RD50-MPW4

To fix issues observed in RD50-MPW3

- Interface between matrix and periphery
 - We know the solution already (longer pull-down)
- Easy generation of global time-stamp
 - We know the solution already (64-bit counter in the chip)
- High noise in lower half of matrix
 - Currently studying this both in simulations and lab measurements

■ To further improve V_BD and therefore radiation tolerance too (V_BD > 400 V is possible)

- Improve rings around the chip as in test structures in RD50-MPW3
- Improve HV distribution to the pixels (V_BD should not depend on the p/n pixel electrodes spacing any more)

To do backside biasing (thin beyond the 280 μm?)

It is possible with MPW submissions (Liverpool experience with UKRI-MPW0 HV-CMOS chip)

- Inquire <u>RD50 management</u> if they would support this new project
 - Reply (18.11.2022): "CERN-RD50 would be very supportive to this request"

- Inform <u>LFoundry</u> of our intentions, and inquire them especially about backside processing (p+ implantation, annealing and metallisation) (done on 07.12.2022)
 - Is LFoundry interested in doing the backside processing?
 - If yes, that is excellent
 - If not, would they loan us the wafers to have the backside processing done at a third company (e.g. IBS)?
 - Currently waiting for a reply...

Technology	LF15A
Run ID	C15E23 (tape in 08.05.2023)
Project	RD50-MPW4
Quantity	3 high resistivity wafers (what high resistivities are available? in the past we have used 1.9 kohm*cm and 3 kohm*cm, and we are happy with them)
Requested area	Approx. 5 mm x 8 mm
Back grinding	Yes, 280 μm (thinner devices are also possible, but going <200 μm makes the chips incredibly fragile, not recommendable)
Back processing	Yes, backside p+ implantation, annealing and metallisation

- Inquire <u>Europractice</u> about the Cadence Design Share Agreement? (done on 05.12.2022)
 - Internal meeting at Europractice, with legal agreements expert, on 07.12.2022
 - Reply (08.12.2022): <u>New and simpler Multi-way Design Share Agreement</u> that minimises number of required agreements, and gives more flexibility for design collaborations
 - With N collaborators, we now need N agreements (rather than N*(N-1) agreements), but each agreement still needs to be signed by all the N collaborators
 - Not clear the new agreement can be used for more than one chip
 - We have received the reply today only, we need a bit more time to fully understand