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Abstract

Understanding the natural processes of excitation energy transfer (EET) in photo-
synthetic light-harvesting complexes (LHCs) is one of the essential keys to the design of
efficient photovoltaic devices [1]. As LHCs are open quantum systems, the understanding
of this energy transfer requires the simulation of its dynamics [2], taking into account
the quantum effects and the protein environment in which these LHCs are embedded.
According to spectroscopic studies, these effects would favor the EET [3–6]. However, dis-
sipative quantum dynamics frameworks for simulating this transfer, taking into account
these effects, encounter not only computational cost problems, in time and storage for the
most accurate methods, but also an error accumulation problem for the less accurate ones
[7–10]. Machine learning (ML), which is a tool that has already proven itself in several
domains, makes it possible to predict this energy transfer with a lower computational cost
in time and storage [11–14]. Moreover, thanks to convolutional neural networks (CNN),
the problem of error accumulation is also circumvented, based on predictions made over
an infinite time. In this last method, the prediction of the dynamics is made on a single
Fenna-Matthews-Olson (FMO) complex, from data on the relaxation rate of the environ-
ment, the reorganization energy of the studied system, the temperature, the number of
molecules necessary for the collection of light, as well as the information on the molecule
receiving the excitation first [9, 12, 15]. Although the latter method has shown its feasibil-
ity on a single FMO complex, we wonder to what extent it can be extended to the study
of several LHCs. With the evolution of the Noisy Intermediate Scale Quantum (NISQ)
era, Quantum Convolutional Neural Networks (QCNNs) are receiving more and more at-
tention, due to the fact that they are able to handle higher dimensional data, compared
to simple quantum neural networks. Thus, in order to answer the question raised above,
we propose a method using quantum convolutional neural networks to predict the EET
dynamics of several LHCs in parallel, over infinite time. The LHCs we work with are the
FMO complex and the FCP (Fucoxanthin-Chlorophyll) protein.
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