- Two jets from AntiKt4TruthJets
- Overlap removal between electrons and jets
- $p_{T,jet,1(2)}$ > 65 (35) GeV, $|\eta_j|$ < 4.5
- m_{jj} > 500 GeV
- $|\Delta y_{jj}| > 2$


$W^{\pm}W^{\pm}jj$ Differential cross section measurement

H^{±±} Searches

- Results are also interpreted to search for a doubly charged Higgs boson produced in VBF processes within the Georgi-Machacek model using $m_{H_5^{\pm\pm}}$ and $\sin\theta_H$ as model parameters
- Limit setting: maximum likelihood fit to the distribution for transverse mass (m_T) of the dilepton and $E_{T,miss}$ system

 \Rightarrow sin θ_H > 0.11-0.41 for 200 < $m_{H_e^{\pm\pm}}$ < 1500 are excluded