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Uncharged, subatomic particles found in atomic nuclei

Approx. mass of neutron 1.67%107%7 kg, v = 2.2 km/s at RT
energy ~ 0.025 eV, wave-particle dudlity, A = 0.18 nm at RT

Neutrons: An ideal probe at the atomic scale

* Like X-rays thermal neutrons possess the right wavelengths.
* In addition neutrons possess the ideal energies for spectroscopy of thermal fluctuations.

The information is encoded in the
From 1000 nm change of direction and speed of the Up to 0.001 nm
2 neutrons as they path through the ' 42

material.
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Why use neutrons to study soft an biological material?

Neutrons interact with nuclei

H D Li C

* are sensitive to light atoms, particularly hydrogen
* can exploit isotopic substitution, especially H/D
* ‘see’ materials differently to X-rays, complementary
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Neutrons are a neutral particle

* are highly penetrating > buried interfaces
* can be used as non-destructive probes
* can be used to study samples in extreme environments
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Neutrons have a spin, therefore a sensitivity to magnetic properties

Beams of polarized neutrons (in which all the spins are aligned)
allow the characterization of exotic materials with complex structure and behavior
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Schematic view of elastic neutron scattering spectra

Cavities, precipitates, clusters;
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* Thickness of layers at interfaces
* Roughness/interdiffusion

* Composition in the direction

normal to the interface
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In-plane features (height fluctuations,
domains, holes ...) can be probed by
off-specular measurements: for thin
films synchrotron radiation is more

suitable
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Specular reflectivity measurements z
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Specular reflectivity measurements
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Mechanisms at cell membranes

. lipid-modifying lipid-protein
Complex assemblie enzymes interactions
of lipids & proteins

lipid-lipid
Exhibit short range interactions
but not long range

order

High degree of late
heterogeneity

Transversely
asymmetric

\ non-vesncular act||_1 &
transport associated

proteins

~ vesicle
transport

Lipid scaffold composed by a large variety of lipid species and levels of chain unsaturation,
=, often difficult to synthesise chemically. Because of the complexity model membrane systems
sssssssssssssssssssssssssssssssss are used for fundamental studies.



developing model membrane systems since 1997...

Total surface of membranes covers
an area of 30,000 m? in our body

Function of membrane proteins : dependent on membrane composition, lipid-protein interaction,
lipid mediated protein-protein interaction

Pharmacological interest : Drug transport through membranes (dependent on physico-chemical
membrane properties), anti-microbial peptides

Membranes may play a direct role in signal transduction

Diseases associated with changes in lipid composition (diabetes, schizophrenia, Tay-Sachs syndrome,
Alzheimer, Parkinson) e O e

éhf& Proteins L' SoftCorona

Cell adhesion

Nano-biotechnology applications (biosensors, bio-coatings)

JCIS 2017

and .... fascinating chemistry and physics! * ose somucs s o



Model membranes
and scattering techniques
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Floating bilayers prepared by
Langmuir-Blodgett Langmuir-Schaefer
techniques
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25 years of neutron and synchrotron radiation studies of
structure and fluctuations of floating bilayers

- Effect of temperature (giant swelling)

- Effect of charges

- Effect of AC current

- Interaction with gene delivery complexes

- Effect of domain forming molecules/asymmetry
- Lipid flip-flop

- Interaction with nano particles

« Transmembrane insertion

Directional
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25 years of neutron and synchrotron radiation studies of
structure and fluctuations of floating bilayers

Effect of temperature (giant swelling)

Effect of charges

Effect of AC current

Interaction with gene delivery complexes
Effect of domain forming molecules/asymmetry
Lipid flip-flop

Interaction with nano particles

Transmembrane insertion and induced fluctuations

EPJB 1999
EPL 2001
Langmuir 2001
Langmuir 2003
Langmuir 2005
Langmuir 2005
PNAS 2005
EPJE 2006
Soft Matter 2007
Langmuir 2009
BBA 2012
PNAS 2012
Langmuir 2012
EPJE 2013
Soft Matter 2015
PRL 2016
BBA 2018
Small 2019

] Chem Phys Lett 2019
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Regular Article
Insertion and activation of functional Bacteriorhodopsin in a floating 1))

Check for

bilayer s

Tetiana Mukhina®™!, Yuri Gerelli *“*, Arnaud Hemmerle ¢, Alexandros Koutsioubas ¢, Kirill Kovaley &4,
Jean-Marie Teulon', Jean-Luc Pellequer’, Jean Daillant ¢, Thierry Charitat ®*, Giovanna Fragneto **

ARTICLE INFO ABSTRACT
Article history: The proton pump transmembrane protein bacteriorhodopsin was successfully incorporated into planar
Received 24 November 2020 floating lipid bilayers in gel and fluid phases, by applying a detergent-mediated incorporation method.

Revised 26 March 2021
Accepted 27 March 2021
Available online 31 March 2021

The method was optimized on single supported bilayers by using quartz crystal microbalance, atomic
force and fluorescence microscopy techniques. Neutron and X-ray reflectometry were used on both single
and floating bilayers with the aim of determining the structure and composition of this membrane-



Bacteriorhodopsin (BR)

High-resolution structure of BR

p+

Cytoplasmic

Extracellular

Pebay-Peyroula, E., et al., Biochim Biophys Acta.

2000, 1460:119-132.

26~kDa transmembrane protein that acts as a light-driven proton pump in Halobacterium
salinarum, converting light energy into a proton gradient.

Electron density profile of the 2D
crystalline purple membrane

Unwin P. N. T. and R. Henderson J. Mol. Biol,,
1976, 94:425 - 440

Conformational changes of BR
during the photocycle

Intermediate

conformation
conformation
16 ms 1.9ms

Late conformation

Andersson, M., et al., Structure. 2009,
17:1265—1275.



Membrane Fluctuations

e  Thermal fluctuations

* Active fluctuations - out of equilibrium
system

Micropipette experiments
Videomicroscopy experiments

Turlier H. Annu. Rev. Condens. Matter Phys. 2019. 10:213-32 19
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A larger excess area could be pulled out by micropipette aspiration when BR was active,

1 2 Y indicating that its proton pumping activity induces an amplification of the
membrane shape fluctuations and a strong decrease in the effective bending
modulus of the membrane. Information only at the micrometer scale.

Manneville J.-B. , Ramaswamy S., Bassereau P., Prost .. PRL E 64 021908



Out-of-equilibrium fluctuations of phospholipid membranes induced
by active transmembrane proteins

X-ray and synchrotron radiation

Specular and Off- Specular

« Structure with A resolution
* Fluctuation spectrum
* Lateral inhomogeneities and defects

* Physical properties of the system

Fluorescence microscopy

* Lateral features of the system with pm
resolution

* Sample fluorescence/bleaching

Confocal
microscopy

Neutron beam

Neutron reflectometry

Structure with A resolution

Atomic composition

Interface roughness

Solvent content

Atomic Force Microscopy AFM

Lateral and transversal features of the system
with nm resolution
Mechanical properties of the sample

Force measurements



Detergent-mediated protein incorporation
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Atomic force microscopy

Fluorescence microscopy
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Neutron Reflectometry
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Fluid single bilayer + BR
MARIA reflectometer
JCNS, Germany

18 % by volume of BR

Fluid floating bilayer + BR
D17 reflectometer

BR insertion into the floating bilayer
+ BR layer on top



Sample environment for X-ray reflectivity experiment

SixS beamline
SOLEIL synchrotron, France



Specular SR Reflectometry
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Specular SR Reflectometry
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DSPC double bilayer at 25°C after protein BR
incorporation, with and without illumination.

SixS beamline ( SOLEIL synchrotron, France).

SLD/ *10° A

18 4 - - -BR Light OFF
1 —— BR Light ON

7 | ! | ! | ! |

! | ! | ! |
0 25 50 75 100 125 150
z/ A

SLD profiles corresponding to the fits.

|
175



Specular SR Reflectometry
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DSPC double bilayer at 25°C after protein BR
incorporation, with and without illumination.
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The reversible effect of light illumination is shown.



Specular SR Reflectometry
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Specular SR Reflectometry
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Off-specular reflection with and without illumination

(dp(r)ép(r")) ~ static roughness, defects, fluctuations ...

o Spacar iy Fitting with models of correlation

m  Off-specular reflectivity |

functions:

=structure,

=elastic parameters (bending
modulus, surface tension),

= interaction potentials.

Malaquin et al., EPJE (2010), Hemmerle et al., PNAS (2012)

- BR Light OFF
+ BR Light ON
+ BR Light OFF
- BR Light ON

kT

(2(9))=(q) ) - A+ 1g® +xq"

... Analysis in progress



Off -specular X-ray Reflectometry
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isircnfBens SUMMARY

Successful BR incorporation into membrane-mimic systems

Reversible effect of light-induced protein activity on

membrane structure and fluctuations

Magnification of membrane fluctuations
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Current Opinion in Colloid & Interface Science
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Neutrons and model membranes: Moving
towards complexity

Giovanna Fragneto ! ©
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Moving towards complexity:
deuterated (and non) lipid extraction and
purification

Growth in 100%
D,0 with D- D-Labelled
carbon source

/ culture

increase conc. D,0
Growth in 100%
D,0 with D-
Unlabelled Gr owth carbon source D-Labelled
culture minimal medla culture

www.ill.eu/L-Lab




Yeast lipid
production at
DEMAX

-

The Deuteration and

Macromolecular Crystallisation

(DEMAX) platform supports life

science and soft matter research
users of neutron instruments.

https://europeanspallationsource.se/science-support-systems/demax



Workflow for purification @

From cell culture to phospholipid extracts ~ 4 PW

40%D,0 | 60%D,0 | 80%D,0

PoT T
\

Adaptation to D20

Solvent
Extraction (25g

(E. B

,2L)

Y 2 weeks (LP3)

phospholipid classes (10-100mg each)
ﬁ PC, PE, PS, PI, CL, PG <=

preparative HPLC or LC

r ‘I“F_:Z-;p: s phospholipid
R extract total lipid
~250mg extract
600-800mg

De Ghellinck et al. PlosONE 2014 37



% deuteration:

Workflow for lipid analysis FTIR check incernal (I day) @

Lipid composition ~1 PW per TLC plate/ batch GC/LC-MS external (availability)
Preparative TLC Automated GC sample preparation GC-FID

—

—— a1

e total PL extract
 each PL class

analysis in triplicate for errors in composition

reusability good after neutrons: Phospholipid composition Lipid chain composition in each PL class

Composition of fatty acids deuterated Pichia Phospholipids

a) Composition of fatty acids in MID-O.D recovered and MID OD 6-7 total Phospholipid composition in MID 1-5, MID 6-7 and d 1-2 20
phospholipid extracts
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Separation of the phospholipid classes by Normal phase-HPLC

Successful separation of phospholipids
classes from P.pastoris and E.coli total

o PE =~54 mg
lipid extracts. A total of ~89 mg

GPL mixture from 5 PG = ~23 mg
g/E.coli biomass CL="~13mg

A total of ~106 mg
GPL mixture from 5

g/yeast biomass

TOTAL YIELD

Pichia pastoris lipids chromatogram

E.Coli lipids chromatogram
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PE 40 m
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20

The implementation of an additional purification step by High Performance Liquid Chromatography-Evaporative Light Scattering
Detector (HPLC-ELSD) enabled a better separation of the GPL mixtures from the neutral lipid fraction that includes sterols, and also
allowed for the GPLs to be purified according to their different polar headgroups.



Fatty acyl chain composition — Pichia pastoris
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Figure 2: GC-FID analysis of the fatty acid distribution for the investigated GPL classes. Data are mean
+ S.D. of three technical repeats. A complete table with all the values can be found in Supplementary
Material Table S1.
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FAMEs analyses revealed that deuteration
triggered a significant increase in the oleic
acid content = reflected across classes

Decrease in the polyunsaturated FA
content.

Decreased palmitic acid levels across the
classes while an increase in the stearic acid
is noticed in the acidic phospholipids

Corucci et al. JCIS 2023



Structural Characterization of the Purified Lipid Mixtures

The structure of membrane mono/bilayers has been characterized by techniques (DSC,
QCM) that are available within the PSCM.

Neutron characterization of membrane mimics from the purified lipid mixtures has
been carried out within the LSS and SMSS groups including:

. H : Contrast Match
1.) SANS from liposomes, nanodiscs, vesicles. ; nesti -
. - Y e N b & 1: Contrast Match
Natural PE Mixture from Pichia pastoris Natural PE Mixture from E. coli 8- 2: Liﬁz;?sFit Aaut(;) i
. ° 7 i
° . .. ::o.‘. 6 L 3
104 .'q. ®o0,, - &
e, gt g5r !
o * = ‘-,
\: Q:'\\Q { St
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1 =
. 0 | | | | | | | |
https://www.ill.eu/L-Lab 40 20 0 2 40 60 80 100 120 140
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Structural Cha ipid Mixtures
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! The structure of membran ized by techniques (DSC,

QCM) that are available with

10 12 14 2 + 6 8 10 12

4 6

hPG at 98% RH

hPG at 57% RH

. “ad lipid mixtures has

) Neutron characterization c\z_
been carried out at the ILL w3

ling:

1.) SANS from liposomes anc

dPG at 57% RH

2.) Diffraction from stacked t umidity),

-’"frontiers ORIGINAL RESEARCH
in Chemistry ot 103380 chem 2051 628138 Contents lists available at ScienceDirect
) ' : ’ Colloids and Surfaces B: Biointerfaces
g e hPG at 98% RH dPG at 98% RH
[ journal homepage: www.elsevier.com/locate/colsurfb

Structural Characterization of Natural
Yeast Phosphatidylcholine and
Bacterial Phosphatidylglycerol Lipid
Multilayers by Neutron Diffraction

Alessandra Luchini’*, Giacomo Corucci®®, Krishna Chaithanya Batchu?, Valerie Laux?,
Michael Haertlein? Viviana Cristiglio? and Giovanna Fragneto®®

Giovanna Fragneto™*

db=(77 +3)A : | 3 e
MM-"/t ( ) The impact of deuteration on natural and synthetic lipids: A neutron
.da =(95 £ 5) A diffraction study
I da = (68 = 2) A Alessandra Luchini®", Robin Delhom?, Bruno Demé?, Valérie Laux*®, Martine Moulin®,
- Michael Haertlein?, Harald Pichler<¢, Gernot A. Strohmeier ¢, Hanna Wacklin "%,

https://www.ill.eu/L-Lab
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scientific reports

M) Check for updates

OFPEN  Lipid bilayer degradation o

induced by SARS-CoV-2 spike i J S
protein as revealed by neutron
reflectometry

Alessandra Luchini'*, Samantha Micciulla?*, Giacomo Corucci?, Krishna Chaithanya Batchu?
Andreas Santamaria?, Valerie Laux?, Tamim Darwish?, Robert A. Russell?, Michel Thepaut*,
Isabelle Ballv*, Franck Fieschi* & Giovanna Fraaneto?™

JOURNAL OF THE AMERICAN CHEMICALSOCIETY

NEUTRON REFLECTOMETRY REVEALS SARS-COV-2
SPIKE PROTEIN INDUCES LIPID STRIPPING FROM
CELL MEMBRANE, LEADING TO A GREATER
UNDERSTANDING OF SARS-COV-2 INFECTION

MECHANISMS AND POTENTIAL THERAPEUTICS. . "““‘"
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The ILL Reactor

1 NEUTRON

A neutron source generating
5 x 1018 fast neutrons/sec
at a max power of 58 MW




Neutron Source Brightness

Effective thermal neutron flux n/cm?-s
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Spallation

How it works
The technology

TARGET

MONOLITH 8
i 4.9
TONNES
6,000
TONNES - | TARGET WHEEL
2.5m

NEUTRON
BEAMS

High energy neutrons are
released from the target.

The neutrons are slowed
down, focused and sent
down the beamlines.

HALL 1 SCIENTIFIC

INSTRUMENT

WORKSHOPS
ACCELERATOR

ESS CAMPUS

g s ION SOURCE

“‘1”" SAMPLE
6

Particles are They are accelerated .

produced in to 96% of the speed

the ion source. of lightin the 600 m :

long accelerator... LABORATORIES :
EXPERIMENTAL .
s SN - When the neutrons arrive at the
TR e instruments, the researchers can

use them to explore materials
down to an atomic level.
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Long-pulse Performance and Flexibility @
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Neutron Scattering Technigues
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Andersen, K. H.; Argyriou, D. N.; Jackson, A. J. et al. The Instrument Suite of the European Spallation Source.
Nuclear Instruments and Methods in Physics Research Section A: 2020, 957, 163402.
https://doi.org/10.1016/j.nima.2020.163402.

Neutron Instruments @

N7

LoKI

15 instruments + Test Beamline FREA NS
Estia E2

SKADI E3

. . VESPA E7
Diffractometers (DREAM, MAGIC, HEIMDAL) —
SANS (LoKl, SKADI) ODIN 52
Reflectometers (Estia, FREIA) NMX w1
Imaging (ODIN) e w2
CSPEC W3

Engineering Diffraction (BEER)
Macromolecular Crystallography (NMX)
Spectrometers (CSPEC, T-REX, BIFROST, MIRACLES, VESPA)

BIFROST w4
North Sector

MIRACLES W5
MAGIC W6
T-REX W7

Novel detector technologies and geometries HEIMDAL W8

Complex pulse-shaping

Shared neutron bunker — common space for components
Common timing system for facility

Single controls infrastructure (EPICS)

Control and data recording running remotely from instrument

South Sector
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https://doi.org/10.1016/j.nima.2020.163402

£stia -

Focussing Polarised Reflectometer for Tiny Samples

ESS Estia Sample at 35 m

Estia Quick Facts.

Estia Quick Facts
Instrument Class Reflectometry
Moderator Cold
Primary Flightpath 35 m
. Secondary Flightpath 4 m
«  Wavelength Range 3.75-28 A
Polarised Incident Beam Optional
Polarisation Analysis Optional
Sample Orientation Vertical
Total Q-Range 0.001 to 3.15 A=1/-0.001 to —0.3 A1
Monolith Bunker 0 5 4 . < 0 " Standard Mode (14 Hz)
A TA Bandwidth 7 &
(Al Flux at Sample at 2 MW? 6 x 108 n s7! cm™2
Relative Q-Range Omax = 2.85 X Qpin
. S I . d . . Q-Resolution 4Q/Q 7.8%-3.0% over Q-range
elene neutron guide projects tINY “ruse skpping Mode @7 12

beam from Virtual Source Bandwidth 21 &

Flux at Sample at 2 MW? 2 x 10® n s7! em™?
° Sma " sam ples: Relative Q-Range Omax = 6.6 X Quin

Q-Resolution 4Q/Q 7.8%-1.3% over Q-range

» Large divergence (1.5°x1.5°)
«  Samples down to 1x1 mm?

aFull-divergence beam averaged over 5(H) x 10(V) mm?.

100 =

107 | PAUL SCHERRER INSTITUT
S 102} LJ__:
§1o-3§
5ol For the study of surfaces
© 105 F

and interfaces including
N o magnetic layers
10 C 1 | 1 | | 1 | 1 1
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ESTIA @

Science Case

ESTIA is optimised for small samples and polarisation analysis:

The investigation of the chemical and magnetic depth-profile near surfaces and of lateral
correlations and structures

« functional devices: spin-valves, spintronics

 diffusion processes: Li batteries, corrosion protection

« multifunctional materials: interface-coupled electric and magnetic properties

« towards real materials: raster-scanning of bent, faceted or multi-domain surfaces
* Small samples:

 Large divergence (1.5°x1.5°)

« Samples down to 1x1 mm?
» Polarization >99% for curved transmission polarizer and analyser
« Simultaneous measurement of two polarization states

| | T T T T T T -
Simulation of Ni thin film on 10x10 mm? |

Si-substrate in less than 15 seconds

100 B
101 E
— 102 F
103 F

104 F

Reflectivity [a.u

oo VA
A

10_6 ;_ il

107 F ! ! 1 ! ! ! ! ! .
0O 005 01 015 02 025 03 035 04 045
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FREIA @

Science Case

In-situ time-resolved reflectometry for soft condensed matter, life science and functional materials

Instrument characteristics to allow very fast measurements: Dynamics
- Very high flux - Variable resolution
- Horizontal sample geometry - Broad simultaneous Q !g!‘!!‘!g!!‘ ) 1 :
- Flexible collimation - No sample movement 388883 J
2L 22 Flip - Flop {

Kl
Applications
a) compact film artificial defect p) _ deposition structure and

s CFREE SRS SR ST S

phase behavior

oy Omrpled relese of - 0 - adsor.ptlon, self-assembly and
; reactions

- gas/liquid/solid interfaces

- response to external stimuli
- insitu and in operando
- complex sample environments

Incident Reflected
Neutron Neutron

External pH-
Driven Release

Substrate Substrate
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Expected perfomances of ESS
reflectometers compared to ILL ones

FOM = Peak brightness* divergence (vertical & horizontal) * Amax/Amin

S

FREIA and ESTIA: wide divergence mode: large g-range kinetic measurements”

FOM = Peak brightness* divergence (vertical & horizontal) * Amax/Amin

ESS-2MW: D17 new guide: usable flux on the sample by a factor of 2.5

FREIA and ESTIA: wide divergence mode: large g-range kinetic measurements”
FOM = Peak brightness* divergence (vertical & horizontal) * Amax/Amin

ESS-5MW: D17 new guide: usable flux on the sample by a factor of 2.5
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Areas that neutrons already contribute to:

Challenges for neutron science fess)

COMMENT | 02 May 2023

Address the growing urgency of
fungal disease in crops

More political and public awareness of the plight of the world’s crops when it comes to
fungal disease is crucial to stave off amajor threat to global food security.

nature > collection
Collection 17 February 2023

Extracellular vesicles

Extracellular vesicles (EVs) have emerged as important means of cell-cell communication,
having the potential to transfer various cargoes — encompassing proteins, nucleic acids,
metabolites or even entire organelles — between cells. By now, the importance of EV-mediated
cell-cell communication has been documented in a plethora of physiological and pathological

situations, across the different kingdoms. In addition, their secretion and cargo composition
can change depending on the biological context, making EVs suitable biomarkers for several

diseases. EVs have also been harnessed as drug delivery agents and standalone therapeutics. Bacterial cel I UIose com es out Of the
ok cdlidioe woodwork

Collection 14 April 2023

Cancer research

Polymer scientists in Japan are harnessing the power of botany and bacteria to produce
bioplastics that don’t harm the environment.

Cancer is a leading cause of death, accounting for nearly one in six deaths worldwide. Many
cancers can be cured, especially if detected early and treated effectively. Nevertheless, an

unmet need for the development of treatments for aggressive and often metastatic tumors
remains. Preclinical and clinical research in the areas of cancer screening and detection, as

NATURE INDEX | 14 December 2022
well as development of new therapies are at the core of this challenge. This development is

oot e erln e e v sl T ek Three ways to combat antimicrobial

L]
profiling studies that link bench and bedside to allow for an improved understanding of therapy t
response and resistance. In this collection, we highlight the breadth of cancer research in reSl S ance
these areas at the Nature Portfolio. . e . . . .
With a dearth of new antibiotics coming to market, researchers are finding creative ways

to keep bacteria at bay.
Article | Open Access | Published: 14 April 2023

Temporal nanofluid environments induce prebiotic NEWS FEATURE | 04 e .
condensation in water Conquering Alzheimer’s: alook at

Andrea Greiner de Herrera, Thomas Markert & Frank Trixler the therapies Ofthe futu re

Communications Chemistry 6, Article number: 69 (2023) | Cite this article

Researchers are looking to drug combinations, vaccines and gene therapy as they forge
468 Accesses | 2 Altmetric | Metrics the next generation of treatments for the condition.

Courtesv H. Wacklin-Knecht



. what ESS could advance (with smaller samples/higher throughput/deuteration):

Challenges for neutron science

RESEARCH BRIEFINGS | 26 April 2023

New protein-protein interactions
designed by acomputer

Creating protein interactions through computational design is a key challenge in the
fields of both basic and translational biology. An approach that uses the machine-
learned fingerprints of protein-surface features was used to produce synthetic proteins
that engage immunotherapeutic or viral targets with binding affinities comparable to
those of naturally occurring proteins.

a b . Seed candidates

PP structure DB § Surface features
N ¢
[ T “ MaSIF-site
Q W — :&‘4» % @ prediction é @ ﬁ
N ? ., 1
1 N

5.3 O Fingerprint patch  Chemical ~Shape Seed selection
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§< \% {E Experimental characterization
and optimization

This is asummary of: Gainza, P. et al. De novo design of protein interactions with learned
surface fingerprints. Nature https://doi.org/10.1038/s41586-023-05993-x (2023).

=

nature > articles > article

Article | Published: 05 April 2023

mRNA recognition and packaging by the human
transcription-export complex

Belén Pacheco-Fiallos, Matthias K. Vorlander, Daria Riabov-Bassat, Laura Fin, Francis J. O'Reilly, Farja I.

Ayala, Ulla Schellhaas, Juri Rappsilber & Clemens Plaschka

Nature 616, 828-835 (2023) | Cite this article

RESEARCH BRIEFINGS | 26 April 2023

Step-by-step assembly of a B-barrel
proteininabacterialmembrane

Gram-negative bacteria that are resistant to multiple drugs cannot survive without the
cell-surface machinery that builds a B-barrel pore structure from outer membrane
proteins. Snapshots of different stages in the assembly process provide insights into this
crucial mechanism, and could lead to the development of new antibiotics.

14

This is asummary of: Shen, C. et al. Structural basis of BAM-mediated outer membrane f3-
barrel protein assembly. Nature https://doi.org/10.1038/541586-023-05988-8 (2023).

Courtesv H. Wacklin-Knecht
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