

Proposal of implementation of an Heterogeneous and non-x86 Architectures Platform

A project collaboration with IT-GOV-INN, IT-GOV-ENG, IT-CD, IT-FA

M. Girone, L. Atzori, A. Wiebalck

CERN IT, Innovation Review Board, 26 April 2023

A bit of history

- Innovation: First Project Charter on *Heterogeneous Architectures Testbed* presented at the IRB #1
 - M. Girone et al. June 2022 <u>https://indico.cern.ch/event/1170829/</u>
- ARB: Public Cloud Usage Framework v. 2.0 includes the *Testbed for new architectures* as an "Initial Use Case"
 - D. Van der Ster et al. Oct 2022 + several iterations in the following months, final version approved by the DHO in January 2023 (<u>https://it-arb.web.cern.ch/frameworks/IT-Cloud-Framework-v2.1.pdf</u>)
- Engagement: Access and Support for non-x86 Architectures presented at the RCS-ICT #2
 - A. Wiebalck February 2023 <u>https://indico.cern.ch/event/1233298/</u>
- Engagement: PSO presented at the RCS-ICT Steering Committee
 - A.Wiebalck, M. Girone, J. Blomer, D. Piparo March 2023

https://docs.google.com/document/d/14L_2zKwb1OeEJYGgGzpEOapVnn5pcEYIs5fbZcggtG4/

Stakeholders: Innovation, ARB, Engagement, CERN IT, CERN-EP, LHC experiments, CERN-TH, ATS

Purpose of the proposal

- Heterogeneous and non-x86 architectures have become increasingly important in high energy physics
 - GPUs provide the massive parallelism needed for modern data processing and ML algorithms
 - Processors with non-x86 architectures such as ARM, RISC-V come with a better event/Watt output and are on the roadmaps for the LHC experiments' online
 - Programmable hardware such as FPGAs offer high performance and low latency for the specific tasks of pre-processing, triggering and filtering
- Integrating, building and testing data processing algorithms on multiple platforms is instrumental to guarantee high code quality standards
- Maximise the chances to get advantage of non-WLCG resources such as High-Performance Computing centres
- Provide access to rapidly evolving, cutting-edge technologies to demonstrate capabilities before making capital commitments

Overall Goals

- Since the original "testbed" proposal in June 2022, many more discussions have happened resulting recently in the Engagement PSO bringing additional requirements beyond the initial purpose.
- CERN IT is asked to provide the user communities with flexible access and support to onprem and remote infrastructures for heterogeneous and non-x86 resources, with the aim to cover (from the PSO):
 - evaluation, granting preview access for early assessment of the usefulness of a given technology, including a basic software ecosystem; where applicable, have direct contact with the providing hardware companies or technology experts; (this is the original scope of the testbed)
 - development and porting of applications: adequate provisioning of identified heterogeneous and nonx86 resources as part of IT infrastructure services to ensure a low entry threshold and a stable platform; to be used for all development phases: building (main and nightlies), testing, debugging (e.g. via interactive access), and release into official repositories;
 - **time-limited production needs:** ensure quick technology turn-around and address short-notice requirement bursts.

How would it work?

- Common "access platform" providing support for different activities to the users, possibly through a common portal to gather requests and list availability of devices/services
- Resources provided via different mechanisms

- 1. Industry collaborations, CERN openIab partnerships (example: E4/NVIDIA project: access to next generation processors)
- 2. HPC supercomputer testbeds
- 3. Emerging IT offerings, such as the IT Public Cloud initiative (example: GPUs/DPUs)
- **4. Established IT services**, such as OpenStack, GitLab, or LxPlus (example: ARM VMs or runners)

More specifically for the development "testbed"...

- 1. Industry collaborations, CERN openlab partnerships
- 2. HPC supercomputer testbeds
- 3. Testbed for New Architectures (IT Cloud Framework v 2.1)

on-prem/remote via CERN openlab (e.g. CERN openlab E4/Nvidia, Intel, IBM projects)

- NVIDIA CPUs and GPUS, including GRACE and HOPPER
- ARM Marvell and Ampere CPUs
- RISC-V CPUs
- Intel CPUs (Sapphire Rapids, Ice Lake, ...) and GPUs
- **Power**
- **FPGAs**
- Al-specialised architectures
- Quantum simulators

remote, via HPC supercomputers testbeds

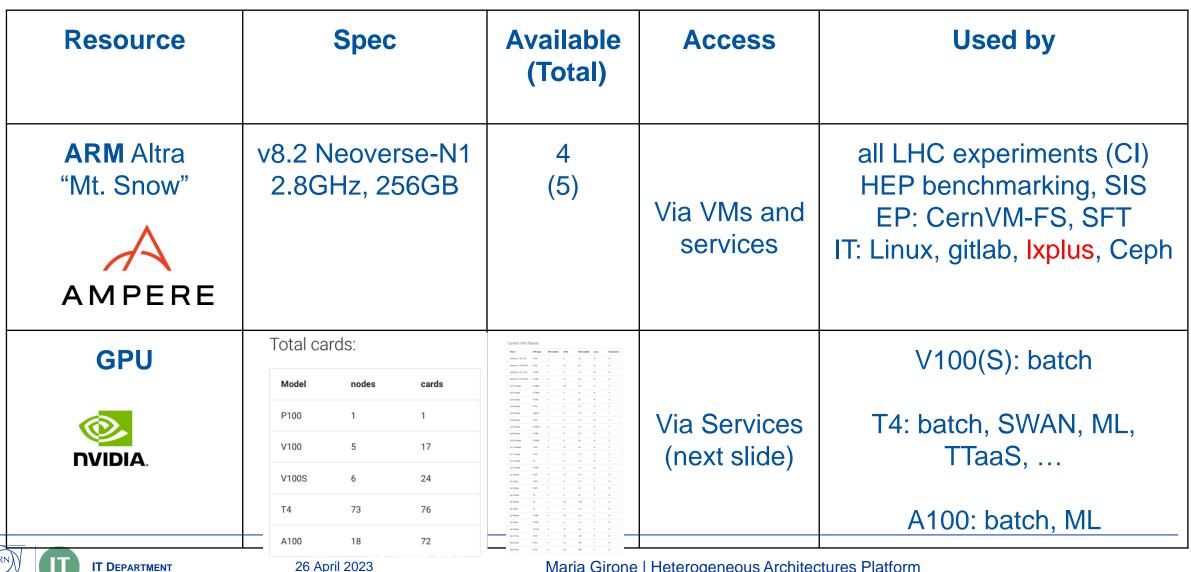
Leveraging on the strong connection with PRACE and EuroHPC

remote, via commercial cloud-hosted systems

Personnel Resources Needs

- Currently under discussion, as it goes beyond the testbed discussion
- Key: ensure mid-term/long-term continuity of the activity at an engineering level
- Thoughts to support at least initially the testbed (input from IT-FA)
 - experienced Computing Engineer benefiting from a 5-year LD contract
 - (junior) fellow

Discussion



Backup Slides

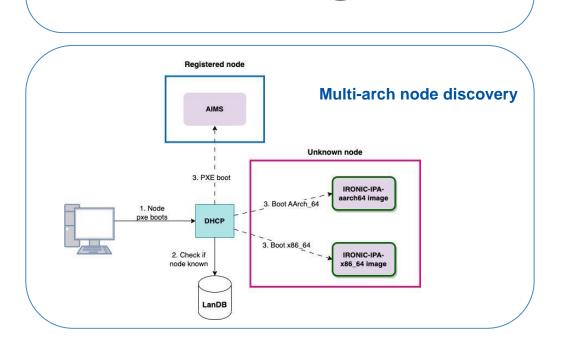
(input collected by A. Wiebalck for the WLCG workshop, CHEP2023)

On-premises laaS on OpenStack

Maria Girone | Heterogeneous Architectures Platform

1. Instantiating

the node


26 April 2023

On-premises laaS Integration: ARM

- → Virtual Machines ... "easy"
 - Required EL8
 - Image and capabilities filtering
 - ► Libvirt bug

T DEPARTMENT

- → Physical servers ... "not so easy"
 - Image boot-strapping with AArch64 QEMU
 - Ironic as CERN IT's fleet manager
 - Multi-arch docker images & PXE
 - ➢ Detailed talks at <u>HEPiX</u> & <u>CHEP</u>

2. Tells node to boot

into IPA image

5. Tells node to boot into Linux image

3. Boots

Ironic

Bare Metal Instantiation

RHEL 8 imag

6. Boots

4. Prepares

the node

·····=0

IPA image

Maria Girone | Heterogeneous Architectures Platform

26 April 2023

PCI-passthrough GPUs

- Direct access to the graphics card from the guest
- No monitoring of the GPU usage on the hypervisor
- One device per GPU no sharing
- EL7 with newer kernel on hypervisor
- Out of the box for EL7 guests
- Additional kernel boot options for EL8 and EL9 guests

T DEPARTMENT

Virtual GPUs

- Hypervisor drivers give access to GPU usage information Ð
- Physical card shared between multiple virtual machines
- Timesharing θ
- Licenses for virtualisation drivers
- Puppet configuration:
 - CUDA
 - Drivers

Multi-instance GPUs

- Physical card shared between multiple virtual machines
- Physical chunk, not timeshared
- Thermal and power consumption per card only
- All cards in a single HV have to be partitioned the same way
- Only 1 device per VM θ
- Licenses for virtualisation drivers
- Required a <u>backport</u> for UUID treatment for Nova

On-premises laaS Integration: GPUs

- Various hardware models
- Various access modes
- Used by higher level services

Provisioning	Type of access	Model	
PCI-passthrough	Full access	T4, A100, V100s, V100	
vGPU	Time sharing	T4, A100, V100s, V100	
Multi-instance GPU	Partition sharing	A100	

On-premises: GPU access

- → https://clouddocs.web.cern.ch/gpu/index.html
- → GPUs are available ...
 - > as virtual machines
 - via the batch service
 - on kubernetes clusters
- via Lxplus
 via Gitlab
 via Swan
- ➤ ml.cern.ch
- → Request for GPUs: <u>GPU Platform Consultancy</u> FE
- → Mattermost for GPUs: <u>~GPU</u>

Public Cloud: Oracle Cloud

Resource	Spec	Amoun t	Access	Used by
Ampere Altra AMPERE	BM.Standard.A1.160 160 cores, 1TB RAM (3.0GHz)	~10 VMs 1 physica I	Via keys on pre- created	{ALICE, ATLAS} builder WLCG benchmarking IT: Ixplus & Ixbatch, GitLab, Linux, Monit
- VM.GPU2.1 12 72. (Nvidia Tesla P100 16GB, 1 per node) - BM.GPU.A10.4 64 1024 (Nvidia A10 Tensor Core, 4 per node) - BM.GPU2.2 28 256 (Nvidia Tesla P100 16GB, 2 per node)			instance s	(not used at the moment)

Collaborations: openlab (1)

Resource	Spec	Amount	Access	Used by
	V100 T4	20 8	Direct on (shared) bare metal nodes	openlab projects (ML, QTI, Medical)
GPU intel	ATS-P	1		
DPU*	Bluefield-2	2		

Collaborations: openlab (2)

Resource	Spec	Amount	Access	Used by
	ThunderX	2		Build nodes for SFT & experiments
CAVIUM	ThunderX2	3	Direct on (shared)	Linux team
Power	Power8	4	bare metal nodes	CMS & LHCb build nodes
IBM	Power9	2 →	Power8 Minsky	server acquired.

→ Future of Power9 nodes to be discussed

