New Ideas in Jet Clustering

Roman Kogler DESY

JetMET Workshop Brussels
May 16, 2023

Overview

- Introduction
- Quark and Gluon Jets
- Exclusive Clustering
- Variable R Jets
- Scale Invariant Jet Clustering

picsart.com
I will not cover machine learning techniques.

ARGUS at DORIS, 1987

$V_{\mathrm{s}}=11.2 \mathrm{GeV}$

$$
\begin{aligned}
& e^{t} e^{-}-Y 4 S-\frac{B^{\rho} \overline{B^{\circ}}}{L-\overline{B^{\circ}}} \\
& \overline{B^{0}}=0^{*+} \rho^{-}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{B^{B}}-\mu^{-} \pi_{B}^{*} v
\end{aligned}
$$

TASSO at PETRA, I 979

TASSO at PETRA, I 979

ALEPH at LEP, 1992

CMS at LHC, 2017

Charged Particles in Jets

- Approximate particle content in a jet: $\pi^{+}: \pi^{-}: \pi^{0}=\mathrm{I}: \mathrm{I}: \mathrm{I}(+10 \%$ Kaons, Protons...)

Charged Particles in Jets

- Approximate particle content in a jet: $\pi^{+}: \pi^{-}: \pi^{0}=\mathrm{I}: \mathrm{I}: \mathrm{I}$ (+ 10% Kaons, Protons...)
- Gluon jets have higher multiplicity (colour factor C_{A} compared to C_{F})

Jet Algorithms

The whole world is using anti-kт jets, right?

Jet Algorithms

The whole world is using anti- K_{t} jets, right?

- Before 2007
- Durham/Jade (LEP)
- Cambridge/Aachen (LEP)
- k_{t} (HERA)
- midpoint-cone (Tevatron)
- In 2008, the LHC was ready to ramp up to 14 TeV
- ATLAS and CMS were eager to start with data taking using cone-type jet algorithms

Improved Run II Cone: "Joint Jet Working Group"

[Mikołaj Ćwiok, Moriond QCD, 2007]

Jet Algorithms

- Catastrophic incident in Sep 2008
- Magnet quench resulted in explosive Helium release
- Repairs delayed the start by 14 months

Jet Algorithms

- Catastrophic incident in Sep 2008
- Magnet quench resulted in explosive Helium release
- Repairs delayed the start by 14 months
- At the same time, important ideas / breakthroughs

The anti- k_{t} jet clustering algorithm

Matteo Cacciari and Gavin P. Salam
LPTHE, UPMC Université Paris 6,
Université Paris Diderot - Paris 7,
CNRS UMR 7589, Paris, France
E-mail: cacciari@lpthe.jussieu.fr, salam@lpthe.jussieu.fr

Brookhaven National Laboratory,
Upton, NY, U.S.A.
E-mail: gsoyez@quark.phy.bnl.gov

The Rest is History...

[ATLAS PRL 105, 161801$]$

ATLAS dijet search using AK6 jets Sep. 20IO
[CMS PRL 105, 21180I]

CMS dijet search using AK7 jets Oct. 2010

Quark and Gluon Jets

Corrections to Jet Observables

Perturbative effects

Lose E and p because of splittings

$$
\frac{\left\langle\delta p_{t}\right\rangle_{\text {pert }}}{p_{t}}=\frac{\alpha_{s}}{\pi} L_{i} \ln R+\mathcal{O}\left(\alpha_{s}\right)
$$

Non-perturbative effects

$$
\begin{aligned}
& \left\langle\delta p_{t}\right\rangle_{\mathrm{NP}} \sim-\frac{2 C_{F} \Lambda}{\pi R} \\
& \left\langle\delta p_{t}\right\rangle_{\mathrm{UE}} \simeq \Lambda_{\mathrm{UE}} R J_{1}(R)=\Lambda_{\mathrm{UE}}\left(\frac{R^{2}}{2}-\frac{R^{4}}{8}+\ldots\right)
\end{aligned}
$$

[Salam, EPJC 67, 637 (2010)]

Uncertainties from Corrections

Smaller corrections for quark jets
Minimum at around $R=0.5-0.6$

Is there an optimal R?

Is there an optimal R?

It depends...
... on PT and flavour

Defining Quark and Gluon Jets

Obviously two gluon jets...

Defining Quark and Gluon Jets

Obviously two gluon jets...
... or not?!?

Defining Quark and Gluon Jets

Obviously two gluon jets...
... or not?!?

- Parton flavour (from hard matrix element) is intrinsically flawed
- Physically meaningful definitions (not exhaustive)
- N-Subjettiness [Larkoski, Metodiev, EPJC 10,014 (2019)]
- Possibility to unambiguously define quark jets ($\tau_{N} \rightarrow 0$)
- Gluon jets always contaminated by quark jets, $\left(C_{F} / C_{A}\right)^{\text {Nemissions }}$
- Flavour-kt [Banfi, Salam, Zanderighi, EPJC 47, 113 (2006)]
- Jet topics [Komiske, Metodiev,Thaler.JHEP II 059 (2018)]
- Fragmentation approach (WTA axis) [Caletti et al..JHEP 10 I58 (2022)]

Jet substructure

- Remove unwanted / soft radiation from jets
- Aid the jet reconstruction and calibration
- Distinguish quark/gluon jets
- Tagging of fully merged W, Z, H and top jets

Jet substructure

- Remove unwanted / soft radiation from jets
- Aid the jet reconstruction and calibration
- Distinguish quark/gluon jets
- Tagging of fully merged W, Z, H and top jets

Exclusive Clustering

XCone

Use number of expected jets when event topology is known

- XCone assigns particles based on N -jettiness axes
- Natural transition resolved \leftrightarrow boosted

XCone

Use number of expected jets when event topology is known

- XCone assigns particles based on N -jettiness axes
- Natural transition resolved \leftrightarrow boosted

Measuring with XCone

- Calibrate jet mass using "standard candle" Mw
- Excellent jet mass resolution of 6-8\%

Top Quark Mass with XCone

- Top quark mass from unfolded cross section
- Uncertainty of $\sim 0.8 \mathrm{GeV}$

Variable R Jets

Particle Decays

W and Z bosons

$B_{W \rightarrow \text { had }}=67.5 \%$
$B_{Z \rightarrow \text { had }}=69.2 \%$
$\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d}\left|\cos \theta^{*}\right|}=f_{ \pm} \frac{3}{4}\left(1+\left|\cos \theta^{*}\right|^{2}\right)+f_{0} \frac{3}{2}\left|\sin \theta^{*}\right|^{2}$

CM

Lab

$\alpha_{\min } \approx \frac{2 M}{P}$
and consequently
$\Delta R \approx \frac{2 M}{P_{\mathrm{T}}}$
(holds for $\mathrm{P}_{\mathrm{T}} \gg \mathrm{M}$)

Quark (subjet) pT thresholds

[RK, STMP 284 (202I)]

Decay distance

- Similar picture for top quarks

Heavy Object Tagger with Variable R

[Lapsien, Haller, RK, EPJC 76, 600 (2016)]

One-pass clustering with integrated subjet finding

- Jet distance measures (with variable R)

$$
\begin{aligned}
d_{i j} & =\min \left[p_{\mathrm{T}, i}^{2 n}, p_{\mathrm{T}, j}^{2 n}\right] \Delta R_{i j}^{2} \\
d_{i \mathrm{~B}} & =p_{\mathrm{T}, i}^{2 n} R_{\mathrm{eff}}^{2} \quad R_{\mathrm{eff}}=\frac{\rho}{p_{\mathrm{T}}}
\end{aligned}
$$

- Clustering veto at each step
- mass jump veto
- Store objects i and jas subjets
- Used in tW resonance search
[CMS, JHEP 04, 048 (2022)]
- Works beautifully, but can be improved

[RK, STMP 284 (202I)]

HOTVR with soft drop

- Use soft drop veto instead of mass jump
- At each clustering step, test $\frac{\min \left(p_{\mathrm{T}, i,}, p_{\mathrm{T}, j}\right)}{p_{\mathrm{T}, i}+p_{\mathrm{T}, j}}>z_{\mathrm{cut}}\left(\frac{\Delta R_{i j}}{R_{\text {eff }}}\right)^{\beta}$
- Remove softer subjet if not fulfilled
- Active area exactly 0 , because ghosts get groomed
- Expand with mass-dependent R (work in progress)

[Albrecht, Benecke, RK, work in progress]

HOTVR with soft drop

[Albrecht, Benecke, RK, work in progress]

HOTVR with soft drop

- Stronger grooming with soft drop
- No essential tagging information is lost with HOTVR-SD jets compared to plain Variable R jets
- Better starting point for (ML) taggers

Scale Invariant Jets

Other Variable-Size Jets

Local, dynamical \mathbf{R} [Mukhopadhyaya, Samui, Singh.JHEP 2023. 19 (2023)]

$$
R_{d_{i}}=R_{0}+\sigma_{i} . \quad \quad \sigma_{i}^{2}=\frac{\sum_{a<b} p_{T_{a}} p_{T_{b}} \Delta R_{a b}^{2}}{\sum_{a<b} p_{T_{a}} p_{T_{b}}}-\left(\frac{\sum_{a<b} p_{T_{a}} p_{T_{b}} \Delta R_{a b}}{\sum_{a<b} p_{T_{a}} p_{T_{b}}}\right)^{2}
$$

- Useful in searches with high рт and multi-prong resonances
- Minimum Ro needed, can not have jets smaller than that
- Adjustment of Ro to analysis needs

Scale Invariant Jets

- Optimal distance parameter R depends on energy scale of event
- Idea: a scale-invariant algorithm, independent of R

$$
\begin{aligned}
\delta_{A B} & =\epsilon^{A B} \times \Delta \widetilde{R}_{A B}^{2} \\
& =\frac{\cosh \Delta y_{A B}-\xi^{A} \xi^{B} \cos \Delta \phi_{A B}}{\cosh \Delta u_{A B}}
\end{aligned}
$$

- Inherent soft-drop-like grooming in "Drop" region

[Larkoski, Rathjens, Veatch,Walker, arXiv:2302.08609]

Scale Invariant Jets

- If left running, the whole event will merge into one large jet
- Large discontinuity in distance measure $\delta_{A B}$ in the last steps

Scale Invariant Filtered Tree (SIFT)

Clustering history (N -subjet tree): Exclusive (sub)jet counts

[Larkoski, Rathjens,Veatch,Walker, arXiv:2302.08609]

- Promising results over a large range of PT
- Tagging results (obtained with BDT) better than for fixed-R jets

Comprehensive comparison of all algorithms needed

Summary

Last 10 years huge progress in jets and jet substructure

- Why are we still using AK4 for measurements and AK8 for tagging?
- Should be using:
- Large jets (or $R \sim$ PT) for measurements
- Decreasing jets R ~ I/Pt for tagging
- Unambiguous (IRC safe) definition of q / g jets

Summary

Last 10 years huge progress in jets and jet substructure

- Why are we still using AK4 for measurements and AK8 for tagging?
- Should be using:
- Large jets (or $R \sim$ PT) for measurements
- Decreasing jets R ~ I/PT for tagging
- Unambiguous (IRC safe) definition of q / g jets
- We are all busy with Run 3 (and 2)
- Hopefully, no catastrophic incident is needed
 for the next consolidation of our jet usage
- Preparation of HL-LHC: chance for new ideas
- Be open for new techniques and strategies
- Start with data formats, analyses will follow

Advances in Jet Substructure at the LHC

Algorithms, Measurements and
Searches for New Physical Phenomena

Thanks

CMS group of the University of Hamburg:
Johannes Haller, Andreas Hinzmann, Alexander Schmidt, Thomas Peiffer, Valentina Sola, Jochen Ott, Anastasia Karavdina, Robin Aggleton, Kristin Göbel, Tobias Lapsien, Mareike Meyer, Dominik Nowatschin, Daniel Gonzalez, Marc Stöver, Vilius Kripas, Torben Dreyer, Arne Reimers, Mehdi Mamoumi, Andreas Kell, Arne Reimers, Eugen Trapp, Jens Multhaup, Anna Benecke, Melanie Eich, Dennis Schwarz, Alexander Fröhlich, Andrea Malara, Tim Christensen, Alexander Paasch, Mathis Frahm, Jan Skottke, Steffen Albrecht, Serge Rosen, Henrik Jabusch, Nino Ehlers, Christopher Matthies, Ksenia de Leo, Irene Zoi, Anna Albrecht, Finley Quinton, Finn Labe, Tom Sokolinski

CMS Physics Group "Beyond 2 Generations"
CMS Physics Group "Top quarks"
CMS Object Group "Jets and Missing Energy"
All colleagues from ATLAS, CMS and Theory
My family and friends

