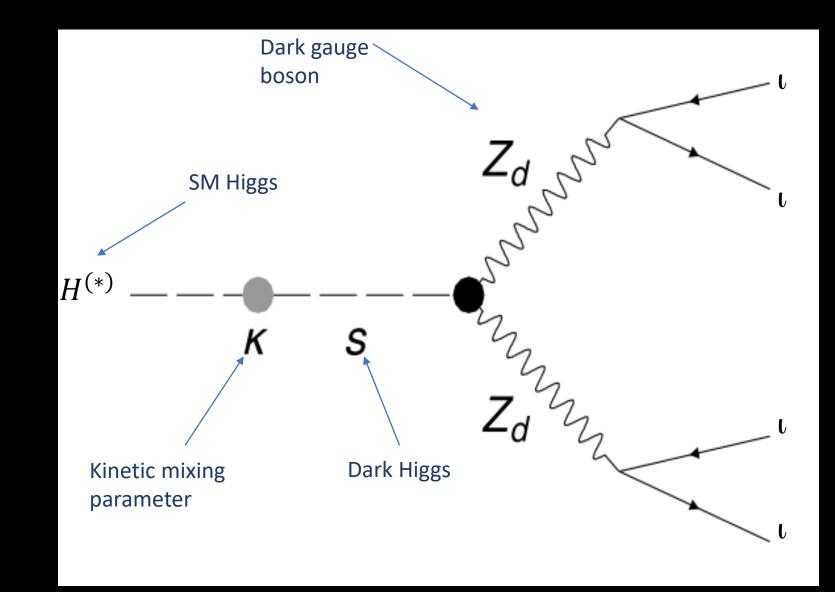
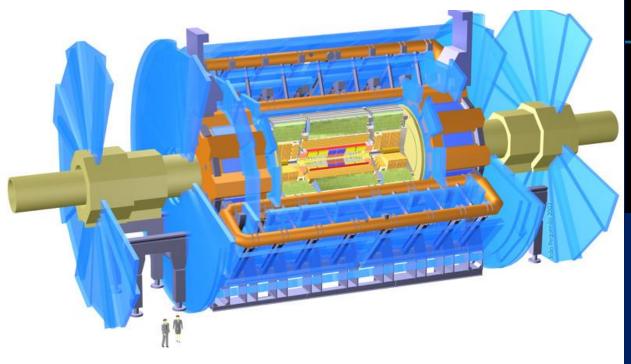


Search for a Standard Model Higgs decaying to a four lepton plus missing transverse momentum final state via dark boson decay

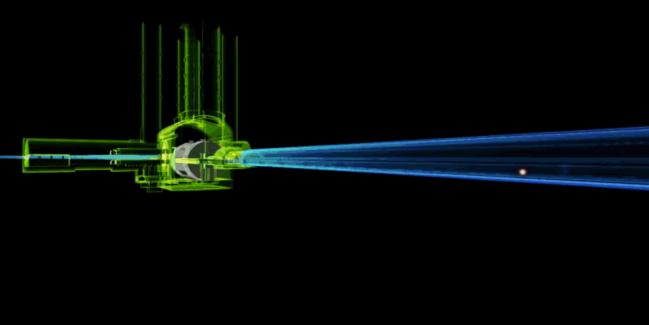
Xola Mapekula 16 November 2022 University of Johannesburg

Motivation

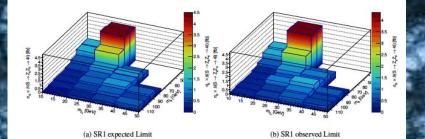

- Standard Model (SM) has deficiencies
 - Many free parameters, no DM or DE, (anti)matter paradox, hierarchy problem, strong CP problem, no gravity ...
- Many dark matter models that:
 - providing a candidate for the dark matter (DM) in the universe
 - explain astrophysical "observations" which may have DM interpretation
- This represents an alternative DM scenario to that of Super Symmetry

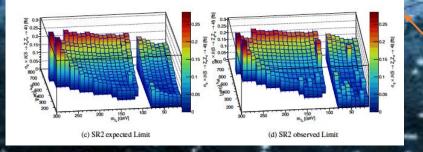

125 Mpc/h

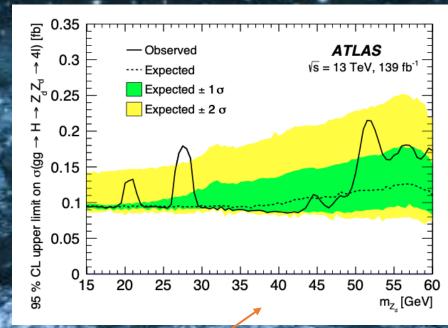
Hidden Abelian Higgs Model


- Possibility of extending the Standard model using Hidden Abelian Higgs model (HAHM)
- Mixing between the dark Higgs and the SM Higgs via the the mixing parameter κ. This happens when the dark Higgs mechanism spontaneously breaks the U(1)_d gauge symmetry
- We look for four lepton final state (4u, 4e, 2e2u)

- General purpose detectors designed to find the Higgs boson and other physics that may deviate from the Standard Model
- Takes a snapshot of every collision that occurs at the interaction point

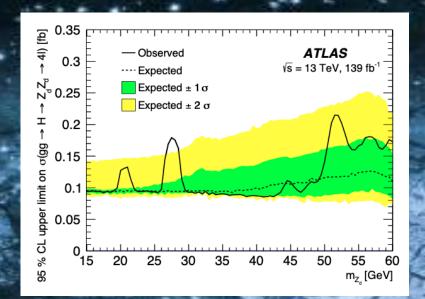

- Consists of the inner detector, the electromagnetic calorimeter, the hadronic calorimeter and the muon spectrometer
- Inner detector used to detect direction, momentum and charge of electrically charged particles
- Electromagnetic and hadronic calorimeters are used to measure energy of particles
- Muon spectrometer measures the momentum of muons

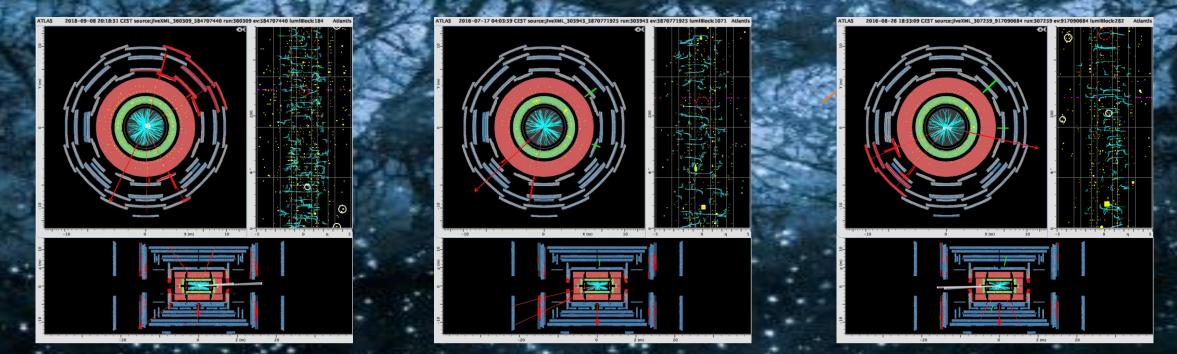

9/28/2023


Motivation

•

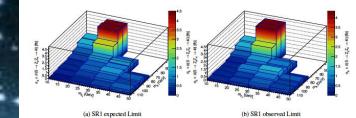
- The High Mass and Additional Scalar analyses produced significant bumps around 30 GeV.
- In addition, CMS analysis similar to the HM analysis also showed bumps around 30 GeV.

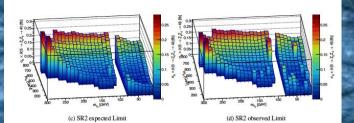

High m

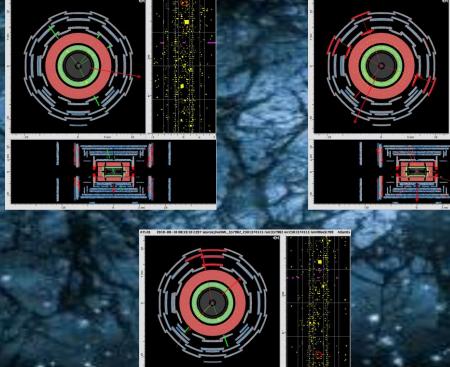

Additional scalar límits

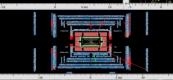
XG MAPEKULA ACP 2023

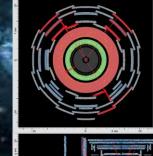
Motivation High mass Events

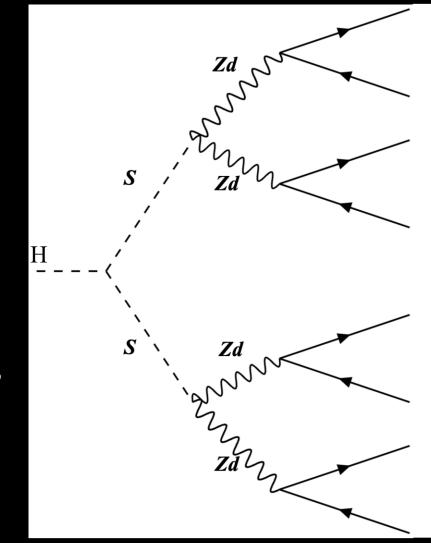

• When looking at the event displays of the events corresponding to the bumps, we noticed that there is a significant amount of missing energy






Motivation Additional scalar Events

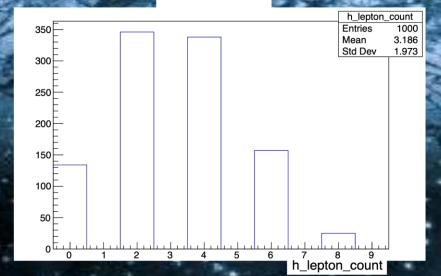

• When looking at the event displays of the events corresponding to the bumps, we noticed that there is a significant amount of missing energy



XG MAPEKULA ACP 2023

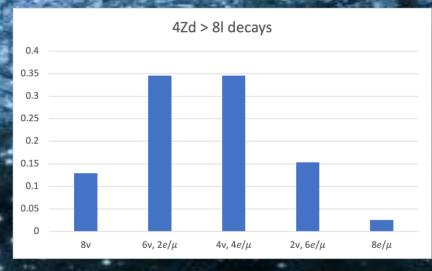
Hidden Abelian Higgs Model

- Altered the event generation code originally intended for 4I final state.
- Decay model final state goes to eight
- In our case, the signal we are looking for is where one of the scalars decays to a four neutrino final state while the other scalar goes to 4u, 4e or 2e2u


Possible decays

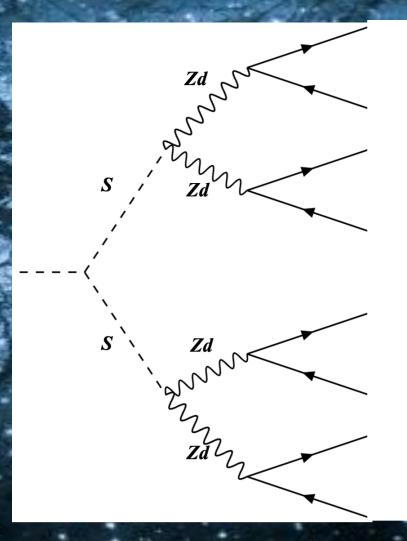
- Explore the number of combinations of the final state that are possible in this channel and found that there are eight possibilities
- Did a calculation of the probability of observing certain combinations
- Generated 1000 events to see which events are observed

Different configurations of final state leptons

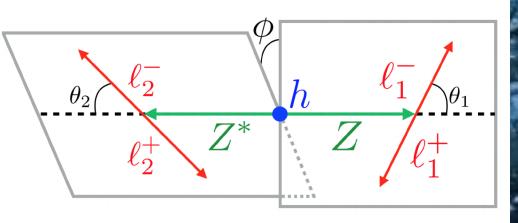

- 8v
- 6ν, 2e/ν
- 4ν, 4e/ν
- 2*ν*, 6*e*/*ν*
- 8*e*/*v*

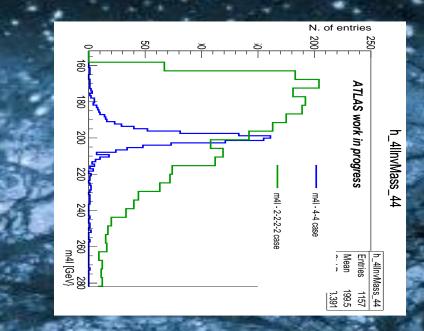
For this analysis, we will concentrate on the 4ν , $4e/\mu$ configuration.

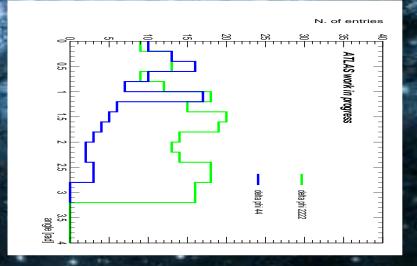
Event count


Probability calculation

Possible decays

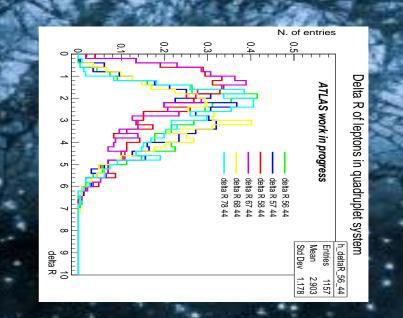

- Found that $P(4e/\mu, 4\nu) \approx 0.35$
- Within the case of observing $4e/\mu$, 4v, there are a few more combinations of final states
- Generated 1000 events to see which events are observed, where P(4-4) = 0.1152, P(2-2-2-2) = 0.2304

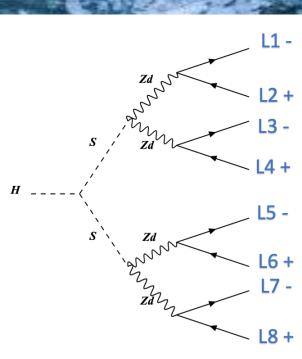

lνlν lννl νllν νlνl ννll



Discriminate between 2222 and 44 case

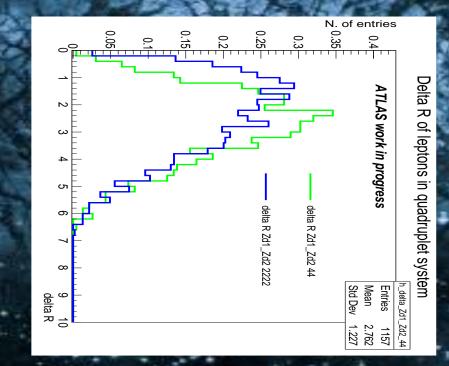
- Unlike the 4-4 case, the visible lepton pairs in the 2-2-2-2 case do not reconstruct to an Higgs-like particle. We therefore need a cut to discriminate the 2-2-2-2 events from the 4-4 case
- Generated 1000 events where H = 800 GeV and S = 200GeV
- Therefore formulated a few ways to find a discriminator which include:
 - Comparing the distributions of the angle ϕ formed by the planes lepton pairs decaying from Z_d in the reference frame of one of the S particles.

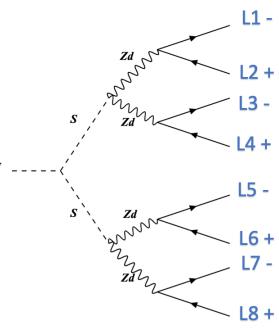




Discriminate between 2222 and 44 case

- Unlike the 4-4 case, the visible lepton pairs in the 2-2-2-2 case do not reconstruct to an Higgs-like particle. We therefore need a cut to discriminate the 2-2-2-2 events from the 4-4 case
- Therefore formulated a few ways to find a discriminator which include:
 - Comparing the angular distance between the visible leptons in each case
 - Compare the angular distance between the Zd's that are reconstructed using the visible leptons
 - Calculated the angular distance using the following equation:
 - $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$





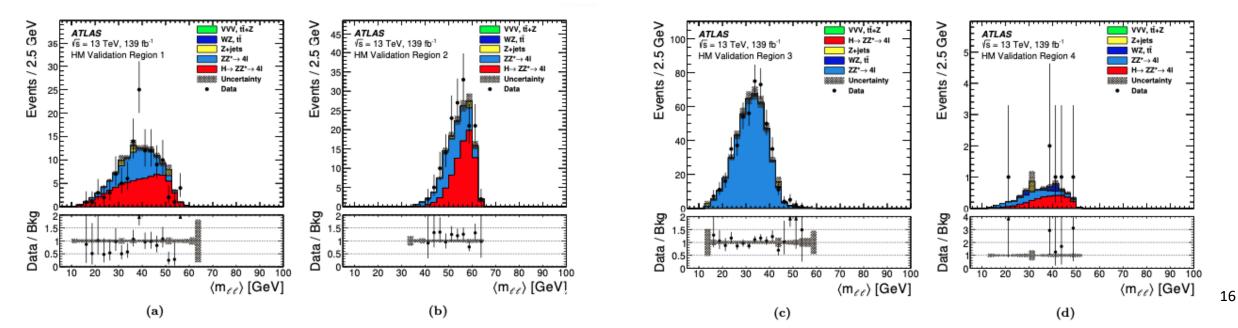
Discriminate between 2222 and 44 case

- Unlike the 4-4 case, the visible lepton pairs in the 2-2-2-2 case do not reconstruct to an Higgs-like particle. We therefore need a cut to discriminate the 2-2-2-2 events from the 4-4 case
- Therefore formulated a few ways to find a discriminator which include:
 - Comparing the angular distance between the visible leptons in each case
 - Compare the angular distance between the Zd's that are reconstructed using the visible leptons
 - Calculated the angular distance using the following equation:
 - $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

Conclusion

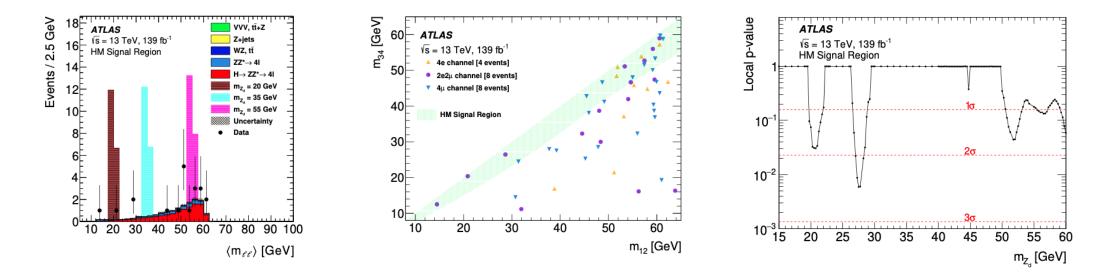
- No clear discriminator has been identified however there are some distinct shapes for each case
- Future plan is to use these discriminators to construct a boosted decision tree that tested as a discriminator

Event selection


- Final state objects of interest are electrons and muons
- Electron must be within central region of the detector
- Muons must be within acceptance region of muon spectrometer
- Look for quadruplet containing two Same Flavor Opposite Sign lepton pairs. Quadruplet with smallest lepton pair mass difference is chosen
- Leptons in quadruplet must be isolated from other deposits in the Inner Detector and Calorimeter
- Invariant mass of quadruplet must be within Higgs window
- Quadruplet masses must comply with signal region requirement

XG MAPEK

	$H \to Z_d Z_d \to 4\ell \ (\ell = e, \mu)$	
Mass range	$15 { m GeV} < m_{Z_d} < 60 { m GeV}$	
Baseline electrons	$p_{\rm T} > 7 {\rm GeV}$ and $ \eta < 2.47$	
	Loose identification with an IBL hit	
	$ z_0 \sin \theta < 0.5 \mathrm{mm}$	
Baseline muons	$p_{\rm T} > 5 \text{GeV}$ (15 GeV if calo-tagged) and $ \eta < 2.7$	
	Loose identification	
	$ z_0 \sin \theta < 0.5 \text{ mm}$ and $d_0 < 1 \text{ mm}$ (except for standalone muons)	
Quadruplet selection	Require at least one quadruplet consisting of two pairs of	
	same-flavour opposite-sign leptons	
	Three leading- p_T leptons satisfying $p_T > 20$ GeV, 15 GeV,	
	10 GeV	
	Number of calorimeter-tagged muons plus number of standalone	
	muons not greater than 1	
	At least one lepton in the quadruplet responsible for firing at least	
	one trigger	
	For di-lepton triggers, all leptons of the trigger must match leptons	
	in the quadruplet	
	Define pairs m_{12} and m_{34} such that $ m_{12} - m_Z < m_{34} - m_Z $	
	$\Delta R(\ell, \ell') > 0.10 (0.20)$ for same-flavour (different-flavour)	
	leptons in the quadruplet	
Quadruplet ranking	Select quadruplet with smallest $\Delta m_{\ell\ell} = m_{12} - m_{34} $	
Event Selection		
Isolation	Track and calorimeter isolation	
impact parameter	Excluding tracks/clusters from other leptons in the quadruplet	
	d_0/σ_{d_0} < 5 for electrons and d_0/σ_{d_0} < 3 for muons	
$m_{4\ell}$	$115 { m GeV} < m_{4\ell} < 130 { m GeV}$	
Z-veto	$10 \mathrm{GeV} < m_{12,34} < 64 \mathrm{GeV}$	
Heavy-flavour veto	Reject event if $m_{12,34,14,23}$ in:	
	$(m_{J/\Psi} - 0.25 \text{ GeV})$ to $(m_{\Psi(2S)} + 0.30 \text{ GeV})$, or	
	$(m_{T(1S)} - 0.70 \text{ GeV})$ to $(m_{T(3S)} + 0.75 \text{ GeV})$	
Signal region	$m_{34}/m_{12} > 0.85 - 0.1125 f(m_{12})$ 15	
	15	

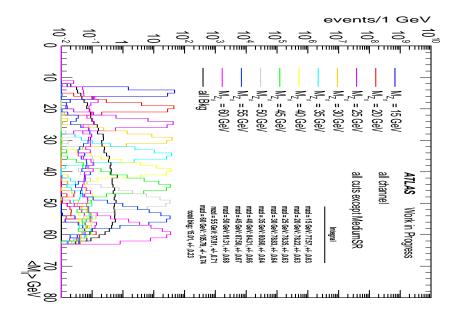

Background estimate

- VR1:Invert the Z-Veto requirement so that $m_{14,23} \ge 75 \ GeV$ and signal region requirement is removed
- VR2: Requirement on four invariant mass pairings is removed and replaced with $m_{12} \ge 64~GeV$
- VR3: Invert Higgs boson mass window and signal region requirement
- VR4: Invert signal region and require all four dilepton mass requirements to be $m_{ll} < 55 \ GeV$

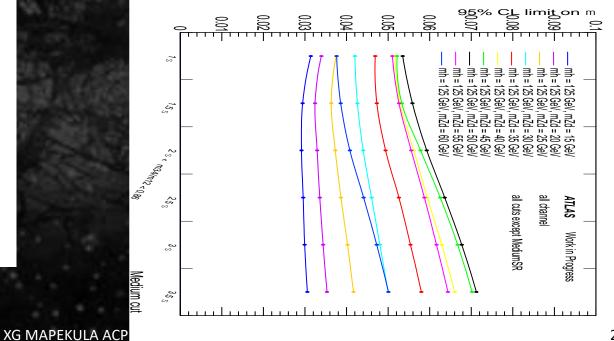
Results

- Pre-fit background distributions together with data are shown on the left plot. Expected signal histograms are stacked on top of background and normalized with $\sigma(pp \rightarrow H \rightarrow Z_d Z_d \rightarrow 4l)$
- Total of 20 events are observed with a total predicted background of 15±1.3 events
- Used profile likelihood $-2log\left[\frac{L(\mu=0,\widehat{\theta})}{L(\mu,\widehat{\theta})}\right]$ as the test statistic
- Biggest deviation observed at $\overline{28}$ GeV corresponding to a significance of 2.5σ

Limits and interpretation

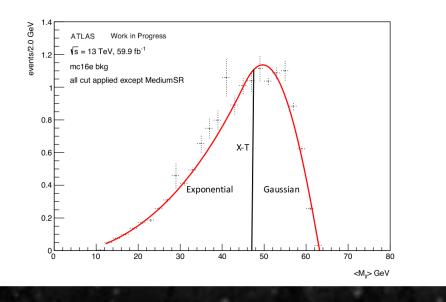

- No significant excesses observed. Therefore, we derive model independent limits based on fiducial regions
- Fiducial region selections designed to mimic full event selection
- These are used to factorized effects of event selection into largely modelindependent efficiency and model dependent acceptance
- Efficiency is used to find the model independent cross-section limit which is converted into model dependent crosssection limit using the acceptance

	$H \to Z_d Z_d \to 4\ell \ (\ell = e, \mu)$
Mass range	$15 \text{ GeV} < m_{Z_d} < 60 \text{ GeV}$
Electrons	$p_T > 7 \text{ GeV} \eta < 2.5$
Muons	$p_T > 5 \text{ GeV} \eta < 2.7$
Quadruplet	Three leading- p_T leptons satisfying $p_T > 20$ GeV, 15 GeV, 10 GeV
	$\Delta R > 0.10(0.20)$ between same-flavour (different flavour) leptons
	$m_{34}/m_{12} > 0.85 - 0.1125 f(m_{12})$
	$10 \text{ GeV} < m_{12,34} < 64 \text{ GeV}$
	For $4e$ and 4μ channels:
	$5 \text{ GeV} < m_{14,23} < 75 \text{ GeV}$
	Reject event if $m_{12,34,14,23}$ in either:
	$(m_{J/\psi} - 0.25 \text{ GeV})$ to $(m_{\psi(2S)} + 0.30 \text{ GeV})$, or
	$(m_{\Upsilon(1S)} - 0.70 \text{GeV})$ to $(m_{\Upsilon(3S)} + 0.75 \text{GeV})$


Thank you

Modification to Signal Region

Background shape formed after applying all cuts except MSR cut with signals for various values of m_{Z_d} superimposed.


- In the model independent context, MSR can be broadened in the low mass region because of the small background.
- A study shows that increasing the MSR from 2σ to 3.5σ will increase the signal yield more than background for low m_{Z_d} masses while slightly less so for high m_{Z_d} masses. So a wider signal region is possible for the lower m_{Z_d} masses.

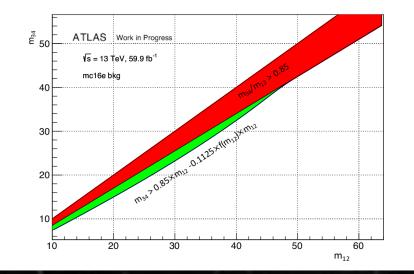
Modification to Signal Region

XG MAPEKULA ACP 20

• Construct a modulated signal region using the shape of the background that will have a 3.5σ width from $m_{Z_d} = 10$ GeV and decrease to 2σ at $m_{Z_d} = 64$ GeV. The background can be represented by a function consisting of an exponential attached to a Gaussian peak.

Function is given by:

$$F(x_i) = \begin{cases} B_1 + B_2(x_i - X) + he^{\frac{-(x_i - X)^2}{2\sigma^2}} & x_i > X - T \\ B_1 + B_2(x_i - X) + he^{\frac{-T(2x_i - 2X + T)}{2\sigma^2}} & x_i < X - T \end{cases}$$


This function is then used to construct a modulating function using the following formula:

$$f(m_{12}) = 1 - \frac{F(m_{12}) - F(10)}{F(49.64) - F(10)}$$

Where:

$$f(m_{12}) = \begin{cases} 1 & m_{12} = 10 GeV \\ 0 & m_{12} > 49.64 GeV \end{cases}$$

Which gives the new Signal Region:

