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LHC physics vs data scientist

LHC questions

- How to trigger from 3 PB/s to 300 MB/s?
Data compression  [Netfix]

- How to analyze ntuples?
Graph neural networks  [car cameras]

- How to incorporate symmetries?
Contrastive learning  (Google]

- How to combine tracker and calorimeter?
Super-resolution  (Gaming]

- How to remove pile-up?
Data denoising (cars]

- How to look for BSM physics?
Autoencoders  [sap]

- How to generate jets/events?
Generative transformer  [chaGpT

- How to analyse LHC data?
Simulation-based inference  [LHC leading?]

- But how about uncertatinties?




Shortest ML-intro ever

Fit-like approximation  [ask NNPDF]
- approximate known f(x) using fy(x)
- no parametrization, just very many values 6
- new representation/latent space 6

Construction and contol
- minimize loss to find best 6
- typically, likelihood generalizing fit x?
- compare x — fy(x) for training/test data

LHC applications
- regression X — fo(x)
- classification x — fy(x) € [0, 1]
- generation re~N —fy(r)
- conditional generation r ~ N — fy(r|x)

— Transforming numerical science




Analysis

Jet tagging  (supervised classification]
- ‘hello world’ of LHC-ML w3

- end of QCD-taggers
- powerful NN-architectures
—» ParticleNet & Co established

ackground rejection
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Particle flow [classification, super-resolution] ' : f | z
- mother of jet tools 2 :
- combined detector channels : A
- similar studies in CMS
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Symmetries

Learning symmetries [representation, visualization]

- (particle) physics is all symmetries
- identify symmetries in 2D systems [paintings]
— NN-identified symmetries

PCA dataset

Wbel1  abeiz > ~ Symmetry
- I:: = Classification

_ tabel3

Symmetric networks  [contrastive learning, transformer network]
- rotations, translations, permutations, soft splittings, collinear splittings

- learn symmetries/augmentations
— Symmetric latent representation

Abstract




Anomalous jets and parton densities

Anomaly searches  (unsupervised training]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— LHC spirit, more later ==

NNPDF/N3PDF parton densities il blast]
- starting point: pdfs without functional ansatz
- moving on: cutting-edge ML everywhere
— Leaders in ML-theory N 3""‘ a----——




Faster event generators

Speeding up Sherpa and MadNIS  [phase space sampling]
- precision simulations limiting factor for Runs 3&4
- fast and efficient sampling key
— ML-Multichannel-Vegas
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Speeding up amplitudes [phase space regression]

- loop-amplitudes expensive
- interpolation standard

Optimising simulations for diphoton production at
hadron colliders using amplitude neural networks

— Precision NN-regression, more later
r T T e g oot Joseph At Bulocke! Simon Badger Roan Mool
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Forward and inverse simulation

Precision NN—generators [INN + Bayesian discriminator]

7+ 1 jet exclusive
It ~—— Reweighted

ey Train

- control through discriminator [GAN-iike]

- uncertainties through Bayesian networks

- phase space prototypical
— Precision & control
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Unfolding and inversion  [conditional normalizing flows] if‘;
=510 i
- shower/hadronization unfolded by jet algorithm o e
. 12 g
- detector/decays unfolded e.g. in tops e
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- calibrated inverse sampling o e 6
SciPost Phyicn Sutinn 2 jet incl.

— Inverse generation
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Targeting theory

Navigating string Iandscape [reinforcement learning]
- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Model space Samp“nq Genetic Algorithms and Reinforcement Learning

Abstract
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Learning formulas [genetic algorithm, symbolic regression]

- approximate numerical function through formula
- example: score/optimal observables

— Useful approximate formulas Emg=m 0 E=3

Back to the Formula — LHC Edition
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Precision regression

Regression as in jet calibration?

- example: loop amplitudes gg — vv9(g)
- training data A;(x) exact

- boostable likelihood loss
|Aj(w) _ A}rmh 2
L~ Z n; x W + log oj(w)
]

points j

- pull Gaussian?
p A(w) — A}ruth

oj(w)

- NN-fit — NN-interpoIation [nj as function of pull, o, A,...]
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Precision regression

Regression as in jet calibration?

- example: loop amplitudes gg — vv9(g)
- training data A;(x) exact

- boostable likelihood loss

|Aj(w) _ A}rmh 2

Lo D mx | gy T log ()

points j

- pull Gaussian?
p A(w) — A}ruth

oj(w)

- NN-fit — NN-interpoIation [nj as function of pull, o, A,...]
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Precision regression

Regression as in jet calibration?
- example: loop amplitudes gg — vv9(g)

- training data A;(x) exact

- boostable likelihood loss
|Aj(w) _ A}rmh 2
Lo D mx | gy T log ()
points j
- pull Gaussian?
p Aj(w) — A}ruth

oj(w)

NN-fit — NN-interpoIation [nj as function of pull, o, A,...]
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— Beyond fit-like regression




Training on QCD only

1@40x40  10@40x40  10@20x20 5@20x20 400100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Unsupervised classification
- train on background only
extract unknown signal from reconstruction error
- reconstruct QCD jets — top jets hard to describe
reconstruct top jets — QCD jets just simple top-like jet
- dark-jets complexity: mass drop vs semivisible constituents
— Symmetric performance S <> B?

Anomaly score from latent space

- VAE — does not work

GMVAE — does not work

density estimation — does not work
Dirichlet VAE — works okay
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Training on QCD only

Unsupervised classification

- train on background only
extract unknown signal from reconstruction error

- reconstruct QCD jets — top jets hard to describe
reconstruct top jets — QCD jets just simple top-like jet

- dark-jets complexity: mass drop vs semivisible constituents
— Symmetric performance S <+ B?

3.69
3.28
2.87
2.46
2.05
1.64
1.23
0.82
0.41
0.00

Normalized autoencoder [penalize missing features]

- normalized probability loss
- Boltzmann mapping (£, =msg]
e~ Eox)
po(x) = Z
L= —(logpo(x)) = (Eo(x) +log Zy)
- inducing background metric
- small MSE for data, large MSE for model
- Zy from (Langevin) Markov Chain
— Proper autoencoder, at last...

1.656
1.472
1.288
1.104
0.920
0.736
0.552
0.368
0.184
0.000




Training on QCD only

Unsupervised classification

- train on background only
extract unknown signal from reconstruction error

- reconstruct QCD jets — top jets hard to describe
reconstruct top jets — QCD jets just simple top-like jet

- dark-jets complexity: mass drop vs semivisible constituents
— Symmetric performance S « B? ol

top tagging

Normalized autoencoder [penalize missing features] 25
- normalized probability loss 20

- Boltzmann mapping (g, =msg] e
—Ep ()
Zp

L= —{logpe(x)) = (Eq(x) + log Zy)

X107

e

Po(x) =

- inducing background metric QCD tagging

- small MSE for data, large MSE for model

- Zy from (Langevin) Markov Chain v
— Proper autoencoder, at last... acp
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Measuring QCD splitting

Conditional INN for inference
- condition jets with QCD parameters
train model parameters — Gaussian latent space
Gaussian sampling — parameter measurement

test
- beyond C4 vs Cr  [Kuth etal
Pgq = CF [DWM + Fgq(1 — 2) + Cqqyz(1 — z)]
1—2z(1-y)

- 21— y) (=20 -y)
Pag = 204 009 (1 -y i —o0- y)) + Fag2(1 = 2) + Cogre(1 - 2]

Pgq = Tr [Faq (2 + (1 = 2%) + Caqvz(1 — 2)]

Training Inference

{zm} {=}
Sherpa Summary LHC Summary
jets net Jjets net

I I

m z m z .
QCD > g QCD ¢ Gaussian
R G measurement ALY sampling

g(m;h) P(2) P(ml{z}) 9(z:h) 2~ P(2)




Measuring QCD splitting

Conditional INN for inference
- beyond C4 vs Cr  [Kuth etal

22(1 —y)

Faa = Cr [D"qm

+ Fgq(1 — 2) + Cqqyz(1 — z)]

B 2(1—y) (1 —2(1-y)
Pgg = 2Cp [Dgg (1 T + T y)) + Fggz(1 — 2) + Cggyz(1 — z)]

Pgq = Tr [Faq (2 + (1 = 2%) + Caqvz(1 — 2)]
- idealized shower (sherpa)
- ML-opportunities...

—— Posterior
—— Gaussian fit
== Absolute error of 2.5

-2.5 0 2.5

C., 0.08 > =56
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ML for the LHC

ML-applications
- just another numerical tool for a numerical field
- driven by money from data science and medical research
- goals are...

...improve established tasks
...develop new tools for established tasks
...transform through new ideas

- XAl through...

...precision control
...uncertainties

H Tilman Plehn”; Anja Butter*", B: Dillon®, and Claudius Krause®*
...sSymmetries ! o

Modern Machine Learning for LHC Physicists

“ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany
i fo rmu | as ® LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
. © NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, USA
— Fun with good old QCD problems

November 2, 2022
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Modem machine learning is transforming particle physics, faster than we can follow, and bullying its way into our
numerical tool box. 0 stay on top of . which
dge methods and tools 10 the full range of LHC physics problems. These lecture notes are meant o lead students with
basic knowledge of particle physics and significant enthusiasm for machine learning t relevant applications as fast as

possible. They start with an LHC-specific mofivation and a non-standard i and then cover
classification, . generative networks, and Two much of the
discussion are well-defined | « hand and As part of the

applications, the notes include some aspees of theoretical LHC physics. Al examples are chosen from particle physies
publications of the las few years. Given that these notes will be outdated already at the time of submission, the week of
MLtJets 2022, they wil be updated frequenly.



http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf

Resilient training

Training on simulation, testing on data
- assume a simulation vs data difference [generalization gap]
plus, different simulation datasets
- simple question: how train on several datasets?

- adversarial training?
nuisance parameter?

— Uncertain feature same as main discriminator??

Constructing an interpolation parameter

- re-weighted samples:  Herwig & Pythia
. test data, call it Sherpa [reweighted HERWIG — PYTHIA]
’ 0.90

- classify conditionally on r ' l/x/"_"__d—'

- 1 use r to define working point 0-88
2. vary r to estimate uncertainty 0.86 SH/SH |
- best AUC for Pythia training

0.84

0.82 \

0.80{ | w'HE/PY -+ w'HE/SH - w'HE/HE

0.0 0.2 0.4 0.6 0.8 1.0
reweighting exponent r

AUC




Resilient training

Training on simulation, testing on data

- assume a simulation vs data difference [generalization gap]
plus, different simulation datasets

- simple question: how train on several datasets?

- adversarial training?
nuisance parameter?

— Uncertain feature same as main discriminator??
Constructing an interpolation parameter

- re-weighted samples:  Herwig & Pythia
- test data, call it Sherpa (HE = PY, w'HE/S] 0.45 < Hpreq < 055

0.13
- classify conditionally on r
' X . 012{ Py/Py SH/SH --- HE/HE
- luserto defln'e working pomt & SH/Py — Py/SH - SH/HE
2. vary r to estimate uncertainty g 011l HE/PY --- HE/SH — PY/HE I
- best AUC for Pythia training = !
- lowest uncertainty for Herwig training 5 ©1°
=1
% 0.09
0.08
0.0 0.2 0.4 0.6 0.8 1.0

reweighting exponent r




Resilient training

Training on simulation, testing on data

- assume a simulation vs data difference [generalization gap]
plus, different simulation datasets

- simple question: how train on several datasets?

- adversarial training?
nuisance parameter?

— Uncertain feature same as main discriminator??

Constructing an interpolation parameter

- re-weighted samples:  Herwig & Pythia

- test data, call it Sherpa 1 o [reweighted HERWIG — PYTHIA]
- classify conditionally on r w'HE/SH
- 1 use r to define working point 5 08 _ :g:(z) - ;1:/;::
2. vary r to estimate uncertainty E; 6] — r=04 - Py/su
- best AUC for Pythia training £ —r=08
- lowest uncertainty for Herwig training 5; 0.4
- best calibration for Herwig E

0.0 0.2 0.4 0.6 0.8 1.0
predictive mean fyeq




Resilient training

Training on simulation, testing on data
- assume a simulation vs data difference (generaiization gap]
plus, different simulation datasets
- simple question: how train on several datasets?

- adversarial training?
nuisance parameter?

— Uncertain feature same as main discriminator??

Constructing an interpolation parameter

- re-weighted samples:  Herwig o=t Pythia
- test data, call it Sherpa
- classify conditionally on r

- 1 use r to define working point
2. vary r to estimate uncertainty

- best AUC for Pythia training

- lowest uncertainty for Herwig training

- best calibration for Herwig

- continuous approach to calibration?
— A hammer looking for nails...
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