Band Offsets, Optical Conduction, Photoelectric and Dielectric Dispersion in InSe/Sb₂Te₃ Heterojunctions

Latifah Hamad Khalid Alfhaid^a, A. F. Qasrawi^{b,c*}, Sabah E. AlGarni^d

^aUniversity of Ha'il, Collage of Science, Department of Physics, Ha'il, Saudi Arabia ^bArab American University, Department of Physics, Jenin, Palestine

^cIstinye University, Department of Electrical and Electronics Engineering, 34010, Istanbul, Turkey

^dUniversity of Jeddah, Faculty of Science, Department of Physics, Jeddah, Saudi Arabia

InSe based heterojunction devices gain importance in optoelectronic applications in NIR range as multipurpose sensors. For this reason, InSe/Sb₂Te₃ heterojunctions are constructed as NIR sensors by the thermal evaporation technique. The structural, optical, dielectric and photoelectric properties of InSe/Sb₂Te₃ heterojunctions are explored by X-ray diffraction and ultraviolet-visible light spectrophotometry techniques. The structural analyses revealed the preferred growth of polycrystalline hexagonal Sb₂Te₃ onto amorphous InSe as a major phase. Optically, the coating of Sb₂Te₃ onto InSe enhanced the light absorbability of InSe by more than 18 times, redshifts the energy band gap, increased the dielectric constant by ~5 times and increased the optical conductivity by 35 times in the NIR range of light. A conduction and valance band offsets of 0.40 and 0.68 eV are determined for the InSe/Sb₂Te₃ heterojunction devices. In addition, the Drude-Lorentz fittings of the optical conductivity indicated a remarkable increase in the plasmon frequency values upon depositing of Sb₂Te₃ onto InSe. The illumination intensity and time dependent photocurrent measurements resulted in an enhancement in the photocurrent values by one order of magnitude. The response time

of the devices is sufficiently short to nominate the InSe/Sb₂Te₃ heterojunction devices as fast responding NIR sensors suitable for optoelectronic applications.

Keywords: InSe/Sb₂Te₃, dielectric, band offset, Drude-Lorentz model.