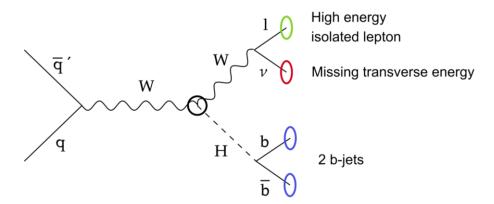
Simulation-based inference in the search for CP violation in leptonic WH production

LHC Higgs Working Group WG2+WG3 meeting

Ricardo Barrué (IST, LIP), Patricia Muiño (IST, LIP), Rui Santos (CFTC, ISEL), Valerio Dao (CERN)


CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

Outline

- 1. CP violation in HWW interaction via WH production
- 2. Optimal observables
- 3. Simulation-based inference and optimal observables
- 4. Analysis introduction
- 5. Some distributions
- 6. Results
- 7. Conclusions

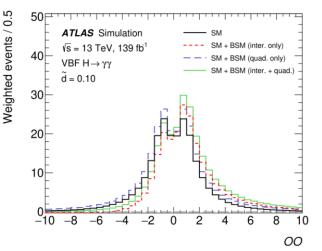
CP violation in HWW interaction

Goal: optimize search for CP violation in the HWW interaction via WH production

SMEFT, Warsaw basis, **1** dimension-6 CP-odd operator

$$O_{H\widetilde{W}} = \frac{c_{H\widetilde{W}}}{\Lambda^2} H^{\dagger} H \epsilon_{\mu\nu\rho\sigma} W^{I\mu\nu} W^{I\rho\sigma}$$

WG2+WG3 meeting - CPV in Higgs sector 11/1/23

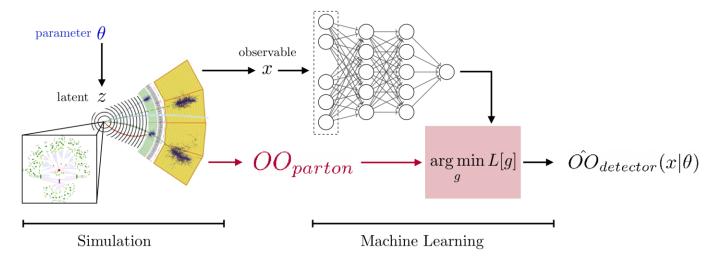

Optimal observables

Built from matrix elements, sensitive to interference between SM and BSM CP-odd components

$$OO = \frac{2\Re(\mathcal{M}_{\rm SM}^*\mathcal{M}_{\rm CP-odd})}{|\mathcal{M}_{\rm SM}|^2}$$

Issues:

- Neglect or approximate everything between parton-shower and reconstructed final state
- Require full reconstruction of final state


Can we build an observable optimally sensitive to $c_{\widetilde{HW}}$ using standard detector-level variables ?

Can we go without the need to fully reconstruct the neutrino 4-vector?

How does it compare with other observables in the literature ?

Simulation-based-inference/SALLY

SALLY (Score Aproximates the Likelihood LocallY) estimates detector-level optimal observable exploiting simulation information [1]

[1]: J. Brehmer et al, MadMiner: Machine learning-based inference for particle physics, arXiv:1907.10621 (figure largely adapted from figure in paper)

```
WG2+WG3 meeting - CPV in Higgs sector
11/1/23
```

Analysis introduction

Signal: SMEFTsim3, Λ =1 TeV, full matrix element

• $c_{HW} = 0$ reweighted to 2 BSM benchmarks, interpolated using morphing.

Backgrounds: semileptonic $t\bar{t}$, W+(b)-jets, s-channel single top

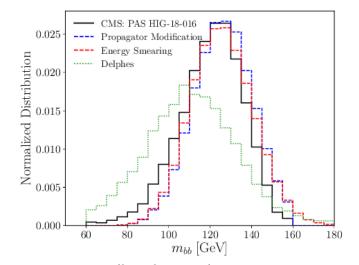
Selection cuts applied at generator level [2]:

- $p_{T,\ell} > 10 \text{ GeV}, E_T^{miss} > 25 \text{ GeV}$
- $p_{T,b} > 35 \, GeV$
- $\left|\eta_{\ell,b}\right| < 2.5$

- $\Delta R_{bj,\ell j} > 0.4, \Delta R_{bb,\ell b} > 0.4$
- $80 \; GeV < m_{bb} < 160 \; GeV$
- $p_{T,j} < 30 \; GeV$

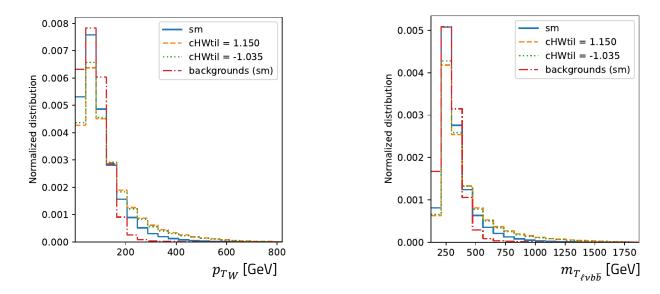
[2]: J. Brehmer et al, Benchmarking simplified template cross-sections in WH production, arXiv:1908.06980

WG2+WG3 meeting - CPV in Higgs sector 11/1/23


PS, had. detector response approximation

Pythia+Delphes shown to have a large mismodelling of m_{bb} and E_T^{miss} [2]

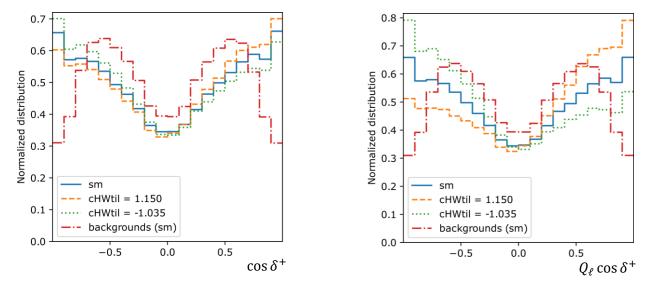
Approximated by Gaussian smearing of particle-level quantities:


- Neutrino energy/ E_T^{miss} : σ_E =12.5 GeV
- b-quark energies: $\frac{\sigma_E}{E} = 0.1$

No systematics applied.

[2]: J. Brehmer et al, *Benchmarking simplified template cross-sections in WH production*, <u>arXiv:1908.06980</u> (figure from paper) WG2+WG3 meeting - CPV in Higgs sector

Energy-related observables



- Sensitivity to non-zero c_{HW} S/B increased in high p_{TW} and $m_{T_{tot}}$ regions w.r.t. SM
- Not sensitive to sign of c_{HW} changes in observable come mainly from EFT² terms

$$\cos \delta^{+} = \frac{\vec{p}_{\ell}^{(W)} \cdot (\vec{p}_{H} \times \vec{p}_{W})}{\left| \vec{p}_{\ell}^{(W)} \right| \left| \vec{p}_{H} \times \vec{p}_{W} \right|} [3]$$

Angular observables

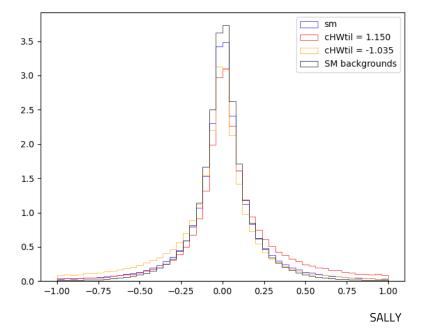
 $ec{p}_{\ell}^{(W)}$: momentum of lepton in W boson rest frame

- Symmetric for SM signal and backgrounds, asymmetric for $c_{\widehat{HW}} \neq 0$
- Can extract sign of c_{HW} , weighting by lepton charge increases asymmetry

[3]: R. Godbole et al, "Jet substructure and probes of CP violation in Vh production", arXiv:1409.5449

SALLY training

SALLY: ensemble of 5 NNs, 1 hidden layer, 50 epochs, early stopping applied


Basic training input variables (48):

- 4-vector of two b-quarks, lepton
- $E_T^{miss}{}_x, E_T^{miss}{}_{y'}|E_T^{miss}|$
- p_T, θ, η, ϕ of two b-quarks and Higgs
- *m*_{bb}

- p_{T_W}, ϕ_W
- $\Delta \phi_{bb,b_1\ell,b_2\ell}$, $\Delta R_{bb,b_1\ell,b_2\ell}$
- $\Delta \phi_{b_1 E_T^{miss}, b_2 E_T^{miss}, \ell E_T^{miss}}$
- $m_{T_{\ell \nu}}, m_{T_{\ell \nu bb}} (m_{T_{tot}})$

[3]: R. Godbole et al, "Jet substructure and probes of CP violation in Vh production", arXiv:1409.5449

SALLY observable

Left: distribution of SALLY trained at $c_{\widetilde{HW}} = 0$

Symmetric for SM signal and backgrounds

• asymmetric for $c_{\widehat{HW}} \neq 0$, can extract sign of $c_{\widehat{HW}}$ (asymmetry)

WG2+WG3 meeting - CPV in Higgs sector 11/1/23

Fisher Information and (linearized) limits

Ranked different observables using Fisher Information at $c_{HW} = 0$

• Extracting limits with Local Fisher distance - likelihood ratio linearized in c_{HW}

Observable	c _{<i>H̃W</i>} S+B 95% CL (L= 300 fb⁻¹)
1D: <i>p</i> _{<i>TW</i>}	[-1.62,1.62]
2D: $p_{T_W} \times m_{T_{\ell \nu b \overline{b}}}$	[-1.4,1.4]
1D: $Q_{\ell} \cos \delta^+$	[-0.227,0.227]
2D: $p_{T_W} \times Q_\ell \cos \delta^+$	[-0.088, 0.088]
MVA: SALLY, 48 input variables	[-0.067, 0.067]
MVA: SALLY, 48 input variables + $p_{z_v} Q_\ell \cos \delta^+$, $Q_\ell \cos \delta^-$, $\cos \theta^*$	<mark>[-0.062, 0.062]</mark>

(Linearized) limits with SALLY tighter than with $Q_\ell \cos \delta^+$ (factor 3)

- Tighter than with combination of p_{T_W} and ${\rm Q}_\ell\cos\delta^+$ (~25%) WG2+WG3 meeting - CPV in Higgs sector _11/1/23

Full limits

Determined expected limits w/ full likelihood ratio (shape-only)

• Properly takes into account the effect of terms $\propto c_{HW}^2$ in the likelihood ratio

Observable	$c_{\widetilde{HW}}$ S+B 95% CL (L= 300 fb ⁻¹)
1D: p_{T_W}	[-0.192, 0.216]
2D: $p_{T_W} \times m_{T_{\ell \nu b \overline{b}}}$	[-0.36, 0.384]
1D: $Q_{\ell} \cos \delta^+$	[-0.264, 0.216]
2D: $p_{T_W} \times Q_\ell \cos \delta^+$	<mark>[-0.096, 0.072]</mark>
MVA: SALLY, 48 input variables	[-0.144, 0.12]
MVA: SALLY, 48 input variables + $p_{z_{v}} Q_{\ell} \cos \delta^{+}$, $Q_{\ell} \cos \delta^{-}$, $\cos \theta^{*}$	[-0.168, 0.096]

2D combination of p_{T_W} and $\mathrm{Q}_\ell \cos \delta^+$ yields the best limits

 SALLY no longer optimal when quadratic effects included WG2+WG3 meeting - CPV in Higgs sector 11/1/23

Conclusions

Goal: optimize search for CP violation in the HWW interaction via WH production (c_{HW}).

Studied method to estimate **detector-level optimal observable** (SALLY).

Compared expected 95% CL limits on (c_{HW}) obtained with SALLY observable vs. others.

- SALLY observable more sensitive to linear term than angular observable alone.
- Overall more stringent limits with 2D histogram of p_{T_W} and $Q_\ell \cos \delta^+$.
 - SALLY observable only optimal when linear effects dominate.

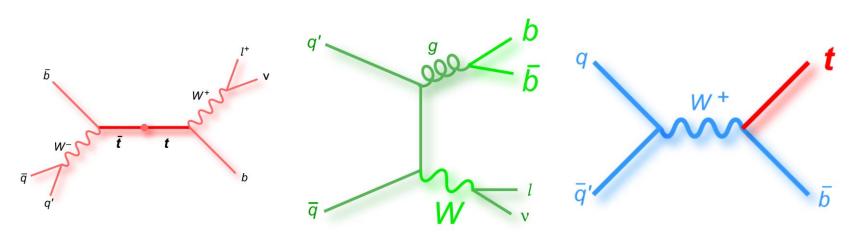
Future work: introduce systematics, dominant CP-even operators in WH. WG2+WG3 meeting - CPV in Higgs sector 11/1/23

Optimal observables

The **optimal observable** around a reference parameter point θ_{ref} is given by $\nabla_{\theta} \log p(x|\theta)|_{\theta_{ref}}$ [1]

• not calculable at detector-level (x), calculable at parton-level (z_p)

$$\nabla_{\theta} \log p(z_p|\theta) \propto \nabla_{\theta} \log \frac{|\mathcal{M}(z_p|\theta)|^2}{\sigma(\theta)} = \frac{\nabla_{\theta}|\mathcal{M}(z_p|\theta)|^2}{|\mathcal{M}(z_p|\theta)|^2} - \frac{\nabla_{\theta}\sigma(\theta)}{\sigma(\theta)}$$


CP-odd Optimal Observables \equiv parton-level Optimal Observable around $\theta = 0$ for SM+interference

• Neglect everything between parton- and detector-level $(z_p = x)$

Can we build a observable optimally sensitive to $c_{\widehat{HW}}$ using standard detector-level variables? Can we go without the need to fully reconstruct the neutrino 4-vector?

Backgrounds

Main backgrounds: semileptonic $t\bar{t}$, W+(b)-jets, s-channel single top

Energy-dependent observable binning

Binning for the limits with kinematic observables

- $p_{T_W} \in [0 75, 75 150, 150 250, 250 \infty]$ GeV
- $p_{T_W} \in [0 75, 75 150, 150 250, 250 400, 400 \infty]$ GeV
- $p_{T_W} \in [0 75, 75 150, 150 250, 250 400, 400 600, 600 \infty]$ GeV
- $p_{T_W} \in [0 75, 75 150, 150 250, 250 400, 400 \infty] \text{ GeV} \otimes m_{T_{tot}} \in [0 400, 400 800, 800 \infty] \text{ GeV}$
- $p_{T_W} \in [0 75, 75 150, 150 250, 250 400, 400 600, 600 \infty] \text{ GeV} \otimes m_{T_{tot}} \in [0 400, 400 800, 800 \infty] \text{ GeV}$

SALLY limits are done with 25 equally spaced bins between -1.0 and 1.0.

Neutrino p_z reconstruction

The neutrino longitudinal momentum, $p_{z_{\mathcal{V}}}$ is necessary to calculate angular observables

• Identify $\vec{p}_{T_{\mathcal{V}}}\equiv \vec{E}_{T}^{miss}$ and solve the equation $p_{W_{\mu}}p_{W}^{\mu}=m_{W}^{2}$

Quadratic equation leading to two solutions, neglect imaginary parts

• Studied different methods to select the solution

Selecting the solution that has min. $|\beta_z^W - \beta_z^H|$, $\beta_z = p_z/\sqrt{p_z^2 + m^2}$

• Minimum of ΔR (parton-level W, reconstructed W)

Angular observable binning

Binning for the limits with angular and angular+kinematic observables:

- $Q_{\ell} \cos \delta^+ \in [-1.0 0., 0. 1.0]$
- $Q_{\ell} \cos \delta^+ \in [-1.0 0.5, -0.5 0., 0. 0.5, 0.5 1.0]$
- $Q_{\ell} \cos \delta^+ \in [-1.0 \frac{2}{3}, \frac{-2}{3} \frac{1}{3}, -\frac{1}{3} 0., 0. -\frac{1}{3}, \frac{1}{3} \frac{2}{3}, \frac{2}{3} 1.0]$
- $p_{T_W} \in [0 75, 75 150, 150 250, 250 400, 400 \infty] \text{ GeV } \otimes Q_\ell \cos \delta^+ \in [-1.0 -2/3, -2/3 -1/3, -1/3 0., 0. -1/3, 1/3 2/3, 2/3 1.0]$
- $m_{T_{\ell\nu}} \in [0 250, 250 500, 500 \infty] \text{ GeV } \otimes Q_{\ell} \cos \delta^+ \in [-1.0 -2/3, -2/3 -1/3, -1/3 0., 0. 1/3, 1/3 2/3, 2/3 1.0]$
- $m_{T_{\ell\nu b\bar{b}}} \in [0 400, 400 800, 800 \infty] \text{ GeV} \otimes Q_{\ell} \cos \delta^+ \in [-1.0 -2/3, -2/3 -1/3, -1/3 0., 0. -1/3, 1/3 2/3, 2/3 1.0]$

The likelihood

The likelihood, p_{full} , is the central statistical object in any physics analysis

$$p_{\text{full}} = \text{Pois}(n|\mathcal{L}\sigma(\theta)) \prod_{i} p(x_i|\theta)$$

The kinematic likelihood, $p(x|\theta)$, can be factorized

z_p: parton-level variables, *z_s*: parton-shower+hadronization variables, *z_d*: detector variables, *x*: reconstructed observables

$$p(x|\theta) = \int dz_d \int dz_s \int dz_p \, p(x|z_d) \, p(z_d|z_s) \, p(z_s|z_p) \, p(z_p|\theta)$$

Can't be calculated analitically (*z*_{*d*} alone can have >1M variables for Geant 4)

WG2+WG3 meeting - CPV in Higgs sector 11/1/23

Morphing

Using morphing to interpolate event weights and distributions from a limited set of benchmarks

• In our case, obtained from MG reweighting of SM sample

$$p(z|\theta) = \sum_{c} w_{c}(\theta) \ p(z|\theta_{c})$$

MadMiner chooses the optimal benchmark points such that the $\sum w_c^2$ is the minimum

• Avoid numerical instabilities

Gradient of weights and cross-sections can also be derived from the morphing matrix

Fisher Information

The Fisher Information matrix $I_{ij}(\theta)$ quantifies the sensitivity of a measurement

$$I_{ij}(\theta) \equiv -E\left[\frac{\partial^2 \log p_{\text{full}}(x|\theta)}{\partial \theta_i \partial \theta_j}\right]|\theta$$

- Can be used to benchmark observables v by using $p_{full}(v|\theta)$
- Its differential distribution $dI_{ij}(x,\theta)/dv$ allows defining optimal phase space cuts

We can use the score to extract the full detector-level information:

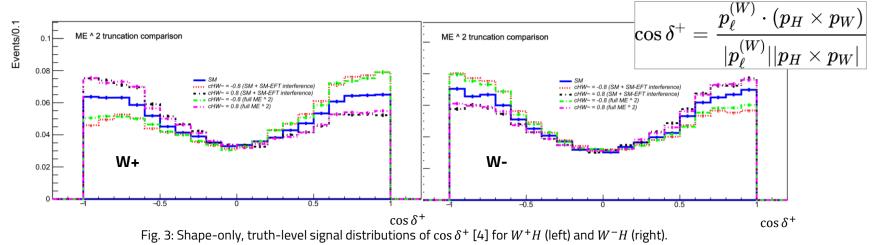
$$I_{ij}(\theta) = \frac{\mathcal{L}}{\sigma} \frac{\partial \sigma}{\partial \theta_i} \frac{\partial \sigma}{\partial \theta_j} + \frac{\mathcal{L}\sigma}{N} \sum_{x \sim p(x|\theta)} t_i(x) t_j(x)$$

WG2+WG3 meeting - CPV in Higgs sector 11/1/23

Local Fisher distance and limits

Fisher Information matrix shows up in Taylor expansion of the log-likelihood ratio

$$-2 \mathbb{E}\left[\log \frac{p_{\text{full}}(x|\theta)}{p_{\text{full}}(x|0)}\right] = \underbrace{-\mathbb{E}\left[\frac{\partial^2 \log p_{\text{full}}(x|\theta)}{\partial \theta_i \ \partial \theta_j}\right]}_{\equiv I_{ij}} \theta_i \ \theta_j + \mathcal{O}(\theta^3)$$


For small deviations around a reference point, θ_0 , one can extract limits with

Local Fisher Distance

$$d(\theta_1, \theta_0)^2 = I_{ij}(\theta_0)(\theta_1 - \theta_0)_i(\theta_1 - \theta_0)_j$$

- These are, by definition, linearized in the parameters of interest
- Not accurate when terms quadratic in the parameters of interest dominate WG2+WG3 meeting - CPV in Higgs sector 11/1/23

Angular observable distributions (truth)

Sensitive to interference (CP-odd) component, (mostly) unaffected by quadratic (CP-even)

For same coupling, asymmetry has opposite signs for opposite charge W bosons

• Weighting by lepton charge - $Q_{\ell} \cos \delta^+$ - increases asymmetry and sensitivity to sign of c_{HW}

4: <u>arXiv:1409.5449</u>

WG2+WG3 meeting - CPV in Higgs sector 11/1/23