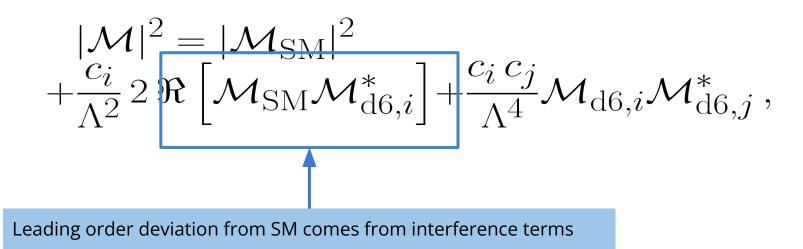
Machine-enhanced CP-asymmetries in the Higgs sector

<u>A. Bhardwaj</u>, C. Englert, R. Hankache, A. Pilkington

LHC Higgs Working Group WG2 and WG3 Extended Higgs Sector joint meeting on CPV in Higgs sector, 11 Jan 2023

Relevant Operators in SMEFT

Dim-6 Lagrangian:


Higgs-Gauge EW boson interactions:

 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \widetilde{\mathcal{O}}_i ,$

 $\mathcal{O}_{\Phi\widetilde{B}} = \Phi^{\dagger}\Phi B^{\mu\nu}\widetilde{B}_{\mu\nu} \,,$ $\mathcal{O}_{\Phi \widetilde{W}} = \Phi^{\dagger} \Phi W^{i \, \mu \nu} \widetilde{W}^{i}_{\mu \nu} \,,$

 $\mathcal{O}_{\Phi \widetilde{W}B} = \Phi^{\dagger} \sigma^{\imath} W^{\imath \, \mu \nu} B_{\mu \nu} \,.$

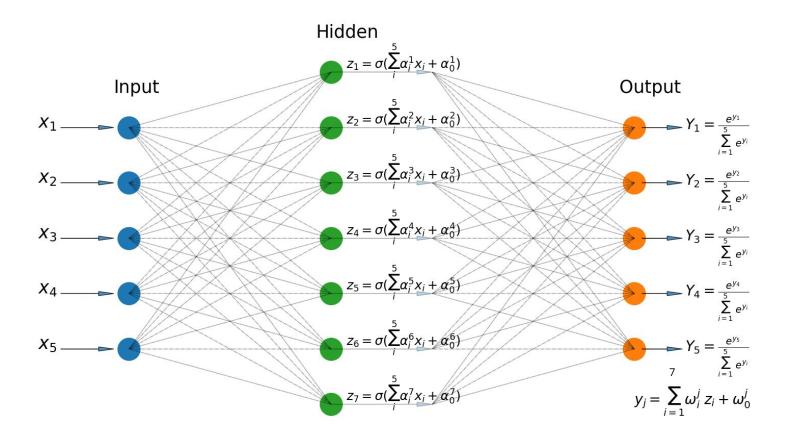
Observable effects at LHC

CP Sensitive Observables – angular observables, matrix-element method

Exploits full-kinematic information but very time/resource consuming

CP sensitive observables

$$\begin{split} \Phi_{4\ell} &= \frac{\mathbf{q}_1 \cdot (\hat{\mathbf{n}}_1 \times \hat{\mathbf{n}}_2)}{|\mathbf{q}_1 \cdot (\hat{\mathbf{n}}_1 \times \hat{\mathbf{n}}_2)}| \times \cos^{-1}(\hat{\mathbf{n}}_1 \cdot \hat{\mathbf{n}}_2), \\ \text{Normal vectors to the planes} \\ \hat{\mathbf{n}}_1 &= \frac{\mathbf{q}_{11} \times \mathbf{q}_{12}}{|\mathbf{q}_{11} \times \mathbf{q}_{12}|} \quad \text{and} \quad \hat{\mathbf{n}}_2 = \frac{\mathbf{q}_{21} \times \mathbf{q}_{22}}{|\mathbf{q}_{21} \times \mathbf{q}_{22}|}. \end{split} \\ \mathbf{q}_{\alpha} &= \mathbf{q}_{\alpha 1} + \mathbf{q}_{\alpha 2} \end{split}$$

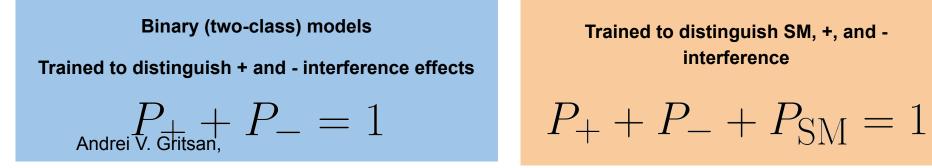

1

CP-odd observables from machine learning algorithms

CP-asymmetries arise from the interference between SM and CP-odd amplitudes:

- Neural networks (NN) offer an easy way to understand these asymmetries.
 - generate interference-only contribution to process (Madgraph5, SMEFTSim)
 - split sample into positive-weights and negative-weights.
 - train NN to distinguish between the two samples (binary classification)
 - easy to include Standard-Model contribution in NN (multiclass)
- Options with trained network:
 - \circ construct observable from NN classifications, i.e
 - \circ improve differential cross section measurements.

Artificial Neural Networks

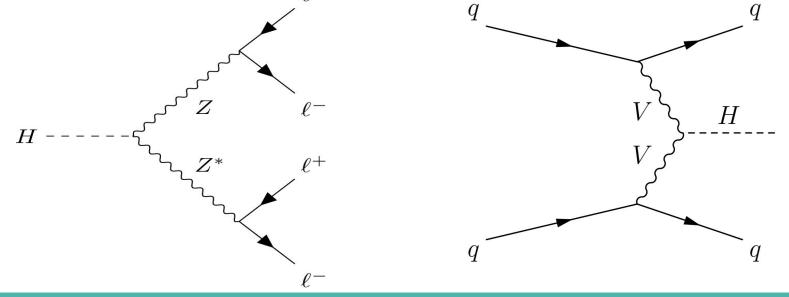


ML constructed CP-odd observable

- With the ability to learn kinematic correlations, the NN can be used to
 - construct a near optimal CP-odd observable for each dimension-six operator
 - design new analyses based on the correlation between the angular observables and other kinematic quantities.
- Extend to multi-class models, with the pure-SM prediction included
 - allow the NN to learn the phase-space regions for which the SM is relatively suppressed

Andrei V. Gritsan et al ,Phys. Rev. D 102, 056022 (2020)

ML constructed CP-odd observable

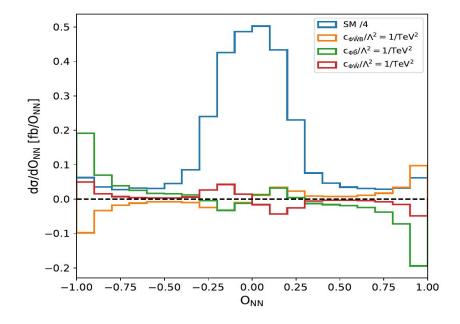

CP observable from NN output (of either model)

Multi-class models

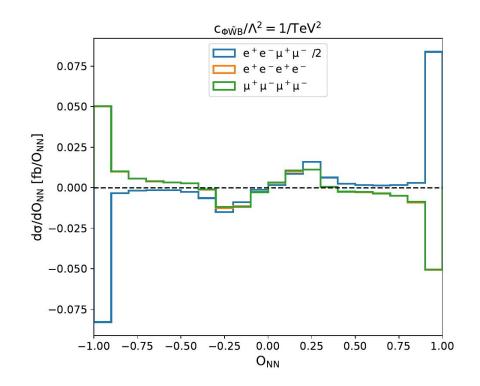
 $O_{NN} = P_{+} - P_{-}$

Application of NN constructed CP-odd observables

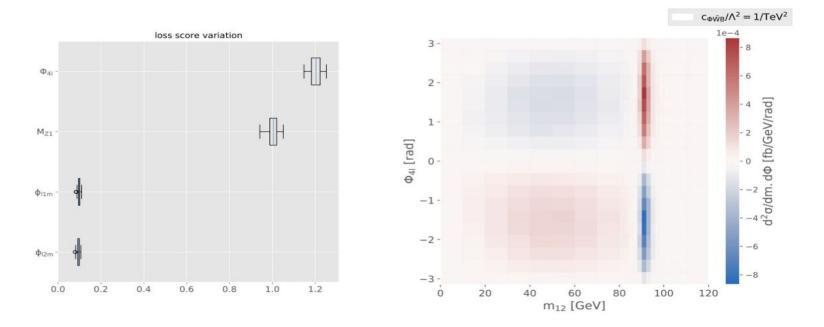
Two of the main search channels for CP-violation in the Higgs sector: the decay channel and in the vector-boson fusion production channel (VBF h + 2 jets). ℓ^+


Application to $h \to ZZ^*$ —

Binary class NN output Differential cross section as fn of SM /4 0.4 $c_{\Phi \tilde{W} B} / \Lambda^2 = 1 / TeV^2$ 0.05 $c_{\oplus \tilde{B}}/\Lambda^2 = 1/\text{TeV}^2$ 0.3 $c_{\phi \tilde{W}} / \Lambda^2 = 1 / TeV^2$ 0.04 0.2 da/dO_{NN} [fb/O_{NN}] 0.03 0.1 do/dΦ [fb/rad] 0.02 0.0 0.01 -0.10.00 -0.2 -0.01SM /4 $c_{\Phi \tilde{W}B}/\Lambda^2 = 1/TeV^2$ -0.02 $c_{\Phi\tilde{B}}/\Lambda^2 = 1/\text{TeV}^2$ -0.3 $c_{\phi \tilde{W}}/\Lambda^2 = 1/TeV^2$ -1.00 -0.75 -0.50 -0.250.00 0.25 0.50 0.75 1.00 -2 $^{-1}$ -3 0 1 2 Φ_{41} [rad] O_{NN}


Analysis carried out in the *Higgs Mass* region of the ATLAS inclusive *4I* measurement (JHEP 07, 005 (2021) for $H \rightarrow 2e2\mu$ events.

Application to $h \to ZZ^* \to$

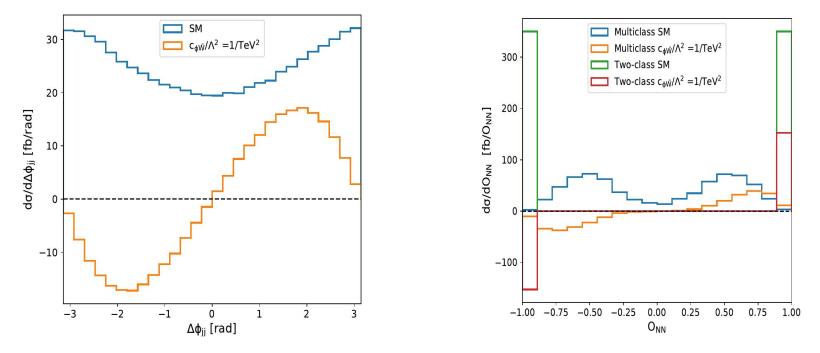

Multi-class NN output

Decay channel consideration

Feature Importance

- Origin of extra sensitivity investigated using feature importance techniques, whereby the change in loss score is evaluated after decorrelating input variables in the trained network.
- Clear interplay between Φ_{41} and m_{71} (highest mass of e⁺e⁻ or $\mu^+\mu^-$ pair).

Limits on CP-odd operators for $h \to Z Z^* \to 2e2\mu$


CP-odd observable	$c_{\Phi \widetilde{W} B} / \Lambda^2 [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{B}} / \Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{W}} / \Lambda^2 [\text{TeV}^{-2}]$
$\Phi_{4\ell}$	[-6.2, 6.2]	[-1.4, 1.4]	[-30, 30]
$\Phi_{4\ell}, m_{12}$	[-1.9, 1.9]	[-0.85, 0.85]	[-3.7, 3.7]
O_{NN} (binary)	[-1.5, 1.5]	[-0.75, 0.75]	[-3.0, 3.0]
O_{NN} (multi-class)	[-1.4, 1.4]	[-0.71, 0.71]	[-2.7, 2.7]

Sensitivity to specific operators established using the Profile Likelihood method, after normalising the MC samples to the number of events observed in the ATLAS analyses.

Main observations:

- NN-based observables offer the best sensitivity.
- Multiclass models offers 5-10% improvements over binary classification
- Double-differential analysis of Φ_{41} and m_{21} captures most of the sensitivity gained by NN

Application to h + 2 jets

 Analysis carried out in the VBF_1 region of the ATLAS H→TT analysis (ATLAS-CONF-2021-044)

• Classic CP-odd variable: $\Delta \phi_{jj} = \phi(j_1) - \phi(j_2)$

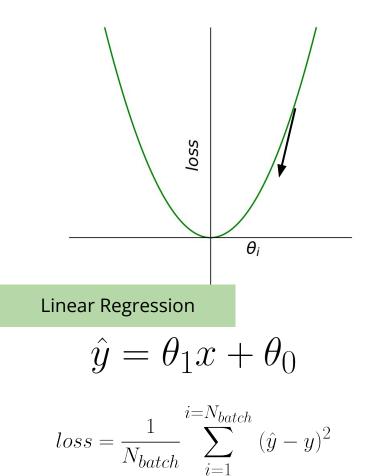
Limits on CP-odd operators for

	CP-odd observable	$C_{\Phi \widetilde{W}B}/\Lambda^2$	$C_{\Phi \widetilde{B}}/\Lambda^2$	$C_{\Phi \widetilde{W}}/\Lambda^2$
	$\Delta \phi_{jj}$	[-21,21]	[-149,149]	[-0.60,0.60]
	$O_{NN}(binary)$	[-11,11]	[-43,43]	[-0.66,0.66]
D_{NN}	$_{V}(multi-class)$	[-10,10]	[-36,36]	[-0.42,0.42]

Conclusion

- A method to directly construct CP-odd observables using the output of neural networks
- NN optimise the separation of +ve and -ve interference using the full kinematic information
- Demonstrated the NN CP-odd observables for h-> 4l decay channel and the VBF production mechanism
- large improvements in sensitivity to CP-violating effects in the Higgs sector, demonstrated this using dimension-six effective field theory predictions for the interference contributions.
- Improving the sensitivity to CP-violating effects in $h \rightarrow 4l$ and VBF Higgs production is particularly important for the self-consistency of the dimension-six approach

Machine Learning


Broadly, estimate a function given data samples.

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

 $\hat{y} = f(\Theta, x)$

Optimise a loss function: $L(\hat{y}, y)$

Classification:

$$loss = -rac{1}{N_{batch}}\sum_{i=1}^{i=N_{batch}}\,y_i\;\ln(\hat{y}(ec{x}_i))$$

Limits on CP-odd operators for
$$h \to Z Z^* \to 2e2\mu$$

CP-odd observable	$C_{\Phi \widetilde{W}B}/\Lambda^2$	$C_{\Phi \widetilde{B}}/\Lambda^2$	$C_{\Phi \widetilde{W}}/\Lambda^2$
$\Phi_{4\ell}$	[-6.2,6.2]	[-1.4,1.4]	[-30,30]
$\Phi_{4\ell}, m_{12}$	[-1.9,1.9]	[-0.85,0.85]	[-3.7,3.7]
$O_{NN}(binary)$	[-1.5,1.5]	[-0.75,0.75]	[-3.0,3.0]
$O_{NN}(multi-class$	[-1.4,1.4]	[-0.71,0.71]	[-2.7,2.7]

Sensitivity to specific operators established using the Profile Likelihood method, after normalising the MC samples to the number of events observed in the ATLAS analyses.