The 3rd African Conference on Fundamental and Applied Physics (ACP2023)

Brief status of ICS X-rays source in Orsay ThomX

D. Nutarelli IJCLab Université Paris Saclay daniele.nutarelli@ijclab.in2p3.fr

on behalf the ThomX collaboration

This presentation is a part of a more detailed presentation which will be made by the scientific manager of ThomX Marie Jacquet at the IMAGING 2023 conference on next September 28 in Varenna (Italy)

X-rays production

Synchrotrons

High power, monochromaticity, coherence

Large facilities Not very practical Limited access time

COMPACT installations (surface < 100 m²)

Some powerful analyzes currently realized at synchrotrons and requiring a high brightness beam could be developed in <u>a lab-size environment</u> (hospitals, labs, museums).

E)

X-ray tubes

Lack of power, monochromaticity, coherence

Just reminding the principle of ICS

Optical Cavity scheme

e-

7 tons to be adjusted at µm level

5

Optical cavity and Accelerator

Mirrors vaccum chambers

Measured parameters Finesse of 30000 -> gain of 10000 200KW stable power

Interaction point

THANKS FOR YOUR ATTENTION

Next steps

Once (soon) e- and laser will be synchronized

→ X beam CHARACTERIZATION

→ 1st demonstration EXPERIMENTS TO QUALIFY the source

- spatial resolution
- spectral resolution
- sensitivity

. . .

- contrast
- acquisition times

in the various ANALYSIS TECHNIQUES

- Standard imaging
- Phase contrast imaging

. . .

- Tomography
- Fluo spectro
- Diffraction