

Science and Technology Facilities Council

The University of Manchester

CLS Grid Brief Description

Hywel Owen

26 September 2023

Hywel Owen | Accelerator Physics Group UKRI-STFC Daresbury Laboratory / Cockcroft Institute | United Kingdom Mywel.owen@stfc.ac.uk

clsg-pm-prs-0002

Compact Light Source Grid

Science and Technology Facilities Council

World-leading mid-scale X-ray sources:

- Each with different scientific and technological drivers and capabilities
- Each representing a local/regional centre of excellence linked to industry/academic needs and clusters of expertise
- Each administered locally complementing the other nodes and the capabilities of DLS

World-class synchrotron-like capability

DIFFRACTION

- Macromolecular crystallography Protein Structure
- Single crystal diffraction Structure / orientation
- Powder diffraction
 Material / phase identification
 Mapping strains

IMAGING / TOMOGRAPHY

- Absorption Contrast
 Quantitative density, elemental contrast
- **Spectroscopic Imaging** Elemental concentration, functional labels
- **Grating Phase Contrast** Sub-resolution structure, quantitative phase
- **Propagation Phase Contrast** Low-contrast high-resolution features

SCATTERING

- Small angle x-ray scattering
 Size / shape of nano-scale objects
- Pair distribution function short-medium term order

SPECTROSCOPY

- X-ray Fluorescence Mapping Elemental distribution
- Absorption / Fluorescence Spectroscopy Chemical state, coordination

Access to multiple modalities \rightarrow Comprehensive characterization

Hywel Owen | CLS Grid Project | 26/09/2023

Compact light sources: what might a node look like?

Construction will use STFCs life cycle analysis of sustainable construction, operation and decommissioning

(Design based on existing facilities)

Business offices on second storey

CLS Grid Timeline?

Possible timeline (no project plan yet):

- Oct 2025 Oct 2027: Preliminary Activity > CDR
- 2028 2030: TDR
- 2030 2033: Construction of first node
- 2033: operation of first node
- 2035: operation of 2nd node

Additional Material

Science and Technology Facilities Council

Gammas @ UK-XFEL

Aim: examine whether there is a case for and design of a 1-100 MeV gamma source for the UK-XFEL project

Main points:

Current sources generally based on bremsstrahlung signal to noise limit and dose limit

"Perspectives for photofission studies with highly brilliant, *monochromatic* γ*-ray beams*" P. G. Thirolf et. al., EPJ Web of Conferences 38, 08001 (2012)

Brem spectra compared to example dipole resonances of I-129 and Cs-135/137

REHMAN ET AL.

1.5

Gamma-ray energy (MeV)

Gammas also generated by active sources, such as Co-60, these are ٠ monoenergetic, but have fixed energy, isotropic emission and low flux

A Gamma Source at UK-XFEL?

 What gamma properties can such a source provide? Central energy of gammas is proportional to square of electron beam energy, linearly proportional to laser photon energy. E.g. vary electron beam energy from ~500 MeV to 2 GeV – and have perhaps two laser cavities of 1064 / 532 nm gives us variability from ~1 to ~100 MeV

Facilitiés Council

Science and Technology

 $E_{\rm max}^{\gamma}$

Exemplar: Life and Biomedical Sciences Centre

A medium-resolution CLS imaging facility for in-vivo and ex-vivo research, longitudinal studies, and correlative workflows

Science Challenges:

- Understanding biological organisation and coordination across length scales
- Understanding mechanisms of disease, tissue injury, and repair
- Developing new diagnostic X-ray pathology techniques
- Multiscale correlative workflows

Technical Challenges

- Flexible scheduling for integration within correlative and longitudinal workflows
- Allowing repeat measurements of biological replicates
- establishing direct connections with biomedical, life, and clinical scientists

Ancillary Facilities:

- Electron microscopy (EM)
 - including volume EM
- In-situ/in-operando experimental rigs
- Sample preparation and maintenance/preservation

Adjacency with existing biomedical infrastructure

- research hospitals
- correlative facilities
- biomedical research groups
- expertise in sample preparation

Regional strengths: Crick, Purbright, Edinburgh/Glasgow, North West......

Exemplar: Advanced Medicines Manufacturing Facility

Technical Challenge

- Endstation with in situ drug manufacturing micro-factory
- Collecting massive datasets

Data-driven advanced process technologies

Strengths in Scotland, North West, South East...

At-line (local) – Fast turnaround – Automation In situ/Operando – Process Equipment

- <u>4D X-ray imaging</u> all length & time scales Multiple contrast modalities: XRD, XPCI, XPDF, SAXS; ptychography
- <u>X-ray scattering</u> molecular structure; XRD XPDF noncrystalline phases melts solutions composites
- <u>X-ray spectroscopies</u> speciation / surface analysis Ambient pressure Photoelectron (HAXPES) and absorption spectroscopies (NEXAFS)

