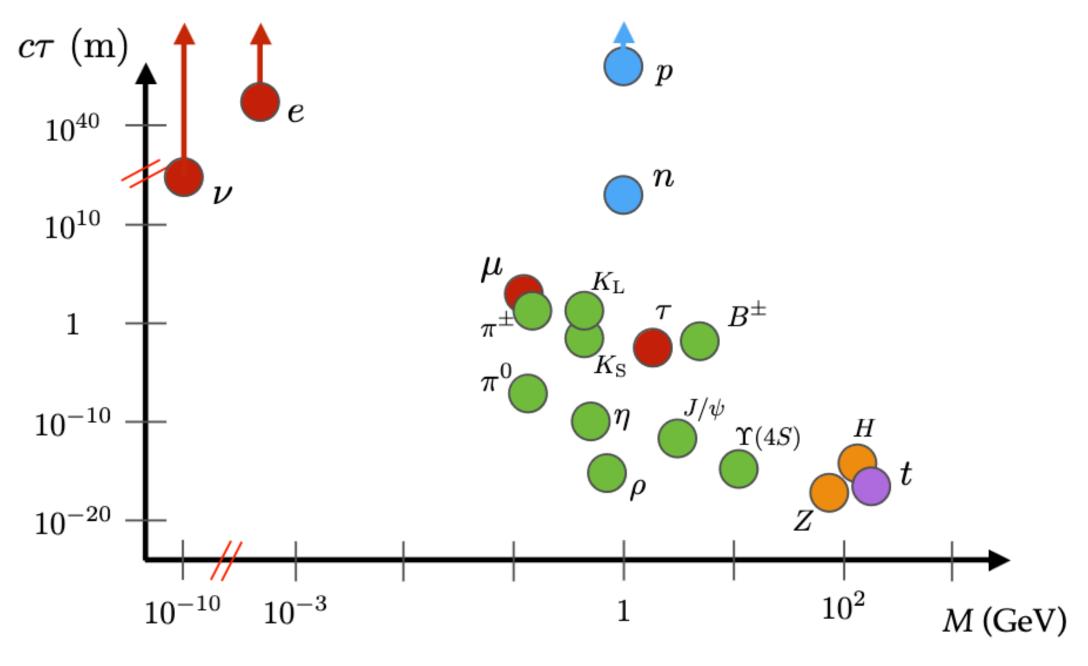
Long lived particles at colliders and beyond


Blois 2023: 34th Rencontres de Blois on "Particle Physics and Cosmology" Château of Blois, 14-19 May 2023

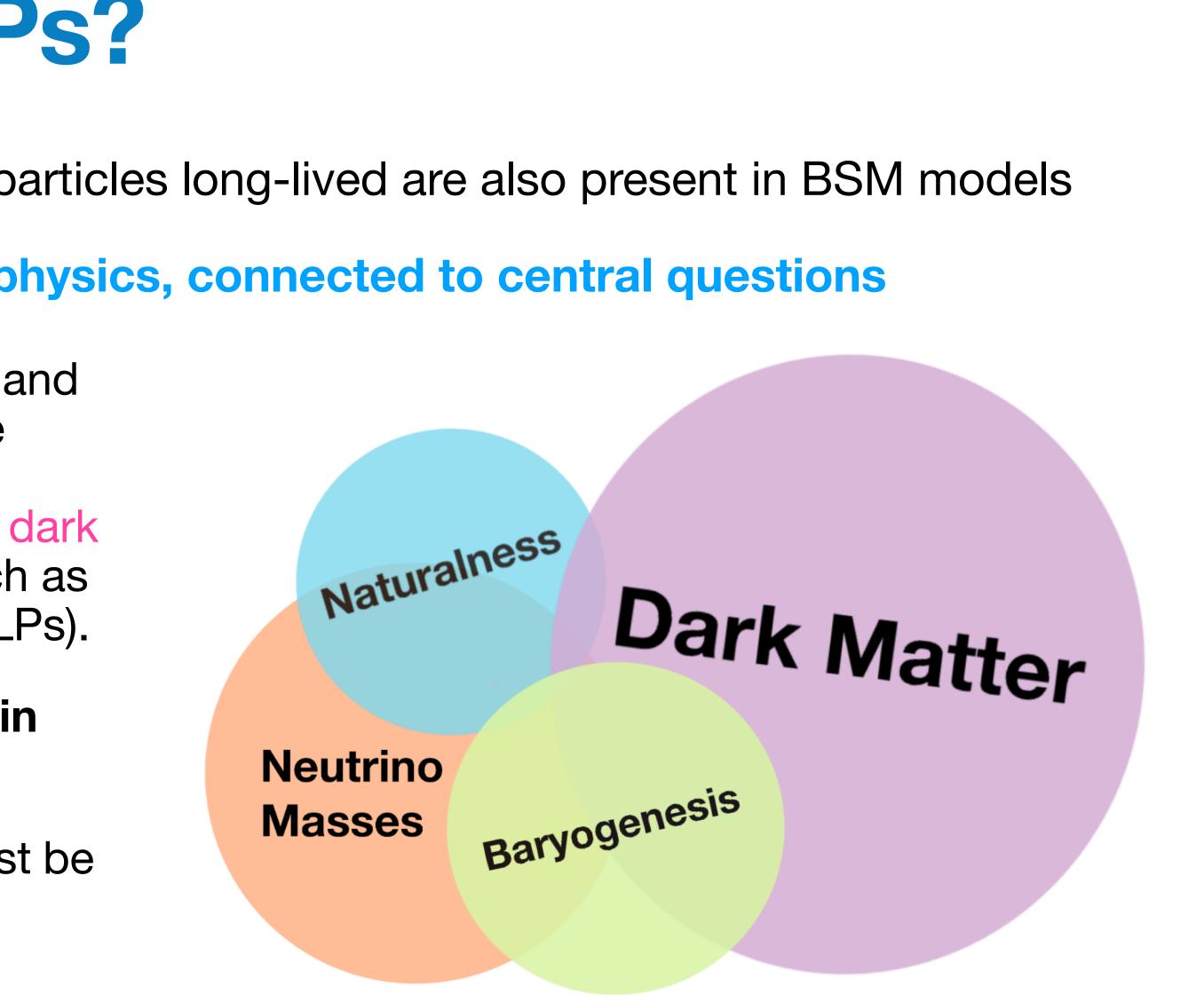
Rebeca Gonzalez Suarez - Uppsala University

Long-lived particles

arXiv:1903.04497

Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023

- SM particles all have different lifetimes, even with similar masses
- Many of them are long-lived
 - Due to e.g. small couplings or a suppressed decay phase space
- But we use Long-lived particles (LLPs) as an umbrella term
 - New particles, that we have not discovered yet, with lifetimes long enough to travel measurable distances inside the detectors before decaying


2

Where do we get LLPs?

- The same conditions that make some SM particles long-lived are also present in BSM models
 - LLPs are a generic signature of BSM physics, connected to central questions
 - SUSY models, R parity violating (RPV) and conserving (RPC); exotic decays of the Higgs boson; Heavy Neutral Leptons (HNLs) connected to neutrino masses; dark matter candidates; or new scalars, such as dark photon or Axion-Like Particles (ALPs).
 - In general, LLPs feature extensively in hidden sectors
- If light (<1 GeV) new particles exist, they must be very weakly coupled \rightarrow LLPs

LLP searches have been going on for years at colliders in different ways Looking for them is nothing new

CAN BORTON

CERN-TH-2018-142 CP3-Origins-2018-023 DNRF90 FERMILAB-PUB-18-264-T IFT-UAM-CSIC-18-060 IPMU18-0109 KIAS-P18052 LCTP-18-17 TTP18-02 ULB-TH/18-09 UMD-PP-018-04 YITP-SB-18-16

Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case

Editors

David Curtin¹, Marco Drewes², Matthew McCullough³, Patrick Meade⁴, Rabindra N. Mohapatra⁵, Jessie Shelton⁶, Brian Shuve^{7,8}.

Contributors.

Contributors: Elena Accomando⁹, Cristiano Alpigiani¹⁰, Stefan Antusch¹¹, Juan Carlos Arteaga-Velázquez¹², Brian Batell¹³, Martin Bauer¹⁴, Nikita Blinov⁸, Karen Salomé Caballero-Mora^{15,16}, Jae Hyeok Chang⁴, Eung Jin Chui¹⁷, Raymond T. Co¹⁸, Timothy Cohen¹⁹, Peter Cox²⁰, Nathaniel Craig²¹, Csaba Csáki²², Yanou Cui²³, Francesco D'Eramo²⁴, Luigi Delle Rose²⁵, P. S. Bhupal Dev²⁶, Keith R. Dienes^{27,5}, Jeff A. Dror^{28,29}, Rouven Essig⁴, Jared A. Evans^{30,6}, Jason L. Evans¹⁷, Arturo Fernández Tellez³¹, Oliver Fischer³², Thomas Flacke³³, Anthony Fradette³⁴, Claudia Frugiuele³⁵, Elina Fuchs³⁵, Tony Gherghetta³⁶, Gian F. Giudice³, Dmitry Gorbunov^{37,38}, Rick S. Gupta³⁹, Claudia Hagedorn⁴⁰, Lawrence J. Hall^{28,29}, Philip Harris⁴¹, Juan Carlos Hel6^{42,43}, Martin Hirsch⁴⁴, Yonit Hochberg⁴⁵, Anson Hook⁵, Alejandro Ibarra^{46,17}, Seyda Ipek⁴⁷, Sughoon Jung⁴⁸, Simon Knapen^{29,28}, Eric Kuflik⁴⁵, Zhen Lui⁴⁹, Salvator Lombardo²², H. J. Lubatti¹⁰, David McKeen⁵⁰, Emiliano Molianro⁵¹, Stefano Moretti^{9,52}, Natsumi Nagata⁵³, Matthias Neuberl^{54,22}, Jose Miguel No^{55,56}, Emmanuel Olaiya⁵², Gilad Perez³⁵, Michael E. Peskin⁸, David Pinner^{57,58}, Maxim Pospelov^{59,34}, Matthew Reece⁵⁷, Dean J. Robinson³⁰, Mario Rodríguez Cahuantzi³¹, Rinaldo Santonico⁶⁰, Mathias Schlaffer³⁵, Claire H. Shepherd-Themistoleous⁵², Andrew Spray³³, Daniel Stolarski⁶¹, Martin A. Subieta Vasquez^{62,63}, Raman Sundrum⁵, Andrea Thamm³, Brooks Thomas⁴⁵, Yuhsin Tsaf⁵, Brock Tweedie¹³, Stephen M. Wesf⁶⁵, Charles Young⁸, Felix Yu⁵⁴, Bryan Zaldivar^{55,66}, Yongchao Zhang^{26,67}, Kathryn Zurek^{29,28,3}, José Zurita^{32,68}.

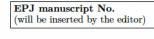
¹ Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
 ² Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
 ³ CERN, TH Department, CH-1211 Geneva, Switzerland
 ⁴ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA
 ⁵ Marcular Castra for Jim and Calase

- ⁵ Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742-4111 USA
- ⁶ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
 ⁷ Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711, USA
 ⁸ SLAC National Accelerator Laboratory, Menlo Park, California 94025 USA

CERN-TH-2018-142 CP3-Origins-2018-023 DNRF90 FERMILAB-PUB-18-264-T IFT-UAM-CSIC-18-060 IPMU18-0109 KIAS-P18052 LCTP-18-17 TTP18-022 ULB-TH/18-09 UMD-PP-018-04 YITP-SB-18-16

Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case

David Curtin¹, Marco Drewes², Matthew McCullough³, Patrick Meade⁴, Rabindra N. Mohapatra⁵, Jessie Shelton⁶, Brian Shuve^{7,8}


Contributors

Elena Accomando⁹, Cristiano Alpigiani¹⁰, Stefan Antusch¹¹, Juan Carlos Arteaga-Velázquez¹², Brian Batell¹³, Martin Bauer¹⁴, Nikita Blinov⁸, Karen Salomé Caballero-Mora^{15,16}, Jae Hyeok Chang⁴, Eung Jin Chun¹⁷, Raymond T. Co¹⁸, Timothy Cohen¹⁹, Peter Cox²⁰, Nathaniel Craig²¹, Csaba Csáki²², Yanou Cui²³, Francesco D'Eramo²⁴, Luigi Delle Rose²⁵, P. S. Bhupal Dev²⁶, Keith R. Dienes^{27,5}, Jeff A. Dror^{28,29}, Rouven Essig⁴, Jared A. Evans^{30,6}, Jason L. Evans¹⁷, Arturo Fernández Tellez³¹, Oliver Fischer³², Thomas Flacke³³, Anthony Fradette³⁴, Claudia Frugiuele³⁵, Elina Fuchs³⁵, Tony Gherghetta³⁶, Gian F. Giudice³, Dmitry Gorbunov^{37,38}, Rick S. Gupta³⁹, Claudia Hagedorn⁴⁰, Lawrence J. Hall^{28,29}, Philip Harris⁴¹, Juan Carlos Helo^{42,43}, Martin Hirsch⁴⁴, Yonit Hochberg⁴⁵, Anson Hook⁵, Alejandro Ibarra^{46,17}, Seyda Ipek⁴⁷, Sunghoon Jung⁴⁸, Simon Knapen^{29,28}, Eric Kuflik⁴⁵, Zhen Liu⁴⁹, Salvator Lombardo²², H. J. Lubatti¹⁰, David McKeen⁵⁰, Emiliano Molinaro⁵¹, Stefano Moretti^{9,52}, Natsumi Nagata⁵³, Matthias Neubert^{54,22}, Jose Miguel No^{55,56}, Emmanuel Olaiya⁵², Gilad Perez³⁵, Michael E. Peskin⁸, David Pinner^{57,58}, Maxim Pospelov^{59,34}, Matthew Reece⁵⁷, Dean J. Robinson³⁰, Mario Rodríguez Cahuantzi³¹, Rinaldo Santonico⁶⁰, Matthias Schlaffer³⁵, Claire H. Shepherd-Themistocleous⁵², Andrew Spray³³, Daniel Stolarski⁶¹, Martin A. Subieta Vasquez^{52,63}, Raman Sundrum⁵, Andrea Thamm³, Brooks Thomas⁶⁴, Yuhsin Tsai⁵, Brock Tweedie¹³, Stephen M. Wesr⁶⁵, Charles Young⁸, Felix Yu⁵⁴, Bryan Zaldivar^{55,66}, Yongchao Zhang^{26,67}, Kathryn Zurek^{29,28,3}, José Zurita^{32,68}.

¹ Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada ² Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain,

- Louvain-la-Neuve, B-1348, Belgium ³ CERN, TH Department, CH-1211 Geneva, Switzerland
- ⁴ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA ⁵ Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742-4111 USA
- ⁶ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA ⁷ Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711, USA

⁸ SLAC National Accelerator Laboratory, Menlo Park, California 94025 USA

Feebly-Interacting Particles: FIPs 2020 Workshop Report

P. Agrawal¹, M. Bauer², J. Beacham³, A. Berlin⁴, A. Boyarsky⁵, S. Cebrian⁶, X. Cid-Vidal⁷, D. d'Enterria⁸, A. De Roeck⁸, M. Drewe⁹, B. Echenard¹⁰, M. Giannotti¹¹, G. F. Giudice⁸, S. Gninenko¹², S. Gori¹³, E. Goudzovski¹⁴,
 J. Heeck¹⁵, P. Hernandez¹⁶, M. Hostert^{17,18}, I. G. Irastorza⁶, A. Izmaylov¹², J. Jacckel¹⁹, F. Kahlhoefer²⁰, S. Knapen⁸,
 G. Krnjaic²¹, G. Lanfranchi²², J. Monroe²³, V. I. Martinez Outschoorn²⁴, J. Lopez-Pavon¹⁶, S. Pascoli^{2,25},
 M. Pospelov¹⁷, D. Redigolo^{8,26}, A. Ringwald²⁷, O. Ruchayskiy²⁸, J. Ruderman^{4,27}, H. Russell⁸, J. Salfeld-Nebgen²⁹ P. Schuster³⁰, M. Shaposhnikov³¹, L. Shchutska³¹, J. Shelton³², Y. Soreq³³, Y. Stadnik³⁴, J. Swallow¹⁴, K. Tobioka^{35,36}, and Y.-D. Tsai^{24,37}

- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK Institute for Particle Physics Phenomenology, Department of Physics Durham University, Durham, UK

- Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, Santiago, Spain ⁸ European Organization for Nuclear Research (CERN), Geneva, Switzerland ⁹ Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, US Physical Sciences, Barry University, Miami Shores, US Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, US School of Physics and Astronomy, University of Birmingham, B15 2TT, United Kingdom Department of Physics, University of Virginia, Charlottesville, Virginia, US
- Institut de Física Corpuscular CSIC/Universitat de València, València, Spain School of Physics and Astronomy and William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, US
- Perimeter Institute for Theoretical Physics, Waterloo, Canada Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Particle Physics and Cosmology, Aachen University, Aachen, Germany
- Royal Holloway, University of London, Egham Hill, United Kingdom University of Massachusetts, Amherst MA, US Dipartimento di Fisica e Astronomia, Universita' di Bologna, Bologna, Italy
- ⁵ INFN, Sezione di Firenze and University of Florence, Sesto Fiorentino, Italy
 ⁷ DESY, Deutsches Elektronen-Synchrotron (DESY) Hamburg, Germany
- Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark
- Department of Physics, Princeton University, Princeton, US SLAC National Accelerator Laboratory Menlo Park, US
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ¹² University of Illinois, Urbana, US
 ³ Physics Department, Technion, Institute of Technology, Haifa 3200003, Israel
- ³⁴ Kavli Institute for the Physics and Mathematics of the Universe (KIPMU), University of Tokyo, Japan ⁵ Department of Physics, Florida State University, Tallahassee, US ⁶ High Energy Accelerator Research Organization (KEK), Tsukuba, Japan ⁷ Kavli Institute for Cosmological Physics, University of Chicago, Chicago, US

the date of receipt and acceptance should be inserted later

Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop "Physics Beyond Colliders meets theory", held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results

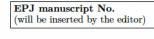
⁴ Department of Physics, Duke University, Durham NC, USA ⁵ Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, US ⁵ Instituut-Lorentz for Theoretical Physics, UniversiteitLeiden, Leiden, The Netherlands ⁶ Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza, Spain

University of Chicago, Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, Chicago, US Laboratori Nazionali di Frascati, INFN, Frascati (Rome), Italy

CERN-TH-2018-142 CP3-Origins-2018-023 DNRF90 FERMILAB-PUB-18-264-7 IFT-UAM-CSIC-18-060 IPMU18-0109 KIAS-P18052 LCTP-18-1 TTP18-023 ULB-TH/18-02 ULB-TH/18-09 UMD-PP-018-04 YITP-SB-18-16

110 12-1

Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case


David Curtin¹, Marco Drewes², Matthew McCullough³, Patrick Meade⁴, Rabindra N. Mohapatra⁵, Jessie Shelton⁶, Brian Shuve^{7,8}

Elena Accomando⁹, Cristiano Alpigiani¹⁰, Stefan Antusch¹¹, Juan Carlos Arteaga-Velázquez¹², Brian Batell¹³, Martin Bauer¹⁴, Nikita Blinov⁸, Karen Salomé Caballero-Mora^{15,16}, Jae Hyeok Chang⁴, Eung Jin Chun¹⁷, Raymond T. Co¹⁸, Timothy Cohen¹⁹, Peter Cox²⁰, Nathaniel Craig²¹, Csaba Csáki²², Yanou Cui²³, Francesco D'Eramo²⁴, Luigi Delle Rose²⁵, P. S. Bhupal Dev²⁶, Keith R. Dienes^{27,5}, Jeff A. Dror^{28,29}, Rouven Essig⁴, Jared A. Evans^{30,6}, Jason L. Evans¹⁷, Arturo Fernández Tellez³¹, Oliver Fischer³², Thomas Flacke³³, Anthony Fradette³⁴, Claudia Frugiuele³⁵ Elina Fuchs³⁵, Tony Gherghetta³⁶, Gian F. Giudice³, Dmitry Gorbunov^{37,38}, Rick S. Gupta³⁹, Claudia Hagedorn⁴⁰, Lawrence J. Hall^{28,29}, Philip Harris⁴¹, Juan Carlos Helo^{42,43}, Martin Hirsch⁴⁴, Yonit Hochberg⁴⁵, Anson Hook⁵, Alejandro Ibarra^{46,17}, Seyda Ipek⁴⁷, Sunghoon Jung⁴⁸, Simon Knapen^{29,28}, Eric Kuflik⁴⁵, Zhen Liu⁴⁹, Salvator Lombardo²², H. J. Lubatti¹⁰, David McKeen⁵⁰, Emiliano Molinaro⁵¹, Stefano Moretti^{9,52}, Natsumi Nagata⁵³, Matthias Neubert^{54,22} Jose Miguel No^{55,56}, Emmanuel Olaiya⁵², Gilad Perez³⁵, Michael E. Peskin⁸, David Pinner^{57,58} Maxim Pospelov^{59,34}, Matthew Reece⁵⁷, Dean J. Robinson³⁰, Mario Rodríguez Cahuantzi³¹, Rinaldo Santonico⁶⁰, Matthias Schlaffer³⁵, Claire H. Shepherd-Themistocleous⁵², Andrew Spray³³ Daniel Stolarski⁶¹, Martin A. Subieta Vasquez^{62,63}, Raman Sundrum⁵, Andrea Thamm³, Brooks Thomas⁶⁴, Yuhsin Tsai⁵, Brock Tweedie¹³, Stephen M. West⁶⁵, Charles Young⁸, Felix Yu⁵⁴, Bryan Zaldivar^{55,66}, Yongchao Zhang^{26,67}, Kathryn Zurek^{29,28,3}, José Zurita^{32,68}.

¹ Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada ² Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium

- 3 CERN, TH Department, CH-1211 Geneva, Switzerland
- ⁴ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA ⁵ Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742-4111 USA
- ⁶ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA ⁷ Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711, USA

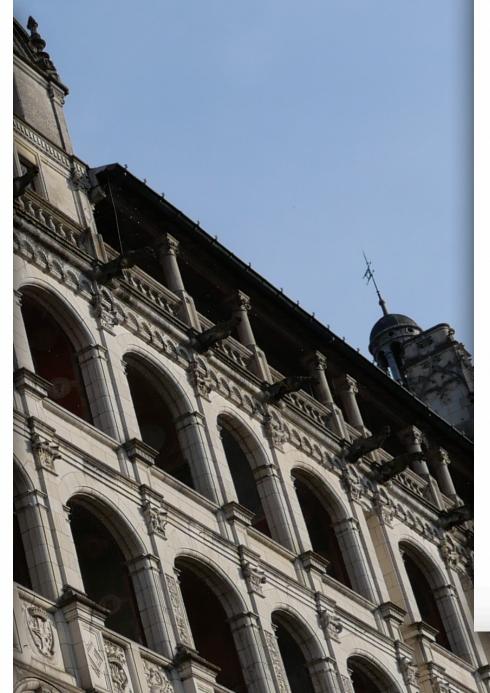
⁸ SLAC National Accelerator Laboratory, Menlo Park, California 94025 USA

Feebly-Interacting Particles: FIPs 2020 Workshop Report

P. Agrawal¹, M. Bauer², J. Beacham³, A. Berlin⁴, A. Boyarsky⁵, S. Cebrian⁶, X. Cid-Vidal⁷, D. d'Enterria⁸, A. De Roeck⁸, M. Drewe⁹, B. Echenard¹⁰, M. Giannotti¹¹, G. F. Giudice⁸, S. Gninenko¹², S. Gori¹³, E. Goudzovski¹⁴,
 J. Heeck¹⁵, P. Hernandez¹⁶, M. Hostert^{17,18}, I. G. Irastorza⁶, A. Izmaylov¹², J. Jacckel¹⁹, F. Kahlhoefer²⁰, S. Knapen⁸,
 G. Krnjaic²¹, G. Lanfranchi²², J. Monroe²³, V. I. Martinez Outschoorn²⁴, J. Lopez-Pavon¹⁶, S. Pascoli^{2,25},
 M. Pospelov¹⁷, D. Redigolo^{8,26}, A. Ringwald²⁷, O. Ruchayskiy²⁸, J. Ruderman^{4,27}, H. Russell⁸, J. Salfeld-Nebgen²⁹ P. Schuster³⁰, M. Shaposhnikov³¹, L. Shchutska³¹, J. Shelton³², Y. Soreq³³, Y. Stadnik³⁴, J. Swallow¹⁴, K. Tobioka^{35,36}, and Y.-D. Tsai^{24,37}

- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK Institute for Particle Physics Phenomenology, Department of Physics Durham University, Durham, UK Department of Physics, Duke University, Durham NC, USA
- Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, US
- Instituut-Lorentz for Theoretical Physics, UniversiteitLeiden, Leiden, The Netherlands Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza, Spain
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, US Physical Sciences, Barry University, Miami Shores, US
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, US School of Physics and Astronomy, University of Birmingham, B15 2TT, United Kingdom Department of Physics, University of Virginia, Charlottesville, Virginia, US
- Institut de Física Corpuscular CSIC/Universitat de València, València, Spain School of Physics and Astronomy and William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, US
- Perimeter Institute for Theoretical Physics, Waterloo, Canada Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Particle Physics and Cosmology, Aachen University, Aachen, Germany
- Royal Holloway, University of London, Egham Hill, United Kingdom
- University of Massachusetts, Amherst MA, US Dipartimento di Fisica e Astronomia, Universita' di Bologna, Bologna, Italy
- INFN, Sezione di Firenze and University of Florence, Sesto Fiorentino, Italy DESY, Deutsches Elektronen-Synchrotron (DESY) Hamburg, Germany
- Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark
- Department of Physics, Princeton University, Princeton, US SLAC National Accelerator Laboratory Menlo Park, US
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland University of Illinois, Urbana, US
- Physics Department, Technion, Institute of Technology, Haifa 3200003, Israel ³⁴ Kavli Institute for the Physics and Mathematics of the Universe (KIPMU), University of Tokyo, Japan Department of Physics, Florida State University, Tallahassee, US High Energy Accelerator Research Organization (KEK), Tsukuba, Japan Kavli Institute for Cosmological Physics, University of Chicago, Chicago, US

the date of receipt and acceptance should be inserted later


Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented y the topical workshop "Physics Beyond Colliders meets theory", held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results

Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, Santiago, Spain

Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, Louvain-la-Neuve, Belgium

University of Chicago, Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, Chicago, US Laboratori Nazionali di Frascati, INFN, Frascati (Rome), Italy

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

March 6, 2019

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments - as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEXb, and FASER — to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.

Editors:

CERN-TH-2018-142 CP3-Origins-2018-023 DNRF90 FERMILAB-PUB-18-264-7 IFT-UAM-CSIC-18-060 IPMU18-0109 KIAS-P18052 LCTP-18-1 TTP18-023 ULB-TH/18-09 UMD-PP-018-04

YITP-SB-18-10

Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case

David Curtin¹, Marco Drewes², Matthew McCullough³, Patrick Meade⁴, Rabindra N. Mohapatra⁵, Jessie Shelton⁶, Brian Shuve^{7,8}

Elena Accomando⁹, Cristiano Alpigiani¹⁰, Stefan Antusch¹¹, Juan Carlos Arteaga-Velázquez¹², Brian Batell¹³, Martin Bauer¹⁴, Nikita Blinov⁸, Karen Salomé Caballero-Mora^{15,16}, Jae Hyeok Chang⁴, Eung Jin Chun¹⁷, Raymond T. Co¹⁸, Timothy Cohen¹⁹, Peter Cox²⁰, Nathaniel Craig²¹, Csaba Csáki²², Yanou Cui²³, Francesco D'Eramo²⁴, Luigi Delle Rose²⁵, P. S. Bhupal Dev²⁶, Keith R. Dienes^{27,5}, Jeff A. Dror^{28,29}, Rouven Essig⁴, Jared A. Evans^{30,6}, Jason L. Evans¹⁷, Arturo Fernández Tellez³¹, Oliver Fischer³², Thomas Flacke³³, Anthony Fradette³⁴, Claudia Frugiuele³⁵ Elina Fuchs³⁵, Tony Gherghetta³⁶, Gian F. Giudice³, Dmitry Gorbunov^{37,38}, Rick S. Gupta³⁹, Claudia Hagedorn⁴⁰, Lawrence J. Hall^{28,29}, Philip Harris⁴¹, Juan Carlos Helo^{42,43}, Martin Hirsch⁴⁴, Yonit Hochberg⁴⁵, Anson Hook⁵, Alejandro Ibarra^{46,17}, Seyda Ipek⁴⁷, Sunghoon Jung⁴⁸, Simon Knapen^{29,28}, Eric Kuflik⁴⁵, Zhen Liu⁴⁹, Salvator Lombardo²², H. J. Lubatti¹⁰, David McKeen⁵⁰, Emiliano Molinaro⁵¹, Stefano Moretti^{9,52}, Natsumi Nagata⁵³, Matthias Neubert^{54,22} Jose Miguel No^{55,56}, Emmanuel Olaiya⁵², Gilad Perez³⁵, Michael E. Peskin⁸, David Pinner^{57,58} Maxim Pospelov^{59,34}, Matthew Reece⁵⁷, Dean J. Robinson³⁰, Mario Rodríguez Cahuantzi³¹, Rinaldo Santonico⁶⁰, Matthias Schlaffer³⁵, Claire H. Shepherd-Themistocleous⁵², Andrew Spray³³ Daniel Stolarski⁶¹, Martin A. Subieta Vasquez^{62,63}, Raman Sundrum⁵, Andrea Thamm³, Brooks Thomas⁶⁴, Yuhsin Tsai⁵, Brock Tweedie¹³, Stephen M. West⁶⁵, Charles Young⁸, Felix Yu⁵⁴, Bryan Zaldivar^{55,66}, Yongchao Zhang^{26,67}, Kathryn Zurek^{29,28,3}, José Zurita^{32,68}.

¹ Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada ² Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain,

- Louvain-la-Neuve, B-1348, Belgium
- ³ CERN, TH Department, CH-1211 Geneva, Switzerland
- ⁴ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA Maryland Center for Fundamental Ph
- Park, MD 20742-4111 USA

^b Department of Physics, University

7 Harvey Mudd College, 301 Platt Blvd.

8 SLAC National Accelerator Laborato

Searches for long-lived particles at the LHC: Workshop of the LHC LLP Community

24-26 Apr 2017 CERN

> Following the success of the LHC Long-Lived Particle (LLP) Mini-Workshop in May of 2016, the LHC LLP Community - composed of members of the CMS, LHCb, and ATLAS collaborations as well as theorists, phenomenologists and those interested in LLP searches with auxiliary LHC detectors -- convenes again address the status and future of LLP searches at the LHC.

articipant Lis

This workshop will be one of two workshops devoted to producing an LHC LLP white paper that will be a snapshot of the status of LLP searches at the LHC as of 2017, organized by experimental signature; contain an enumeration of gaps in the coverage of classes of BSM models that can produce LLPs; propose recommendations for triggering strategies for LLPs in ATLAS, CMS, and LHCb; list ideas for new searches for LLPs; and propose a set of recommendations for the presentation of search results to ensure future reinterpretation and recasting.

EPJ manuscript No. (will be inserted by the editor)

Feebly-Interacting Particles: FIPs 2020 Workshop Report

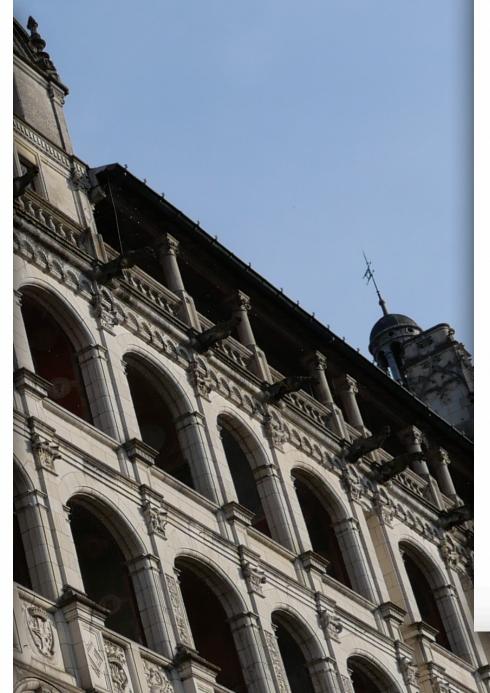
P. Agrawal¹, M. Bauer², J. Beacham³, A. Berlin⁴, A. Boyarsky⁵, S. Cebrian⁶, X. Cid-Vidal⁷, D. d'Enterria⁸, A. De Roeck⁸, M. Drewe⁹, B. Echenard¹⁰, M. Giannotti¹¹, G. F. Giudice⁸, S. Gninenko¹², S. Gori¹³, E. Goudzovski¹⁴,
 J. Heeck¹⁵, P. Hernandez¹⁶, M. Hostert^{17,18}, I. G. Irastorza⁶, A. Izmaylov¹², J. Jacckel¹⁹, F. Kahlhoefer²⁰, S. Knapen⁸,
 G. Krnjaic²¹, G. Lanfranchi²², J. Monroe²³, V. I. Martinez Outschoorn²⁴, J. Lopez-Pavon¹⁶, S. Pascoli^{2,25},
 M. Pospelov¹⁷, D. Redigolo^{8,26}, A. Ringwald²⁷, O. Ruchayskiy²⁸, J. Ruderman^{4,27}, H. Russell⁸, J. Salfeld-Nebgen²⁹ P. Schuster³⁰, M. Shaposhnikov³¹, L. Shchutska³¹, J. Shelton³², Y. Soreq³³, Y. Stadnik³⁴, J. Swallow¹⁴, K. Tobioka^{35,36}, and Y.-D. Tsai^{24,3}

- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK Institute for Particle Physics Phenomenology, Department of Physics Durham University, Durham, UK Department of Physics, Duke University, Durham NC, USA
- Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, US
- Instituut-Lorentz for Theoretical Physics, UniversiteitLeiden, Leiden, The Netherlands Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza, Spain
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, US Physical Sciences, Barry University, Miami Shores, US
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, US School of Physics and Astronomy, University of Birmingham, B15 2TT, United Kingdom Department of Physics, University of Virginia, Charlottesville, Virginia, US
- Institut de Física Corpuscular CSIC/Universitat de València, València, Spain
- Perimeter Institute for Theoretical Physics, Waterloo, Canada Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Particle Physics and Cosmology, Aachen University, Aachen, Germany
- Royal Holloway, University of London, Egham Hill, United Kingdom
- University of Massachusetts, Amherst MA, US Dipartimento di Fisica e Astronomia, Universita' di Bologna, Bologna, Italy
- INFN, Sezione di Firenze and University of Florence, Sesto Fiorentino, Italy DESY, Deutsches Elektronen-Synchrotron (DESY) Hamburg, Germany
- Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark
- Department of Physics, Princeton University, Princeton, US SLAC National Accelerator Laboratory Menlo Park, US
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland University of Illinois, Urbana, US ³ Physics Department, Technion, Institute of Technology, Haifa 3200003, Israel
- ³⁴ Kavli Institute for the Physics and Mathematics of the Universe (KIPMU), University of Tokyo, Japan ⁵ Department of Physics, Florida State University, Tallahassee, US High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

¹⁷ Kavli Institute for Cosmological Physics, University of Chicago, Chicago, US

the date of receipt and acceptance should be inserted later

Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented y the topical workshop "Physics Beyond Colliders meets theory", held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and roposes a few recommendations for the next round of experimental results



Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, Santiago, Spain

Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, Louvain-la-Neuve, Belgium

School of Physics and Astronomy and William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, US

University of Chicago, Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics , Chicago, US Laboratori Nazionali di Frascati, INFN, Frascati (Rome), Italy

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

March 6, 2019

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments - as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEXb, and FASER — to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.

Editors:

CERN-TH-2018-142 CP3-Origins-2018-023 DNRF90 FERMILAB-PUB-18-264-7 IFT-UAM-CSIC-18-060 IPMU18-0109 KIAS-P18052 LCTP-18-1 TTP18-023 ULB-TH/18-09 UMD-PP-018-04

YITP-SB-18-10

Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case

David Curtin¹, Marco Drewes², Matthew McCullough³, Patrick Meade⁴, Rabindra N. Mohapatra⁵, Jessie Shelton⁶, Brian Shuve^{7,8}

Elena Accomando⁹, Cristiano Alpigiani¹⁰, Stefan Antusch¹¹, Juan Carlos Arteaga-Velázquez¹², Brian Batell¹³, Martin Bauer¹⁴, Nikita Blinov⁸, Karen Salomé Caballero-Mora^{15,16}, Jae Hyeok Chang⁴, Eung Jin Chun¹⁷, Raymond T. Co¹⁸, Timothy Cohen¹⁹, Peter Cox²⁰, Nathaniel Craig²¹, Csaba Csáki²², Yanou Cui²³, Francesco D'Eramo²⁴, Luigi Delle Rose²⁵, P. S. Bhupal Dev²⁶, Keith R. Dienes^{27,5}, Jeff A. Dror^{28,29}, Rouven Essig⁴, Jared A. Evans^{30,6}, Jason L. Evans¹⁷, Arturo Fernández Tellez³¹, Oliver Fischer³², Thomas Flacke³³, Anthony Fradette³⁴, Claudia Frugiuele³⁵ Elina Fuchs³⁵, Tony Gherghetta³⁶, Gian F. Giudice³, Dmitry Gorbunov^{37,38}, Rick S. Gupta³⁹, Claudia Hagedorn⁴⁰, Lawrence J. Hall^{28,29}, Philip Harris⁴¹, Juan Carlos Helo^{42,43}, Martin Hirsch⁴⁴, Yonit Hochberg⁴⁵, Anson Hook⁵, Alejandro Ibarra^{46,17}, Seyda Ipek⁴⁷, Sunghoon Jung⁴⁸, Simon Knapen^{29,28}, Eric Kuflik⁴⁵, Zhen Liu⁴⁹, Salvator Lombardo²², H. J. Lubatti¹⁰, David McKeen⁵⁰, Emiliano Molinaro⁵¹, Stefano Moretti^{9,52}, Natsumi Nagata⁵³, Matthias Neubert^{54,22} Jose Miguel No^{55,56}, Emmanuel Olaiya⁵², Gilad Perez³⁵, Michael E. Peskin⁸, David Pinner^{57,58} Maxim Pospelov^{59,34}, Matthew Reece⁵⁷, Dean J. Robinson³⁰, Mario Rodríguez Cahuantzi³¹, Rinaldo Santonico⁶⁰, Matthias Schlaffer³⁵, Claire H. Shepherd-Themistocleous⁵², Andrew Spray³³ Daniel Stolarski⁶¹, Martin A. Subieta Vasquez^{62,63}, Raman Sundrum⁵, Andrea Thamm³, Brooks Thomas⁶⁴, Yuhsin Tsai⁵, Brock Tweedie¹³, Stephen M. West⁶⁵, Charles Young⁸, Felix Yu⁵⁴, Bryan Zaldivar^{55,66}, Yongchao Zhang^{26,67}, Kathryn Zurek^{29,28,3}, José Zurita^{32,68}.

¹ Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada ² Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain,

- Louvain-la-Neuve, B-1348, Belgium
- ³ CERN, TH Department, CH-1211 Geneva, Switzerland
- ⁴ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA Maryland Center for Fundamental P
- Park, MD 20742-4111 USA

^b Department of Physics, University

7 Harvey Mudd College, 301 Platt Blvd.

8 SLAC National Accelerator Laborato

Searches for long-lived particles at the LHC: Workshop of the LHC LLP Community

24–26 Apr 2017 CERN

> Following the success of the LHC Long-Lived Particle (LLP) Mini-Workshop in May of 2016, the LHC LLP Community - composed of members of the CMS, LHCb, and ATLAS collaborations as well as theorists, phenomenologists and those interested in LLP searches with auxiliary LHC detectors - convenes again o address the status and future of LLP searches at the LHC.

articipant Lis

This workshop will be one of two workshops devoted to producing an LHC LLP white paper that will be a snapshot of the status of LLP searches at the LHC as of 2017, organized by experimental signature; contain an enumeration of gaps in the coverage of classes of BSM models that can produce LLPs; propose recommendations for triggering strategies for LLPs in ATLAS, CMS, and LHCb; list ideas for new searches for LLPs; and propose a set of recommendations for the presentation of search results to ensure future reinterpretation and recasting.

EPJ manuscript No. (will be inserted by the editor)

Feebly-Interacting Particles: FIPs 2020 Workshop Report

P. Agrawal¹, M. Bauer², J. Beacham³, A. Berlin⁴, A. Boyarsky⁵, S. Cebrian⁶, X. Cid-Vidal⁷, D. d'Enterria⁸, A. De Roeck⁸, M. Drewe⁹, B. Echenard¹⁰, M. Giannotti¹¹, G. F. Giudice⁸, S. Gninenko¹², S. Gori¹³, E. Goudzovski¹⁴,
 J. Heeck¹⁵, P. Hernandez¹⁶, M. Hostert^{17,18}, I. G. Irastorza⁶, A. Izmaylov¹², J. Jacckel¹⁹, F. Kahlhoefer²⁰, S. Knapen⁸,
 G. Krnjaic²¹, G. Lanfranchi²², J. Monroe²³, V. I. Martinez Outschoorn²⁴, J. Lopez-Pavon¹⁶, S. Pascoli^{2,25},
 M. Pospelov¹⁷, D. Redigolo^{8,26}, A. Ringwald²⁷, O. Ruchayskiy²⁸, J. Ruderman^{4,27}, H. Russell⁸, J. Salfeld-Nebgen²⁹ P. Schuster³⁰, M. Shaposhnikov³¹, L. Shchutska³¹, J. Shelton³², Y. Soreq³³, Y. Stadnik³⁴, J. Swallow¹⁴, K. Tobioka^{35,36}, and Y.-D. Tsai^{24,3}

- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK Institute for Particle Physics Phenomenology, Department of Physics Durham University, Durham, UK Department of Physics, Duke University, Durham NC, USA
- Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, US
- Instituut-Lorentz for Theoretical Physics, UniversiteitLeiden, Leiden, The Netherlands Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza, Spain
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, US Physical Sciences, Barry University, Miami Shores, US
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, US School of Physics and Astronomy, University of Birmingham, B15 2TT, United Kingdom Department of Physics, University of Virginia, Charlottesville, Virginia, US
- Institut de Física Corpuscular CSIC/Universitat de València, València, Spain
- Perimeter Institute for Theoretical Physics, Waterloo, Canada Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Particle Physics and Cosmology, Aachen University, Aachen, Germany
- Royal Holloway, University of London, Egham Hill, United Kingdom
- University of Massachusetts, Amherst MA, US Dipartimento di Fisica e Astronomia, Universita' di Bologna, Bologna, Italy
- INFN, Sezione di Firenze and University of Florence, Sesto Fiorentino, Italy DESY, Deutsches Elektronen-Synchrotron (DESY) Hamburg, Germany
- Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark
- Department of Physics, Princeton University, Princeton, US SLAC National Accelerator Laboratory Menlo Park, US
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland University of Illinois, Urbana, US Physics Department, Technion, Institute of Technology, Haifa 3200003, Israel
- ³⁴ Kavli Institute for the Physics and Mathematics of the Universe (KIPMU), University of Tokyo, Japan Department of Physics, Florida State University, Tallahassee, US High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

¹⁷ Kavli Institute for Cosmological Physics, University of Chicago, Chicago, US

the date of receipt and acceptance should be inserted later

Abstract With the establishment and maturation of the experimental programs searching for new physical with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophy. community for exploring the physics of light and feebly-interacting particles as a paradigm complement to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedica to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2 The workshop has gathered together experts from collider, beam dump, fixed target experiments, as as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter d detection communities to discuss progress in experimental searches and underlying theory models for F physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complement y the topical workshop "Physics Beyond Colliders meets theory", held at CERN from 7 June to 9 Ju 2020. This document presents the summary of the talks presented at the workshops and the outcome of subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field a roposes a few recommendations for the next round of experimental results

Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, Santiago, Spain

Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, Louvain-la-Neuve, Belgium

School of Physics and Astronomy and William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, US

University of Chicago, Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics , Chicago, US Laboratori Nazionali di Frascati, INFN, Frascati (Rome), Italy

symmetry

Illustration by Sandbox Studio, Chicago with Ariel Davis

Long-lived particles get their moment

08/18/20 | By Sarah Charley

Scientists on experiments at the LHC are redesigning their methods and building supplemental detectors to look for new particles that might be evading them.

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

March 6, 2019

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments - as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEXb, and FASER — to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.

Editors:

CERN-TH-2018-142 CP3-Origins-2018-023 DNRF90 FERMILAB-PUB-18-264-7 IFT-UAM-CSIC-18-060 IPMU18-0109 KIAS-P18052 LCTP-18-1 TTP18-023 ULB-TH/18-09 UMD-PP-018-04

YITP-SB-18-10

Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case

David Curtin¹, Marco Drewes², Matthew McCullough³, Patrick Meade⁴, Rabindra N. Mohapatra⁵, Jessie Shelton⁶, Brian Shuve^{7,8}

Elena Accomando⁹, Cristiano Alpigiani¹⁰, Stefan Antusch¹¹, Juan Carlos Arteaga-Velázquez¹², Brian Batell¹³, Martin Bauer¹⁴, Nikita Blinov⁸, Karen Salomé Caballero-Mora^{15,16}, Jae Hyeok Chang⁴, Eung Jin Chun¹⁷, Raymond T. Co¹⁸, Timothy Cohen¹⁹, Peter Cox²⁰, Nathaniel Craig²¹, Csaba Csáki²², Yanou Cui²³, Francesco D'Eramo²⁴, Luigi Delle Rose²⁵, P. S. Bhupal Dev²⁶, Keith R. Dienes^{27,5}, Jeff A. Dror^{28,29}, Rouven Essig⁴, Jared A. Evans^{30,6}, Jason L. Evans¹⁷, Arturo Fernández Tellez³¹, Oliver Fischer³², Thomas Flacke³³, Anthony Fradette³⁴, Claudia Frugiuele³⁵ Elina Fuchs³⁵, Tony Gherghetta³⁶, Gian F. Giudice³, Dmitry Gorbunov^{37,38}, Rick S. Gupta³⁹, Claudia Hagedorn⁴⁰, Lawrence J. Hall^{28,29}, Philip Harris⁴¹, Juan Carlos Helo^{42,43}, Martin Hirsch⁴⁴, Yonit Hochberg⁴⁵, Anson Hook⁵, Alejandro Ibarra^{46,17}, Seyda Ipek⁴⁷, Sunghoon Jung⁴⁸, Simon Knapen^{29,28} Eric Kuflik⁴⁵, Then Liu⁴⁹, Salvator Lombardo²², H. I. Lubatti¹⁰, David McKeen⁵⁰, Emiliano Molinaro⁵¹, Stefano Moretti^{9,52}, Natsumi Nagata⁵³, Matthias Neubert^{54,22} Jose Miguel No^{55,56}, Emmanuel Olaiya⁵², Gilad Perez³⁵, Michael E. Peskin⁸, David Pinner^{57,58} Maxim Pospelov^{59,34}, Matthew Reece⁵⁷, Dean J. Robinson³⁰, Mario Rodríguez Cahuantzi³¹, Rinaldo Santonico⁶⁰, Matthias Schlaffer³⁵, Claire H. Shepherd-Themistocleous⁵², Andrew Spray³³ Daniel Stolarski⁶¹, Martin A. Subieta Vasquez^{62,63}, Raman Sundrum⁵, Andrea Thamm³, Brooks Thomas⁶⁴, Yuhsin Tsai⁵, Brock Tweedie¹³, Stephen M. West⁶⁵, Charles Young⁸, Felix Yu⁵⁴, Bryan Zaldivar^{55,66}, Yongchao Zhang^{26,67}, Kathryn Zurek^{29,28,3}, José Zurita^{32,68}.

¹ Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada ² Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain,

- Louvain-la-Neuve, B-1348, Belgiun
- ³ CERN, TH Department, CH-1211 Geneva, Switzerland ⁴ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA
- Maryland Center for Fundamental P
- Park, MD 20742-4111 USA
- ^b Department of Physics, University
- 7 Harvey Mudd College, 301 Platt Blvd. 8 SLAC National Accelerator Laborato

Searches for long-lived particles at the LHC: Workshop of the LHC LLP Community

24–26 Apr 2017 CERN

articipant Lis

Community - composed of members of the CMS, LHCb, and ATLAS collaborations as well as theorists, phenomenologists and those interested in LLP searches with auxiliary LHC detectors - convenes again o address the status and future of LLP searches at the LHC. This workshop will be one of two workshops devoted to producing an LHC LLP white paper that will be

Following the success of the LHC Long-Lived Particle (LLP) Mini-Workshop in May of 2016, the LHC LLP

a snapshot of the status of LLP searches at the LHC as of 2017, organized by experimental signature; contain an enumeration of gaps in the coverage of classes of BSM models that can produce LLPs; propose recommendations for triggering strategies for LLPs in ATLAS, CMS, and LHCb; list ideas for new searches for LLPs; and propose a set of recommendations for the presentation of search results to ensure future reinterpretation and recasting.

matches for "long-lived" in the indico agenda ICHEP 2012: 11 ICHEP 2022: 53

EPJ manuscript No. (will be inserted by the editor)

Feebly-Interacting Particles: FIPs 2020 Workshop Report

P. Agrawal¹, M. Bauer², J. Beacham³, A. Berlin⁴, A. Boyarsky⁵, S. Cebrian⁶, X. Cid-Vidal⁷, D. d'Enterria⁸, A. De Roeck⁸, M. Drewes⁹, B. Echenard¹⁰, M. Giannotti¹¹, G. F. Giudice⁸, S. Gninenko¹², S. Gori¹³, E. Goudzovski¹⁴,
 J. Heeck¹⁵, P. Hernandez¹⁶, M. Hostert^{17,18}, I. G. Irastorza⁶, A. Izmaylov¹², J. Jaecke¹⁹, F. Kahlhoefer²⁰, S. Knapen⁸,
 G. Krnjaic²¹, G. Lanfranchi²², J. Monroe²³, V. I. Martinez Outschoorn²⁴, J. Lopez-Pavon¹⁶, S. Pascoli^{2,25},
 M. Pospelov¹⁷, D. Redigolo^{8,26}, A. Ringwald²⁷, O. Ruchayskiy²⁸, J. Ruderman^{4,27}, H. Russell⁸, J. Salfeld-Nebgen²⁹, P. Schuster³⁰, M. Shaposhnikov³¹, L. Shchutska³¹, J. Shelton³², Y. Soreq³³, Y. Stadnik³⁴, J. Swallow¹⁴, K. Tobioka^{35,36}, and Y.-D. Tsai^{24,3}

- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK Institute for Particle Physics Phenomenology, Department of Physics Durham University, Durham, UK Department of Physics, Duke University, Durham NC, USA
- Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, US
- Instituut-Lorentz for Theoretical Physics, UniversiteitLeiden, Leiden, The Netherlands Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza, Spain
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, US Physical Sciences, Barry University, Miami Shores, US
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, US School of Physics and Astronomy, University of Birmingham, B15 2TT, United Kingdom Department of Physics, University of Virginia, Charlottesville, Virginia, US
- Institut de Física Corpuscular CSIC/Universitat de València, València, Spain
- Perimeter Institute for Theoretical Physics, Waterloo, Canada Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Particle Physics and Cosmology, Aachen University, Aachen, Germany
- Royal Holloway, University of London, Egham Hill, United Kingdom
- University of Massachusetts, Amherst MA, US Dipartimento di Fisica e Astronomia, Universita' di Bologna, Bologna, Italy
- INFN, Sezione di Firenze and University of Florence, Sesto Fiorentino, Italy
- DESY, Deutsches Elektronen-Synchrotron (DESY) Hamburg, Germany Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark
- Department of Physics, Princeton University, Princeton, US SLAC National Accelerator Laboratory Menlo Park, US
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland University of Illinois, Urbana, US
- Physics Department, Technion, Institute of Technology, Haifa 3200003, Israel ³⁴ Kavli Institute for the Physics and Mathematics of the Universe (KIPMU), University of Tokyo, Japan Department of Physics, Florida State University, Tallahassee, US High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- ¹⁷ Kavli Institute for Cosmological Physics, University of Chicago, Chicago, US

the date of receipt and acceptance should be inserted later

Abstract With the establishment and maturation of the experimental programs searching for new physical with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophy. community for exploring the physics of light and feebly-interacting particles as a paradigm complement to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedica to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2 The workshop has gathered together experts from collider, beam dump, fixed target experiments, as as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter d detection communities to discuss progress in experimental searches and underlying theory models for F physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complement y the topical workshop "Physics Beyond Colliders meets theory", held at CERN from 7 June to 9 Ju 2020. This document presents the summary of the talks presented at the workshops and the outcome of subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field a roposes a few recommendations for the next round of experimental results

Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, Santiago, Spain

Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, Louvain-la-Neuve, Belgium

School of Physics and Astronomy and William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, US

University of Chicago, Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics , Chicago, US Laboratori Nazionali di Frascati, INFN, Frascati (Rome), Italy

symmetry

Illustration by Sandbox Studio, Chicago with Ariel Davis

Long-lived particles get their moment

Scientists on experiments at the LHC are redesigning their methods and building supplemental detectors to look for new particles that might be evading them.

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

March 6, 2019

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments - as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEXb, and FASER — to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.

Editors:

CERN-TH-2018-142 CP3-Origins-2018-023 DNRF90 FERMILAB-PUB-18-264-7 IFT-UAM-CSIC-18-060 IPMU18-0109 KIAS-P18052 LCTP-18-1 TTP18-023 ULB-TH/18-09 UMD-PP-018-04

YITP-SB-18-10

Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case

David Curtin¹, Marco Drewes², Matthew McCullough³, Patrick Meade⁴, Rabindra N. Mohapatra⁵, Jessie Shelton⁶, Brian Shuve^{7,8}

Elena Accomando⁹, Cristiano Alpigiani¹⁰, Stefan Antusch¹¹, Juan Carlos Arteaga-Velázquez¹², Brian Batell¹³, Martin Bauer¹⁴, Nikita Blinov⁸, Karen Salomé Caballero-Mora^{15,16}, Jae Hyeok Chang⁴, Eung Jin Chun¹⁷, Raymond T. Co¹⁸, Timothy Cohen¹⁹, Peter Cox²⁰, Nathaniel Craig²¹, Csaba Csáki²², Yanou Cui²³, Francesco D'Eramo²⁴, Luigi Delle Rose²⁵, P. S. Bhupal Dev²⁶, Keith R. Dienes^{27,5}, Jeff A. Dror^{28,29}, Rouven Essig⁴, Jared A. Evans^{30,6}, Jason L. Evans¹⁷, Arturo Fernández Tellez³¹, Oliver Fischer³², Thomas Flacke³³, Anthony Fradette³⁴, Claudia Frugiuele³⁵ Elina Fuchs³⁵, Tony Gherghetta³⁶, Gian F. Giudice³, Dmitry Gorbunov^{37,38}, Rick S. Gupta³⁹, Claudia Hagedorn⁴⁰, Lawrence J. Hall^{28,29}, Philip Harris⁴¹, Juan Carlos Helo^{42,43}, Martin Hirsch⁴⁴, Yonit Hochberg⁴⁵, Anson Hook⁵, Alejandro Ibarra^{46,17}, Seyda Ipek⁴⁷, Sunghoon Jung⁴⁸, Simon Knapen^{29,28} Eric Kuflik⁴⁵, Then Liu⁴⁹, Salvator Lombardo²², H. I. Lubatti¹⁰, David McKeen⁵⁰, Emiliano Molinaro⁵¹, Stefano Moretti^{9,52}, Natsumi Nagata⁵³, Matthias Neubert^{54,22} Jose Miguel No^{55,56}, Emmanuel Olaiya⁵², Gilad Perez³⁵, Michael E. Peskin⁸, David Pinner^{57,58} Maxim Pospelov^{59,34}, Matthew Reece⁵⁷, Dean J. Robinson³⁰, Mario Rodríguez Cahuantzi³¹, Rinaldo Santonico⁶⁰, Matthias Schlaffer³⁵, Claire H. Shepherd-Themistocleous⁵², Andrew Spray³³ Daniel Stolarski⁶¹, Martin A. Subieta Vasquez^{62,63}, Raman Sundrum⁵, Andrea Thamm³, Brooks Thomas⁶⁴, Yuhsin Tsai⁵, Brock Tweedie¹³, Stephen M. West⁶⁵, Charles Young⁸, Felix Yu⁵⁴, Bryan Zaldivar^{55,66}, Yongchao Zhang^{26,67}, Kathryn Zurek^{29,28,3}, José Zurita^{32,68}.

¹ Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada ² Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain,

- Louvain-la-Neuve, B-1348, Belgiun
- ³ CERN, TH Department, CH-1211 Geneva, Switzerland ⁴ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA
- Maryland Center for Fundamental P
- Park, MD 20742-4111 USA
- ^b Department of Physics, University
- 7 Harvey Mudd College, 301 Platt Blvd. 8 SLAC National Accelerator Laborato

Searches for long-lived particles at the LHC: Workshop of the LHC LLP Community

24–26 Apr 2017 CERN

articipant Lis

Community - composed of members of the CMS, LHCb, and ATLAS collaborations as well as theorists, phenomenologists and those interested in LLP searches with auxiliary LHC detectors - convenes again address the status and future of LLP searches at the LHC. This workshop will be one of two workshops devoted to producing an LHC LLP white paper that will be

Following the success of the LHC Long-Lived Particle (LLP) Mini-Workshop in May of 2016, the LHC LLP

a snapshot of the status of LLP searches at the LHC as of 2017, organized by experimental signature; contain an enumeration of gaps in the coverage of classes of BSM models that can produce LLPs; propose recommendations for triggering strategies for LLPs in ATLAS, CMS, and LHCb; list ideas for new searches for LLPs; and propose a set of recommendations for the presentation of search results to ensure future reinterpretation and recasting.

matches for "long-lived" in the indico agenda ICHEP 2012: 11 ICHEP 2022: 53

EPJ manuscript No. (will be inserted by the editor

Feebly-Interacting Particles: FIPs 2020 Workshop Report

P. Agrawal¹, M. Bauer², J. Beacham³, A. Berlin⁴, A. Boyarsky⁵, S. Cebrian⁶, X. Cid-Vidal⁷, D. d'Enterria⁸, A. De Roeck⁸, M. Drewe⁹, B. Echenard¹⁰, M. Giannotti¹¹, G. F. Giudice⁸, S. Gninenko¹², S. Gori¹³, E. Goudzovski¹⁴, J. Heeck¹⁵, P. Hernandez¹⁶, M. Hostert^{17,18}, I. G. Irastorza⁶, A. Izmaylov¹², J. Jaccke¹⁹, F. Kahlhoefer²⁰, S. Knapen⁸, G. Krnjaic²¹, G. Lanfranchi²², J. Monroe²³, V. I. Martinez Outschoorn²⁴, J. Lopez-Pavon¹⁶, S. Pascoli^{2,25}, M. Pospelov¹⁷, D. Redigolo^{8,26}, A. Ringwald²⁷, O. Ruchayskiy²⁸, J. Ruderman^{4,27}, H. Russell⁸, J. Salfeld-Nebgen²⁹ P. Schuster³⁰, M. Shaposhnikov³¹, L. Shchutska³¹, J. Shelton³², Y. Soreq³³, Y. Stadnik³⁴, J. Swallow¹⁴, K. Tobioka^{35,36}, and Y.-D. Tsai^{24,3}

- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK Institute for Particle Physics Phenomenology, Department of Physics Durham University, Durham, UK Department of Physics, Duke University, Durham NC, USA
- Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, US
- Instituut-Lorentz for Theoretical Physics, UniversiteitLeiden, Leiden, The Netherlands Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza, Spain
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, US Physical Sciences, Barry University, Miami Shores, US
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, US School of Physics and Astronomy, University of Birmingham, B15 2TT, United Kingdom Department of Physics, University of Virginia, Charlottesville, Virginia, US
- Institut de Física Corpuscular CSIC/Universitat de València, València, Spain
- Perimeter Institute for Theoretical Physics, Waterloo, Canada Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Particle Physics and Cosmology, Aachen University, Aachen, Germany
- Royal Holloway, University of London, Egham Hill, United Kingdom
- University of Massachusetts, Amherst MA, US Dipartimento di Fisica e Astronomia, Universita' di Bologna, Bologna, Italy
- INFN, Sezione di Firenze and University of Florence, Sesto Fiorentino, Italy
- DESY, Deutsches Elektronen-Synchrotron (DESY) Hamburg, Germany Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark
- Department of Physics, Princeton University, Princeton, US SLAC National Accelerator Laboratory Menlo Park, US
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland University of Illinois, Urbana, US
- Physics Department, Technion, Institute of Technology, Haifa 3200003, Israel ³⁴ Kavli Institute for the Physics and Mathematics of the Universe (KIPMU), University of Tokyo, Japan Department of Physics, Florida State University, Tallahassee, US High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- ¹⁷ Kavli Institute for Cosmological Physics, University of Chicago, Chicago, US

the date of receipt and acceptance should be inserted later

Abstract With the establishment and maturation of the experimental programs searching for new physical with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophy. community for exploring the physics of light and feebly-interacting particles as a paradigm complement to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedica to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2 The workshop has gathered together experts from collider, beam dump, fixed target experiments, as as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter d detection communities to discuss progress in experimental searches and underlying theory models for F physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complement y the topical workshop "Physics Beyond Colliders meets theory", held at CERN from 7 June to 9 Ju 2020. This document presents the summary of the talks presented at the workshops and the outcome of subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field a roposes a few recommendations for the next round of experimental results

Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, Santiago, Spain

Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, Louvain-la-Neuve, Belgium

School of Physics and Astronomy and William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, US

University of Chicago, Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, Chicago, US Laboratori Nazionali di Frascati, INFN, Frascati (Rome), Italy

symmetry

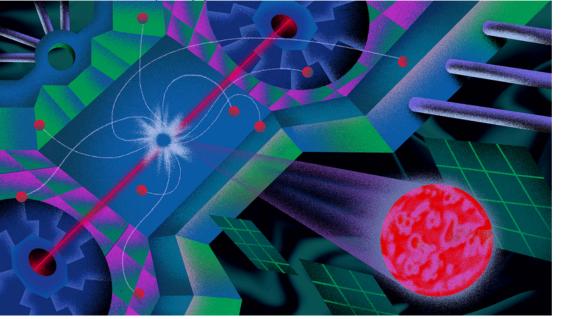
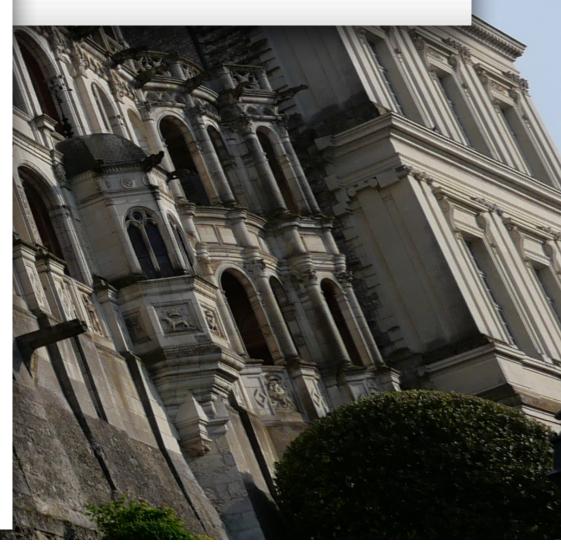


Illustration by Sandbox Studio, Chicago with Ariel Davis

Long-lived particles get their moment

Scientists on experiments at the LHC are redesigning their methods and building supplemental detectors to look for new particles that might be evading them.


Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

March 6, 2019

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments - as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEXb, and FASER — to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.

Editors:

Juliette Alimena⁽¹⁾ (Experimental Coverage, Backgrounds, Upgrades), James Beacham⁽²⁾ (Document Editor, Simplified Models), Martino Borsato⁽³⁾ (Backgrounds, Upgrades), Yangyang Cheng⁽⁴⁾ (Upgrades), Xabier Cid Vidal⁽⁵⁾ (Experimental Coverage), Giovanna Cottin⁽⁶⁾ (Simplified Models, Reinterpretations), Albert De Roeck⁽⁷⁾ (Experimental Coverage), Nishita Desai⁽⁸⁾ (Reinterpretations), David Curtin⁽⁹⁾ (Simplified Models), Jared A. Evans⁽¹⁰⁾ (Simplified Models, Experimental Coverage), Simon Knapen⁽¹¹⁾ (Dark Showers), Sabine Kraml⁽¹²⁾ (Reinterpretations), Andre Lessa⁽¹³⁾ (Reinterpretations), Zhen Liu⁽¹⁴⁾ (Simplified Models, Backgrounds, Reinterpretations), Sascha Mehlhase⁽¹⁵⁾ (Backgrounds), Michael J. Ramsey-Musolf^(16,126) (Simplified Models), Heather Russell⁽¹⁷⁾ (Experimental Coverage), Jessie Shelton⁽¹⁸⁾ (Simplified Models, Dark Showers), Brian Shuve^(19,20) (Document Editor, Simplified Models, Simplified Models Library), Monica Verducci⁽²¹⁾ (Upgrades), Jose Zurita^(22,23) (Experimental Coverage)

Though they never really died...

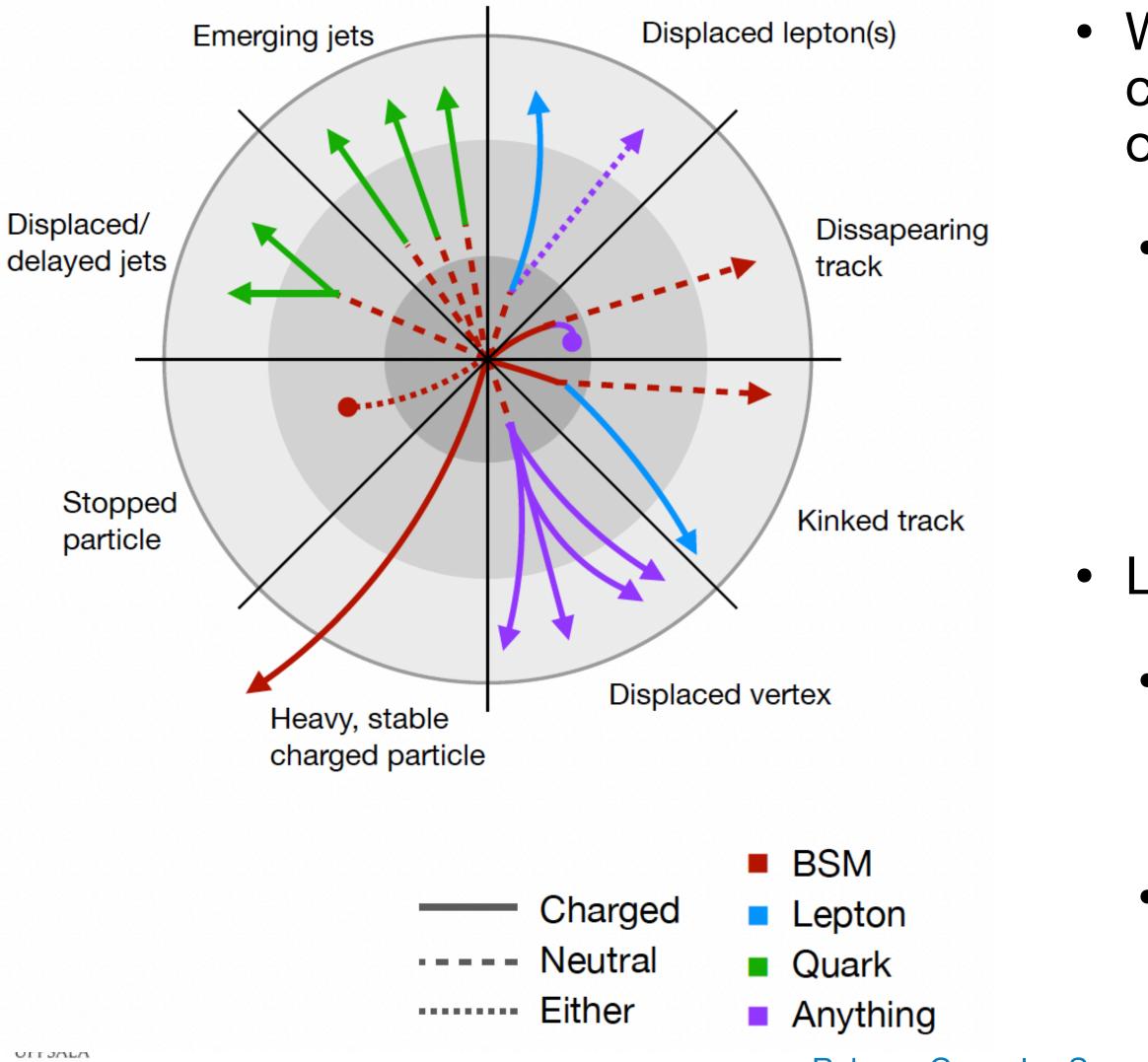
Why is this happening?

- There are a few reasons for why LLPs are so interesting nowadays:
 - Searches for LLPs cover intermediate areas where there is a gap of sensitivity between experiments (eg. dark matter searches between colliders and astro)
 - They can address the lack of prompt BSM signals \rightarrow providing accessible new areas where BSM could be hiding
 - LLP searches offer us the opportunity to think outside the box, to be creative and to propose new ways to solve problems
 - Innovation: in methods and experimental setups

At high collision energies (LHC)

We gain access to more massive particles that in turn tend to be shorter-lived

- And we naturally optimize our detectors, trigger, and reconstruction methods to find them
 - LLPs could be regularly produced in collisions and we wouldn't know it
- LLPs produce unconventional signatures in colliders
 - clearly different from other processes (easy to spot!), but potentially invisible to current data-acquisition methods \rightarrow we could be throwing them away



Non-standard experimental signatures

UNIVERSITET

 When produced in collisions at the LHC, LLPs can either completely pass through the detectors before decaying or decay inside them in unconventional signatures:

- displaced and/or delayed objects (leptons, photons, jets); disappearing tracks; nonstandard tracks produced by monopoles, quirks or heavy stable charged particles (HSCPs); nonstandard jets produced in dark showers...
- LLP analyses at the LHC IP experiments:
 - require customisation: dedicated triggers, object reconstruction, background estimation and in general analysis methods
 - are affected by challenging backgrounds near the collision points \rightarrow motivate dedicated experiments

8

LLPs, shopping list

- Implementing custom detectors, triggers and methods for LLPs pays off

 - Signature-driven searches
 - What do we need?
 - **Dedicated** triggers

 - Image: Particle reconstruction capabilities for displaced objects

 - Shielding: for background mitigation

• If any of those experimental signatures is observed \rightarrow smoking gun for new physics

If Hermetic detectors, large active volumes, to maximise geometric acceptance

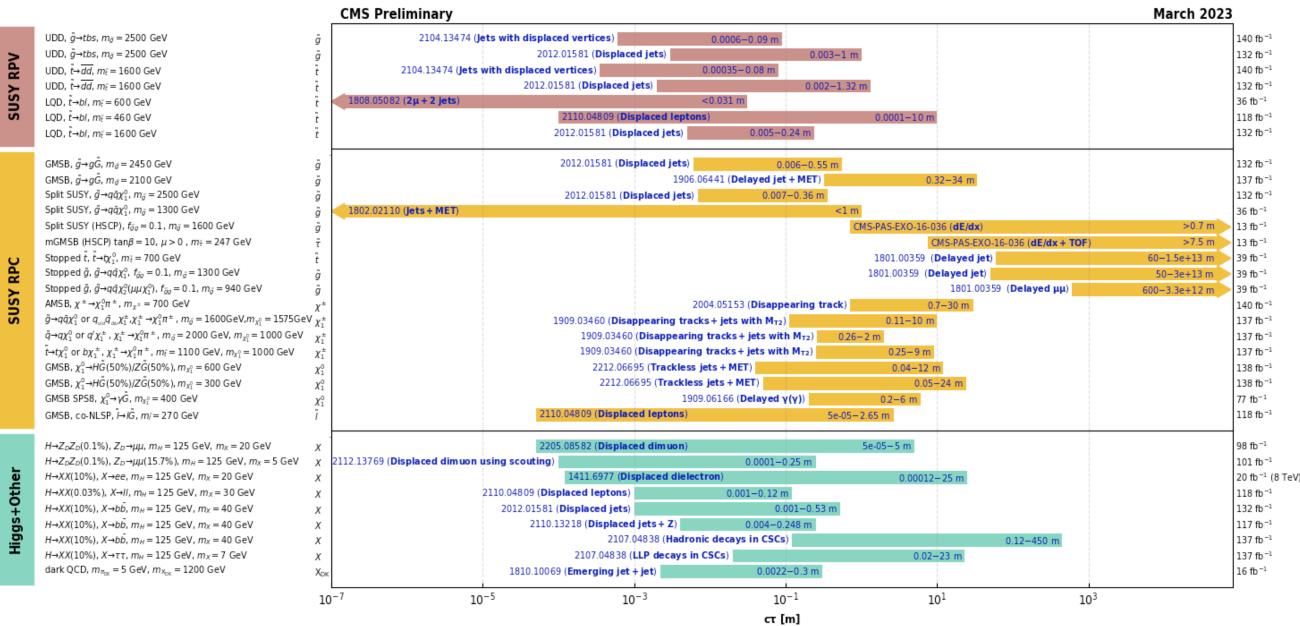
If High granularity at large radii for reconstruction efficiency of displaced tracks/vertices

Particle ID capabilities: dE/dx, time-of-flight, good vertex & timing resolution

What do we have?

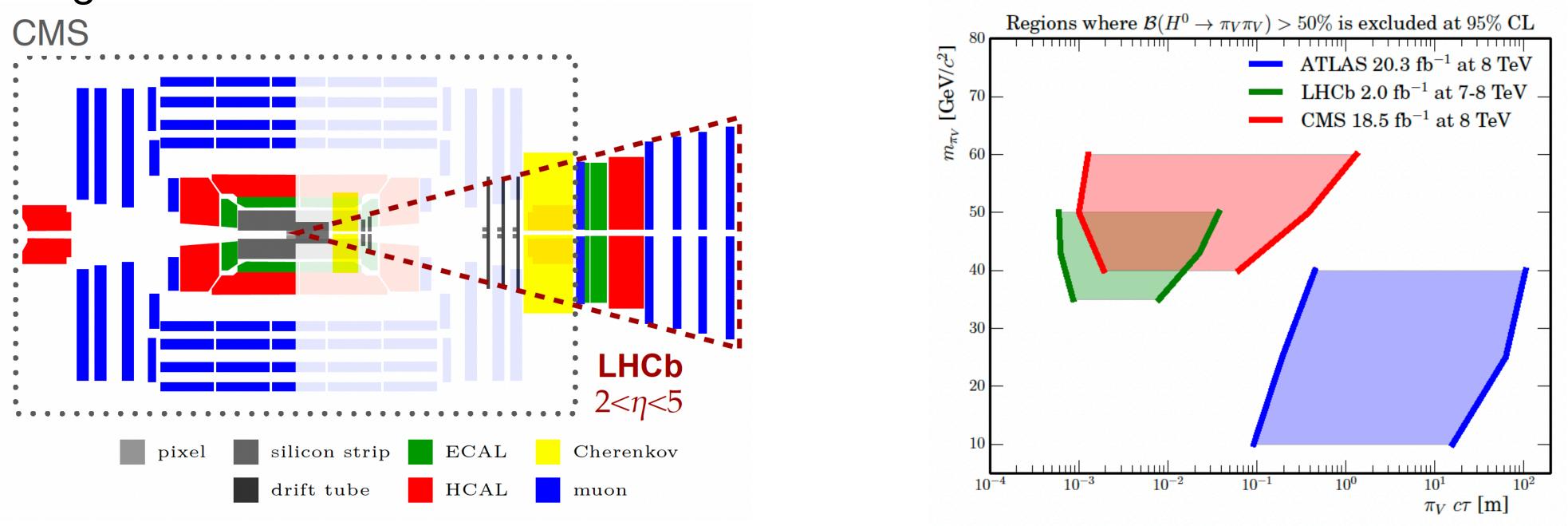
LLPs at the LHC

ATLAS and CMS


- Vibrant scene of long-lived searches in the exotics and SUSY groups
- Dedicated talk "Status of searches in the long-lived particles and dark sectors" by Marianna Liberatore on Tuesday [link]
- CMS results on Thursday by Soham Bhattacharya [link]

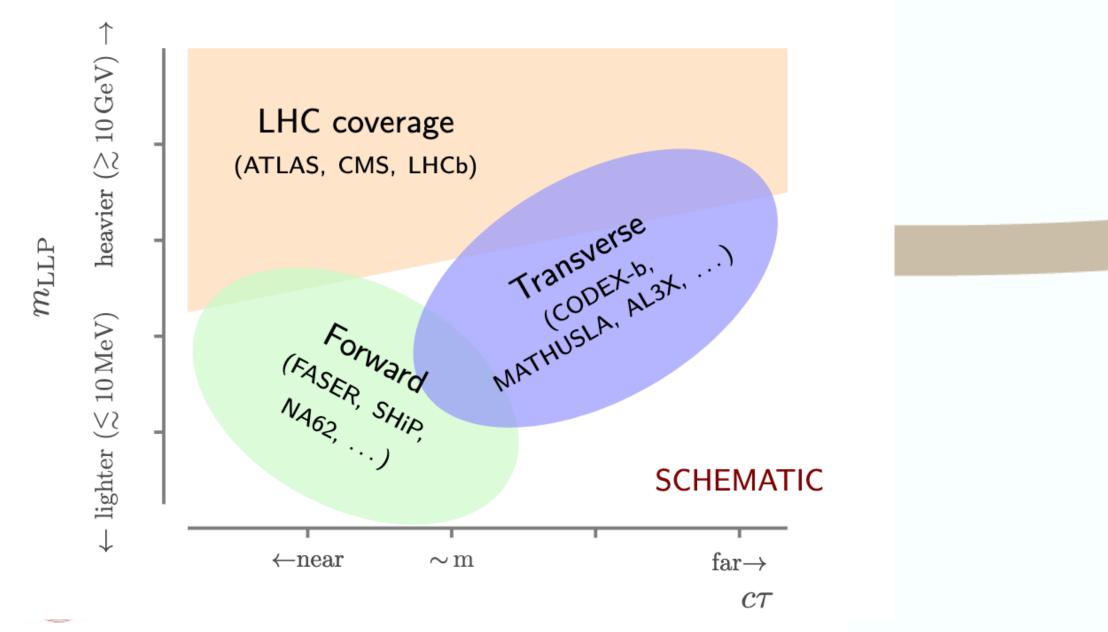
ModelRPV $\tilde{t} \rightarrow \mu q$ RPV $\tilde{\chi}_1^0 \rightarrow eev/e\mu q$ GGM $\tilde{\chi}_1^0 \rightarrow Z \tilde{G}$ GMSBGMSB $\tilde{t} \rightarrow t \tilde{G}$ GMSB $\tilde{t} \rightarrow t \tilde{G}$ GMSB $\tilde{t} \rightarrow t \tilde{G}$ AMSB $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^0$,AMSB $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^0$,Stealth SUSYSplit SUSYSplit SUSYSplit SUSYSPIT SUSYFRVZ $H \rightarrow ss$ $H \rightarrow ss$ $H \rightarrow ss$ $H \rightarrow z_d Z_d$ $H \rightarrow ZZ_d$ $\Phi(200 \text{ GeV}) \rightarrow ss$ $\Phi(600 \text{ GeV}) \rightarrow ss$	displaced vtx + muon 134 displaced vtx + muon 134 displaced lepton pair 32.4 displaced lepton pair 32.4 non-pointing or delayed γ 139 displaced lepton 139 $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ disappearing track 134 $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ large pixel dE/dx 139 2 MS vertices 36. large pixel dE/dx 139 displaced vtx + E_T^{miss} 32.4 0 ℓ , 2 - 6 jets + E_T^{miss} 36. 2 MS vertices 139 2 low-EMF trackless jets 139 2 low-EMF trackless jets 139 2 $\ell + 2$ displ. vertices 139 X 2 μ -jets 139	2.8 $\tilde{\chi}_{1}^{0}$ lifetime2.9 $\tilde{\chi}_{1}^{0}$ lifetime39 $\tilde{\chi}_{1}^{0}$ lifetime39 $\tilde{\ell}$ lifetime39 $\tilde{\ell}$ lifetime39 $\tilde{\ell}$ lifetime39 $\tilde{\chi}_{1}^{\pm}$ lifetime39 $\tilde{\chi}_{1}^{\pm}$ lifetime39 \tilde{g} lifetime	Lifetime limit	0.003-6.0 m 0.003-1.0 m 0.029-1 0.029-1 0.024-2.4 m 6-750 mm 9-270 mm 0.06-3.06 m 0.06-3.06 m 0.03-30.0 m 0.1-519 m 0.03-30.0 m 0.03-13.2 0.0	$\begin{split} m(\tilde{t}) &= 1.4 \text{ TeV} \\ m(\tilde{q}) &= 1.6 \text{ TeV}, \ m(\tilde{\chi}_1^0) &= 1.3 \text{ TeV} \\ \end{split} \\ \begin{array}{l} \textbf{8.0 m} \\ m(\tilde{g}) &= 1.1 \text{ TeV}, \ m(\tilde{\chi}_1^0) &= 1.0 \text{ TeV} \\ m(\tilde{\chi}_1^0, \tilde{G}) &= 60, 20 \text{ GeV}, \ \mathcal{B}_{\mathcal{H}} &= 2\% \\ m(\tilde{t}) &= 600 \text{ GeV} \\ m(\tilde{t}) &= 200 \text{ GeV} \\ m(\tilde{\chi}_1^{\pm}) &= 650 \text{ GeV} \\ m(\tilde{\chi}_1^{\pm}) &= 650 \text{ GeV} \\ \end{array} \\ \begin{array}{l} \textbf{g}(\tilde{g} \to \tilde{g}g) &= 0.1, \ m(\tilde{g}) &= 500 \text{ GeV} \\ m(\tilde{g}) &= 1.8 \text{ TeV}, \ m(\tilde{\chi}_1^0) &= 100 \text{ GeV} \\ \end{split} \end{split}$	Reference 2003.11956 1907.10037 1808.03057 CERN-EP-2022-096 2011.07812 2011.07812 2201.02472 2205.06013 1811.07370 2205.06013 1710.04901 ATLAS-CONF-2018-0 2203.00587 2203.01009 2107.06092
$\begin{aligned} & RPV\tilde{\chi}_1^0 \to eev/e\mun\\ & GGM\tilde{\chi}_1^0 \to Z\tilde{G}\\ & GMSB\\ & GMSB\tilde{\ell} \to \ell\tilde{G}\\ & GMSB\tilde{\ell} \to \ell\tilde{G}\\ & GMSB\tilde{\tau} \to \tau\tilde{G}\\ & AMSBpp \to \tilde{\chi}_1^\pm\tilde{\chi}_1^0,\\ & AMSBpp \to \tilde{\chi}_1^\pm\tilde{\chi}_1^0,\\ & AMSBpp \to \tilde{\chi}_1^\pm\tilde{\chi}_1^0,\\ & SplitSUSY\\ & SplitSUSY\\ & SplitSUSY\\ & SplitSUSY\\ & SplitSUSY\\ & FRVZH \to ss\\ & H \to ss\\ & H \to ss\\ & H \to ss\\ & H \to ss\\ & FRVZH \to 4\gamma_d + \mathcal{H}\\ & H \to Z_d Z_d\\ & H \to ZZ_d \end{aligned}$	$\begin{aligned} & \chi_1^{\prime} \mu \mu \nu & \text{displaced lepton pair} & 32.4 \\ & \text{displaced dimuon} & 32.4 \\ & \text{non-pointing or delayed } \gamma & 133 \\ & \text{displaced lepton} & 133 \\ & \chi_1^+ \tilde{\chi}_1^- & \text{disappearing track} & 134 \\ & \tilde{\chi}_1^+ \tilde{\chi}_1^- & \text{large pixel dE/dx} & 133 \\ & 2 \text{ MS vertices} & 36. \\ & \text{large pixel dE/dx} & 133 \\ & \text{displaced vtx} + E_{\text{T}}^{\text{miss}} & 32.4 \\ & 0 \ \ell, 2 - 6 \ \text{jets} + E_{\text{T}}^{\text{miss}} & 36. \\ \hline & 2 \text{ MS vertices} & 133 \\ & 2 \text{ MS vertices} & 133 \\ & 2 \text{ low-EMF trackless jets} & 133 \\ & 2 \text{ low-EMF trackless jets} & 133 \\ & \lambda & 2 \ \mu - \text{jets} & 133 \\ \hline \end{aligned}$	2.8 $\tilde{\chi}_1^0$ lifetime 2.9 $\tilde{\chi}_1^0$ lifetime 39 $\tilde{\chi}_1^0$ lifetime 39 $\tilde{\ell}$ lifetime 39 $\tilde{\chi}_1^{\pm}$ lifetime 39 \tilde{g} lifetime 39 \tilde{g} lifetime 39 s lifetime	4-85 m	0.003-1.0 m 0.029-1 0.024-2.4 m 6-750 mm 9-270 mm 0.06-3.06 m 0.1-519 m 0.1-519 m 0.1-519 m 0.03-30.0 m 0.1-519 m 0.03-30.0 m 0.1-519 m 0.03-13.2 0.03-13.2	$m(\tilde{q}) = 1.6 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 1.3 \text{ TeV}$ $m(\tilde{g}) = 1.1 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 1.0 \text{ TeV}$ $m(\tilde{\chi}_{1}^{0}, \tilde{G}) = 60, 20 \text{ GeV}, \mathcal{B}_{\mathcal{H}} = 2\%$ $m(\tilde{\ell}) = 600 \text{ GeV}$ $m(\tilde{\ell}) = 200 \text{ GeV}$ $m(\tilde{\chi}_{1}^{+}) = 650 \text{ GeV}$ $m(\tilde{\chi}_{1}^{+}) = 650 \text{ GeV}$ $m(\tilde{\chi}_{1}^{+}) = 600 \text{ GeV}$ $g(\tilde{g} \to \tilde{S}g) = 0.1, m(\tilde{g}) = 500 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 35 \text{ GeV}$ $m(s) = 35 \text{ GeV}$	1907.10037 1808.03057 CERN-EP-2022-096 2011.07812 2011.07812 2201.02472 2205.06013 1811.07370 2205.06013 1710.04901 ATLAS-CONF-2018-1 2203.00587 2203.01009
$\begin{array}{c} \operatorname{GGM} \tilde{\chi}_{1}^{0} \rightarrow Z \tilde{G} \\ \operatorname{GMSB} \\ \operatorname{GMSB} \\ \operatorname{GMSB} \tilde{\ell} \rightarrow \ell \tilde{G} \\ \operatorname{GMSB} \tilde{\tau} \rightarrow \tau \tilde{G} \\ \operatorname{AMSB} pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0}, \\ \operatorname{AMSB} pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0}, \\ \operatorname{Stealth} \operatorname{SUSY} \\ \operatorname{Split} \operatorname{SUSY} \\ \operatorname{Split} \operatorname{SUSY} \\ \operatorname{Split} \operatorname{SUSY} \\ \operatorname{Split} \operatorname{SUSY} \\ H \rightarrow s s \\ H \rightarrow s s \\ H \rightarrow s s \\ \operatorname{FRVZ} H \rightarrow 2 \gamma_{d} + 1 \\ \operatorname{FRVZ} H \rightarrow 4 \gamma_{d} + 1 \\ H \rightarrow Z_{d} Z_{d} \\ H \rightarrow ZZ_{d} \\ \end{array}$	$\begin{array}{ccc} \text{displaced dimuon} & 32.4\\ \text{non-pointing or delayed } \gamma & 133\\ \text{displaced lepton} & 133\\ \text{displaced lepton} & 133\\ \text{displaced lepton} & 134\\ \text{displaced lepton} & 134\\ \text{X}_1^+ \widetilde{X}_1^- & \text{disappearing track} & 134\\ 2 \text{ MS vertices} & 36.\\ \text{large pixel dE/dx} & 133\\ \text{displaced vtx} + E_{\mathrm{T}}^{\mathrm{miss}} & 32.4\\ 0 \ \ell, 2 - 6 \ \mathrm{jets} + E_{\mathrm{T}}^{\mathrm{miss}} & 32.4\\ 0 \ \ell, 2 - 6 \ \mathrm{jets} + E_{\mathrm{T}}^{\mathrm{miss}} & 36.\\ 133\\ 2 \ \mathrm{Iow-EMF} \ \mathrm{trackless \ jets} & 133\\ 2 \ \mathrm{low-EMF} \ \mathrm{trackless \ jets} & 133\\ 2 \ \mathrm{low-EMF} \ \mathrm{trackless \ jets} & 133\\ 2 \ \mathrm{low-EMF} \ \mathrm{trackless \ jets} & 133\\ 2 \ \mathrm{low-EMF} \ \mathrm{trackless \ jets} & 133\\ 2 \ \mathrm{low-EMF} \ \mathrm{trackless \ jets} & 133\\ 2 \ \mathrm{low-EMF} \ \mathrm{trackless \ jets} & 133\\ 3 \ \mathrm{displaced} \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 133\\ 3 \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 133\\ 3 \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 133\\ 3 \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 133\\ 3 \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 133\\ 3 \ \mathrm{deltal \ Lepton} & 21 \ \mathrm{deltal \ Lepton} & 33 \ deltal \ Le$	2.9 $\tilde{\chi}_{1}^{0}$ lifetime 39 $\tilde{\chi}_{1}^{0}$ lifetime 39 $\tilde{\ell}$ lifetime 39 $\tilde{\ell}$ lifetime 39 $\tilde{\tau}$ lifetime 36 $\tilde{\chi}_{1}^{\pm}$ lifetime 37 $\tilde{\tau}^{\pm}$ lifetime 38 $\tilde{\chi}_{1}^{\pm}$ lifetime 39 \tilde{g} lifetime	4-85 m	0.029-1 0.24-2.4 m 6-750 mm 9-270 mm 0.06-3.06 m 0.06-3.06 m 0.1-519 m 0.1-519 m 0.03-13.2	18.0 m $m(\tilde{g}) = 1.1 \text{ TeV}, m(\tilde{\chi}_1^0) = 1.0 \text{ TeV}$ $m(\tilde{\chi}_1^0, \tilde{G}) = 60, 20 \text{ GeV}, \mathcal{B}_{H} = 2\%$ $m(\tilde{\ell}) = 600 \text{ GeV}$ $m(\tilde{\ell}) = 200 \text{ GeV}$ $m(\tilde{\chi}_1^{\pm}) = 650 \text{ GeV}$ $m(\tilde{\chi}_1^{\pm}) = 650 \text{ GeV}$ $m(\tilde{\chi}_1^{\pm}) = 600 \text{ GeV}$ $\mathcal{B}(\tilde{g} \to \tilde{S}g) = 0.1, m(\tilde{g}) = 500 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 35 \text{ GeV}$ m(s) = 35 GeV	1808.03057 CERN-EP-2022-094 2011.07812 2011.07812 2201.02472 2205.06013 1811.07370 2205.06013 1710.04901 ATLAS-CONF-2018- 2203.00587 2203.01009
GMSB GMSB $\tilde{\ell} \rightarrow \ell \tilde{G}$ GMSB $\tilde{\tau} \rightarrow \tau \tilde{G}$ AMSB $pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0}$, AMSB $pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0}$, Stealth SUSY Split SUSY Split SUSY Split SUSY $H \rightarrow ss$ $H \rightarrow ss$ $H \rightarrow ss$ VH with $H \rightarrow ss \rightarrow ss$ VH with $H \rightarrow ss \rightarrow ss$ $FRVZ H \rightarrow 2\gamma_{d} + ss$ $H \rightarrow Z_{d}Z_{d}$ $H \rightarrow ZZ_{d}$ $\Phi(200 \text{ GeV}) \rightarrow ss$	non-pointing or delayed γ 133 displaced lepton 133 $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ disappearing track 134 $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ large pixel dE/dx 133 2 MS vertices 36. large pixel dE/dx 133 displaced vtx + E_T^{miss} 32. 0 ℓ , 2 - 6 jets + E_T^{miss} 36. 2 MS vertices 133 2 low-EMF trackless jets 133 2 low-EMF trackless jets 133 2 low-EMF trackless jets 133 2 ℓ 2 μ -jets 133	39 $\tilde{\chi}_1^0$ lifetime 39 $\tilde{\ell}$ lifetime 39 $\tilde{\ell}$ lifetime 39 $\tilde{\ell}$ lifetime 39 $\tilde{\chi}_1^\pm$ lifetime 39 $\tilde{\chi}_1^\pm$ lifetime 39 \tilde{g} lifetime	4-85 m	0.24-2.4 m 6-750 mm 9-270 mm 0.06-3.06 m 0.3-30.0 m 0.1-519 m 0.1-519 m 0.03-13.2 0.03-13.2 0.03-13.2 0.03-13.2 0.03-13.2 0.03-13.2	$m(\tilde{\chi}_{1}^{0}, \tilde{G}) = 60, 20 \text{ GeV}, \mathcal{B}_{\mathcal{H}} = 2\%$ $m(\tilde{\ell}) = 600 \text{ GeV}$ $m(\tilde{\ell}) = 200 \text{ GeV}$ $m(\tilde{\chi}_{1}^{*}) = 650 \text{ GeV}$ $m(\tilde{\chi}_{1}^{*}) = 600 \text{ GeV}$ $\mathcal{B}(\tilde{g} \to \tilde{S}g) = 0.1, m(\tilde{g}) = 500 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $m(\tilde{g}) = 35 \text{ GeV}$ $m(s) = 35 \text{ GeV}$	CERN-EP-2022-094 2011.07812 2201.02472 2205.06013 1811.07370 2205.06013 1710.04901 ATLAS-CONF-2018- 2203.00587 2203.01009
GMSB $\tilde{\ell} \rightarrow \ell \tilde{G}$ GMSB $\tilde{\tau} \rightarrow \tau \tilde{G}$ AMSB $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^0$, AMSB $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^0$, Stealth SUSY Split SUSY Split SUSY $H \rightarrow ss$ $H \rightarrow ss$ $H \rightarrow ss$ VH with $H \rightarrow ss \rightarrow$ FRVZ $H \rightarrow 2\gamma_d + 3$ $FRVZ H \rightarrow 4\gamma_d + 3$ $H \rightarrow Z_d Z_d$ $H \rightarrow ZZ_d$	displaced lepton 133 displaced lepton 133 $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ disappearing track 134 $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ large pixel dE/dx 133 2 MS vertices 36. large pixel dE/dx 133 displaced vtx + E_T^{miss} 32.4 0 ℓ , 2 - 6 jets + E_T^{miss} 36. 2 MS vertices 133 2 low-EMF trackless jets 133 2 low-EMF trackless jets 133 3 displaced vtx + 2 displ. vertices 133 3 displaced vtx + 2 displaced vtx	39 $\tilde{\ell}$ lifetime 39 $\tilde{\tau}$ lifetime 39 $\tilde{\tau}$ lifetime 36 $\tilde{\chi}_1^{\pm}$ lifetime 37 $\tilde{\kappa}_1^{\pm}$ lifetime 38 $\tilde{\chi}_1^{\pm}$ lifetime 39 \tilde{g} lifetime 39 \tilde{g} lifetime 39 s lifetime	4-85 m	6-750 mm 9-270 mm 0.06-3.06 m 0.1-519 m 0.1-519 m 0.03-13.2 0.03-13.2 0.03-13.2 0.03-13.2 0.03-13.2	$\begin{split} m(\tilde{\ell}) &= 600 \text{ GeV} \\ m(\tilde{\ell}) &= 200 \text{ GeV} \\ m(\tilde{\chi}_1^*) &= 650 \text{ GeV} \\ m(\tilde{\chi}_1^*) &= 650 \text{ GeV} \\ \hline m(\tilde{\chi}_1^*) &= 600 \text{ GeV} \\ \hline \mathcal{B}(\tilde{g} \to \tilde{S}g) &= 0.1, \ m(\tilde{g}) &= 500 \text{ GeV} \\ \hline m(\tilde{g}) &= 1.8 \text{ TeV}, \ m(\tilde{\chi}_1^0) &= 100 \text{ GeV} \\ \hline m(\tilde{g}) &= 1.8 \text{ TeV}, \ m(\tilde{\chi}_1^0) &= 100 \text{ GeV} \\ \hline m(\tilde{g}) &= 1.8 \text{ TeV}, \ m(\tilde{\chi}_1^0) &= 100 \text{ GeV} \\ \hline m(\tilde{g}) &= 1.8 \text{ TeV}, \ m(\tilde{\chi}_1^0) &= 100 \text{ GeV} \\ \hline m(\tilde{g}) &= 35 \text{ GeV} \\ \hline m(s) &= 35 \text{ GeV} \\ \end{split}$	2011.07812 2011.07812 2201.02472 2205.06013 1811.07370 2205.06013 1710.04901 ATLAS-CONF-2018- 2203.00587 2203.01009
GMSB $\tilde{\tau} \to \tau \tilde{G}$ AMSB $p \to \tilde{\chi}_1^+ \tilde{\chi}_1^0$, AMSB $pp \to \tilde{\chi}_1^+ \tilde{\chi}_1^0$, Stealth SUSY Split SUSY Split SUSY Split SUSY $H \to s s$ $H \to s s$ VH with $H \to s s \to$ FRVZ $H \to 2\gamma d + z$ $FRVZ H \to 4\gamma d + z$ $H \to Z d$ $\Phi(200 \text{ GeV}) \to s s$	$\begin{array}{ccc} \text{displaced lepton} & 133\\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} & \text{disappearing track} & 134\\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} & \text{large pixel dE/dx} & 133\\ & 2 \text{ MS vertices} & 36.\\ & \text{large pixel dE/dx} & 133\\ & \text{displaced vtx} + E_{T}^{\text{miss}} & 32.\\ & 0 \ \ell, 2 - 6 \ \text{jets} + E_{T}^{\text{miss}} & 36.\\ \hline & 2 \text{ MS vertices} & 133\\ & 2 \text{ MS vertices} & 133\\ & 2 \text{ low-EMF trackless jets} & 133\\ & 2 \ \text{low-EMF trackless jets} & 133\\ & 2 \ \text{MS vertices} & 133\\ & 2 \ \text{Low-EMF trackless jets} & 133\\ & 2 \ \mu - \text{jets} & 133\\ \end{array}$	39 $\tilde{\tau}$ lifetime 36 $\tilde{\chi}_1^{\pm}$ lifetime 39 $\tilde{\chi}_1^{\pm}$ lifetime 39 $\tilde{\chi}_1^{\pm}$ lifetime 39 \tilde{g} lifetime 39 \tilde{g} lifetime 39 s lifetime	4-85 m	9-270 mm 0.06-3.06 m 0.3-30.0 m 0.1-519 m > 0.45 m 0.03-13.2 0.0-2.1 m 0.19-6.94 m m	$\begin{split} m(\tilde{t}) &= 200 \text{ GeV} \\ m(\tilde{\chi}_1^{\pm}) &= 650 \text{ GeV} \\ m(\tilde{\chi}_1^{\pm}) &= 650 \text{ GeV} \\ \hline m(\tilde{\chi}_1^{\pm}) &= 600 \text{ GeV} \\ \hline \mathcal{B}(\tilde{g} \to \tilde{S}g) &= 0.1, m(\tilde{g}) &= 500 \text{ GeV} \\ \hline m(\tilde{g}) &= 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) &= 100 \text{ GeV} \\ \hline m(\tilde{g}) &= 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) &= 100 \text{ GeV} \\ \hline m(\tilde{g}) &= 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) &= 100 \text{ GeV} \\ \hline m(\tilde{g}) &= 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) &= 100 \text{ GeV} \\ \hline m(s) &= 35 \text{ GeV} \\ \hline m(s) &= 35 \text{ GeV} \\ \end{split}$	2011.07812 2201.02472 2205.06013 1811.07370 2205.06013 1710.04901 ATLAS-CONF-2018 2203.00587 2203.01009
AMSB $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^0$, AMSB $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^0$, Stealth SUSY Split SUSY Split SUSY Split SUSY $H \rightarrow ss$ $H \rightarrow ss$ VH with $H \rightarrow ss \rightarrow$ FRVZ $H \rightarrow 2\gamma_d + 3$ $FRVZ H \rightarrow 4\gamma_d + 3$ $H \rightarrow Z_d Z_d$ $H \rightarrow ZZ_d$	$\begin{array}{cccc} \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} & \text{disappearing track} & 134\\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} & \text{large pixel dE/dx} & 133\\ & 2 \text{ MS vertices} & 36.\\ & \text{large pixel dE/dx} & 133\\ & \text{displaced vtx} + E_{\mathrm{T}}^{\mathrm{miss}} & 32.4\\ & 0 \ \ell, 2 - 6 \ \mathrm{jets} + E_{\mathrm{T}}^{\mathrm{miss}} & 36.\\ \hline & 2 \ \mathrm{MS \ vertices} & 133\\ & 2 \ \mathrm{low}\text{-EMF \ trackless \ jets} & 133\\ & 2 \ \mathrm{low}\text{-EMF \ trackless \ jets} & 133\\ & 2 \ \mathrm{low}\text{-EMF \ trackless \ jets} & 133\\ & 2 \ \mathrm{MS \ vertices} & 133\\ & 3 \ \mathrm$	36 $\tilde{\chi}_1^{\pm}$ lifetime 39 $\tilde{\chi}_1^{\pm}$ lifetime 39 $\tilde{\chi}_1^{\pm}$ lifetime 39 \tilde{g} lifetime 39 \tilde{g} lifetime 39 s lifetime	4-85 m	0.06-3.06 m 0.1-519 m 0.1-519 m 0.03-13.2 0.03-13.2 0.0-2.1 m 0.19-6.94 m	$\begin{split} m(\tilde{\chi}_{1}^{+}) &= 650 \text{ GeV} \\ m(\tilde{\chi}_{1}^{+}) &= 600 \text{ GeV} \\ \mathcal{B}(\tilde{g} \to \tilde{S}g) &= 0.1, \ m(\tilde{g}) &= 500 \text{ GeV} \\ m(\tilde{g}) &= 1.8 \text{ TeV}, \ m(\tilde{\chi}_{1}^{0}) &= 100 \text{ GeV} \\ 2 \text{ m} \qquad m(\tilde{g}) &= 1.8 \text{ TeV}, \ m(\tilde{\chi}_{1}^{0}) &= 100 \text{ GeV} \\ m(\tilde{g}) &= 1.8 \text{ TeV}, \ m(\tilde{\chi}_{1}^{0}) &= 100 \text{ GeV} \\ m(\tilde{g}) &= 35 \text{ GeV} \\ m(s) &= 35 \text{ GeV} \end{split}$	2205.06013 1811.07370 2205.06013 1710.04901 ATLAS-CONF-2018 2203.00587 2203.01009
AMSB $pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0}$, Stealth SUSY Split SUSY Split SUSY Split SUSY $H \rightarrow s s$ $H \rightarrow s s$ VH with $H \rightarrow s s \rightarrow$ $FRVZ H \rightarrow 2\gamma_{d} +$ $FRVZ H \rightarrow 4\gamma_{d} +$ $H \rightarrow ZZ_{d}$ $\Phi(200 \text{ GeV}) \rightarrow s s$	$ \begin{split} \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} & \text{large pixel dE/dx} & 133 \\ 2 \text{ MS vertices} & 36. \\ \text{large pixel dE/dx} & 133 \\ \text{displaced vtx} + E_{T}^{\text{miss}} & 32. \\ 0 \ \ell, 2 - 6 \text{ jets} + E_{T}^{\text{miss}} & 36. \\ \hline & 2 \text{ MS vertices} & 133 \\ 2 \text{ low-EMF trackless jets} & 133 \\ 3 \text{ lobbbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 3 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ displ. vertices} & 133 \\ 4 \text{ lobbb} & 2\ell + 2 \text{ lobb} & 2\ell + 2 \text{ lobbb} & 2$	39 $\tilde{\chi}_1^{\pm}$ lifetime 3.1 \tilde{S} lifetime 39 \tilde{g} lifetime 39 \tilde{g} lifetime 39 s lifetime 39 s lifetime 39 s lifetime 39 s lifetime	4-85 m	0.1-519 m > 0.45 m 0.03-13.2 0.0-2.1 m 0.31-72.4 m 0.19-6.94 m	$\mathcal{B}(\tilde{g} \to \tilde{S}_{\tilde{g}}) = 0.1, \ m(\tilde{g}) = 500 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, \ m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, \ m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, \ m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 35 \text{ GeV}$ $m(s) = 35 \text{ GeV}$	1811.07370 2205.06013 1710.04901 ATLAS-CONF-2018 2203.00587 2203.01009
Stealth SUSY Split SUSY Split SUSY Split SUSY $H \rightarrow s s$ $H \rightarrow s s$ VH with $H \rightarrow s s \rightarrow$ $FRVZ H \rightarrow 2\gamma_d + 3$ $FRVZ H \rightarrow 4\gamma_d + 3$ $H \rightarrow Z_d Z_d$ $H \rightarrow ZZ_d$	$\begin{array}{ccc} 2 \text{ MS vertices} & 36. \\ \text{large pixel dE/dx} & 139 \\ \text{displaced vtx} + E_{\text{T}}^{\text{miss}} & 32.4 \\ 0 \ \ell, 2 - 6 \text{ jets} + E_{\text{T}}^{\text{miss}} & 36. \\ \hline & 2 \text{ MS vertices} & 36. \\ \hline & 2 \text{ MS vertices} & 139 \\ \hline & 2 \text{ low-EMF trackless jets} & 139 \\ \hline & 2 \text{ low-EMF trackless jets} & 139 \\ \hline & 2 \text{ low-EMF trackless jets} & 139 \\ \hline & 2 \text{ low-EMF trackless jets} & 139 \\ \hline & 2 \text{ low-EMF trackless jets} & 139 \\ \hline & 2 \text{ low-EMF trackless jets} & 139 \\ \hline & 3 low-EMF tra$	3.1 Š lifetime 39 ğ lifetime 3.1 ğ lifetime 3.2 ğ lifetime 3.3 s lifetime 339 s lifetime 339 s lifetime 339 s lifetime	4-85 m	> 0.45 m 0.03-13.2 0.0-2.1 m 0.31-72.4 m 0.19-6.94 m	$m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(s) = 35 \text{ GeV}$ $m(s) = 35 \text{ GeV}$	2205.06013 1710.04901 ATLAS-CONF-2018 2203.00587 2203.01009
Split SUSY Split SUSY $H \rightarrow ss$ $H \rightarrow ss$ VH with $H \rightarrow ss \rightarrow ss$ $FRVZ H \rightarrow 2\gamma_d + st$ $FRVZ H \rightarrow 4\gamma_d + st$ $H \rightarrow Z_d Z_d$ $H \rightarrow ZZ_d$ $\Phi(200 \text{ GeV}) \rightarrow ss$	displaced vtx + E_T^{miss} 32.4 0 ℓ , 2 - 6 jets + E_T^{miss} 36. 2 MS vertices 138 2 low-EMF trackless jets 138 2 bbbb 2 ℓ + 2 displ. vertices 138 X 2 μ -jets 138	2.8 ĝ lifetime 5.1 <mark>ĝ lifetime</mark> 39 s lifetime 39 s lifetime 39 s lifetime		0.03-13.2 0.0-2.1 m 0.31-72.4 m 0.19-6.94 m	2 m $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ m(s) = 35 GeV m(s) = 35 GeV	1710.04901 ATLAS-CONF-2018 2203.00587 2203.01009
Split SUSY $H \rightarrow s s$ $H \rightarrow s s$ VH with $H \rightarrow ss \rightarrow s$ $FRVZ H \rightarrow 2\gamma_d + s$ $FRVZ H \rightarrow 4\gamma_d + s$ $H \rightarrow Z_d Z_d$ $H \rightarrow ZZ_d$ $\Phi(200 \text{ GeV}) \rightarrow ss$	$0 \ \ell, 2 - 6 \ \text{jets} + E_{\text{T}}^{\text{miss}} 36.$ $2 \ \text{MS vertices} 133$ $2 \ \text{low-EMF trackless jets} 133$ $2 \ \text{low-EMF trackless jets} 133$ $2 \ \text{lobbb} 2 \ \ell + 2 \ \text{displ. vertices} 133$ $X \qquad 2 \ \mu - \text{jets} 133$	5.1 <mark>ĝ lifetime</mark> 39 s lifetime 39 s lifetime 39 s lifetime	4-85 m	0.0-2.1 m 0.31-72.4 m 0.19-6.94 m	$m(\tilde{g}) = 1.8 \text{ TeV}, \ m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ m(s) = 35 GeV m(s) = 35 GeV	ATLAS-CONF-2018 2203.00587 2203.01009
$H \rightarrow ss$ $H \rightarrow ss$ $VH \text{ with } H \rightarrow ss \rightarrow ss$ $FRVZ H \rightarrow 2\gamma_d + z$ $FRVZ H \rightarrow 4\gamma_d + z$ $H \rightarrow Z_d Z_d$ $H \rightarrow ZZ_d$ $\Phi(200 \text{ GeV}) \rightarrow ss$	2 MS vertices 138 2 low-EMF trackless jets 138 2 bbbb $2\ell + 2$ displ. vertices 138 $X \qquad 2\mu$ -jets 138	39 s lifetime 39 s lifetime 39 s lifetime	4-85 m	0.31-72.4 m 0.19-6.94 m	m(s)= 35 GeV m(s)= 35 GeV	2203.00587 2203.01009
$H \rightarrow s s$ $VH \text{ with } H \rightarrow s s \rightarrow s$ $FRVZ H \rightarrow 2\gamma_d + s$ $FRVZ H \rightarrow 4\gamma_d + s$ $H \rightarrow Z_d Z_d$ $H \rightarrow ZZ_d$ $\Phi(200 \text{ GeV}) \rightarrow s s$	2 low-EMF trackless jets 139 bbbb 2ℓ + 2 displ. vertices 139 X 2μ -jets 139	39 s lifetime 39 s lifetime	4-85 m	0.19-6.94 m	<i>m</i> (<i>s</i>)= 35 GeV	2203.01009
$VH \text{ with } H \to ss \to fRVZ H \to 2\gamma_d + 3$ $FRVZ H \to 4\gamma_d + 3$ $H \to Z_d Z_d$ $H \to ZZ_d$ $\Phi(200 \text{ GeV}) \to ss$	bbbb $2\ell + 2$ displ. vertices 139 X 2μ -jets 139	39 s lifetime	4-85 m	m		
$H \to ZZ_d$ $H \to ZZ_d$ $\Phi(200 \text{ GeV}) \to ss$	X 2μ -jets 139		4-85 m		<i>m</i> (<i>s</i>)= 35 GeV	2107.06092
$H \to ZZ_d$ $H \to ZZ_d$ $\Phi(200 \text{ GeV}) \to ss$		39 $\gamma_{\rm d}$ lifetime				
$H \to ZZ_d$ $H \to ZZ_d$ $\Phi(200 \text{ GeV}) \to ss$	$X = 2 \mu - \text{iets} = 130$			0.654-939 mm	$m(\gamma_d)$ = 400 MeV	2206.12181
$H \to ZZ_d$ $H \to ZZ_d$ $\Phi(200 \text{ GeV}) \to ss$	$=\mu$ joto 10	39 $\gamma_{\rm d}$ lifetime		2.7-534 mm	$m(\gamma_d)$ = 400 MeV	2206.12181
$\Phi(200 \text{ GeV}) \rightarrow s s$	displaced dimuon 32.	2.9 Z _d lifetime	0.009-24.0 m		$m(Z_d) = 40 \text{ GeV}$	1808.03057
	2 e, μ + low-EMF trackless jet 36.	5.1 Z _d lifetime		0.21-5.2 m	$m(Z_d) = 10 \text{ GeV}$	1811.02542
$\Phi(600 \text{ GeV}) \rightarrow ss$	low-EMF trk-less jets, MS vtx 36.	5.1 s lifetime		0.41-51.5 m	$\sigma imes \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
. (low-EMF trk-less jets, MS vtx 36.	5.1 s lifetime		0.04-21.5 m	$\sigma imes \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
$\Phi(1 \text{ TeV}) \rightarrow s s$	low-EMF trk-less jets, MS vtx 36.	s.1 s lifetime		0.06-52.4 m	$\sigma imes \mathcal{B}{=}$ 1 pb, $\mathit{m}(s){=}$ 150 GeV	1902.03094
$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee) + μ 139	39 N lifetime	0.74-42 mm		m(N) = 6 GeV, Dirac	2204.11988
$W o N\ell, N o \ell\ell v$	displaced vtx ($\mu\mu$, μe , ee) + μ 139	39 N lifetime	3.1-33 mm		m(N)= 6 GeV, Majorana	2204.11988
$W o N\ell, N o \ell\ell v$	displaced vtx ($\mu\mu$, μe , ee) + e 139	39 N lifetim <mark>e</mark>	0.49-81 mi	m	m(N) = 6 GeV, Dirac	2204.11988
$W o N\ell, N o \ell\ell v$	displaced vtx ($\mu\mu$, μe , ee) + e 139	39 N life <mark>time</mark>	0.39-51 mm		m(N)= 6 GeV, Majorana	2204.11988
		0.001	1 0.01	0.1 1 1	10 100 $c\tau$ [m]	

Overview of CMS long-lived particle searches


Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

LHCb

- Existing results on dark photons, exotic Higgs decays, HNLs [link]
- Complementary coverage to ATLAS and CMS
- First fully GPU trigger in HEP opens new possibility for LLPs
- New algorithms for downstream tracking and SciFi seeds could extend the reach of LHCb to decay lengths of ~6 m from the IP



Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023

13

Thinking outside the LHC detectors

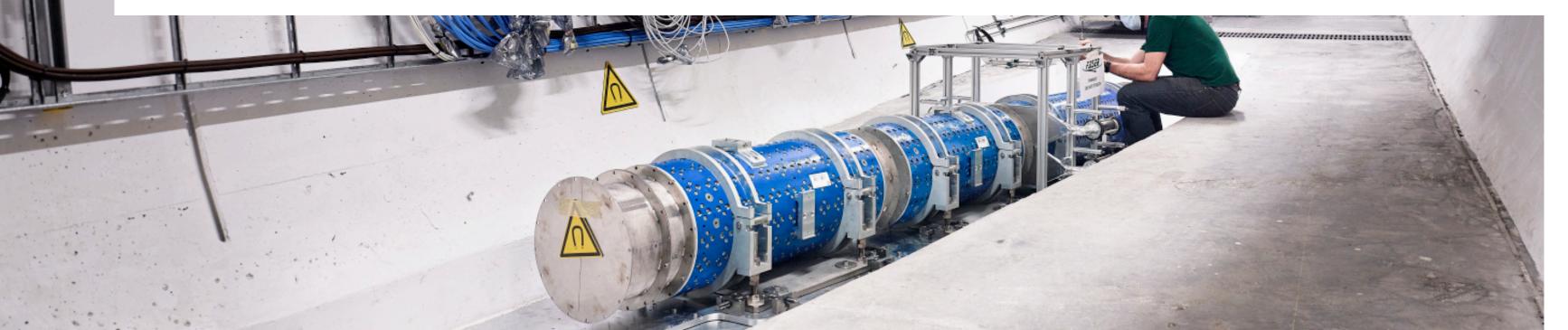
- We can supplement them with external detectors optimized for LLPs
 - Access to longer decay lengths
 - Less background (shielding)
 - Easy trigger (or trigger-less)

060

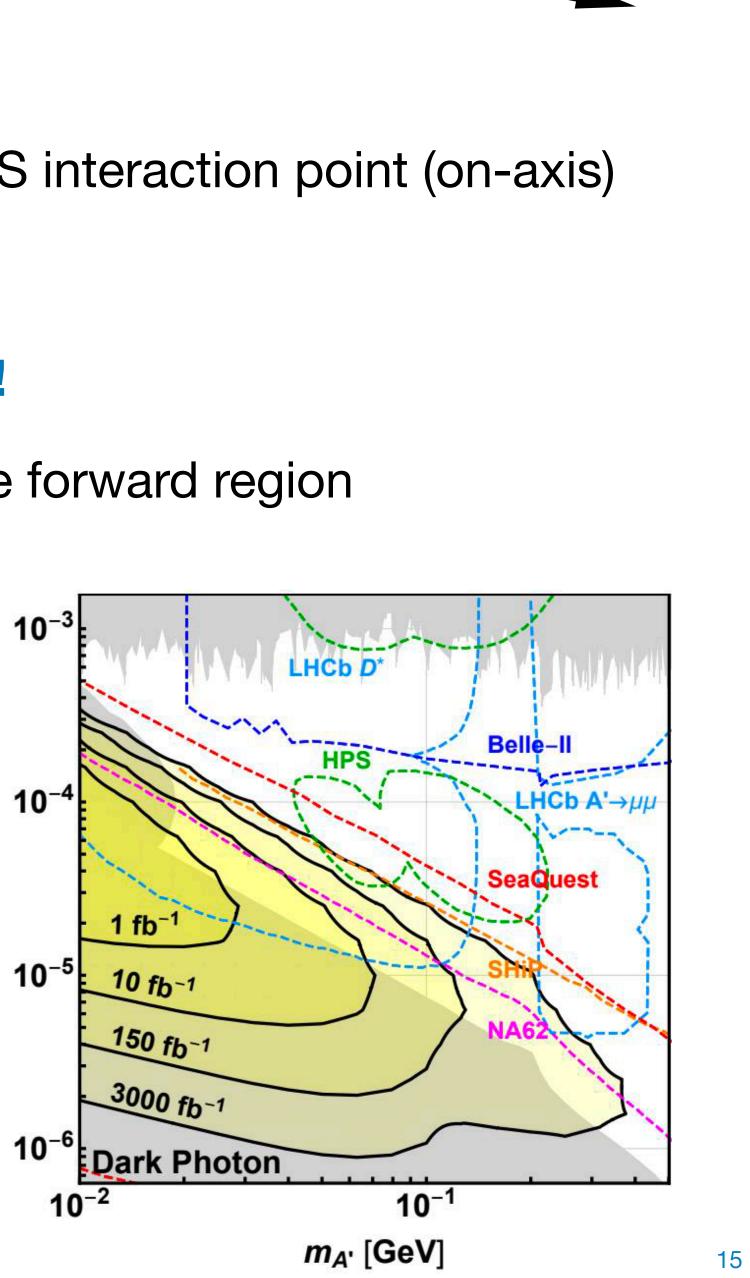
xty

Centrally produced LLPs from the decays of heavy states (Exotic Higgs, Twin Higgs, HNL, SUSY) at large angle, off axis Wide mass range: from ~ GeV to ~TeV

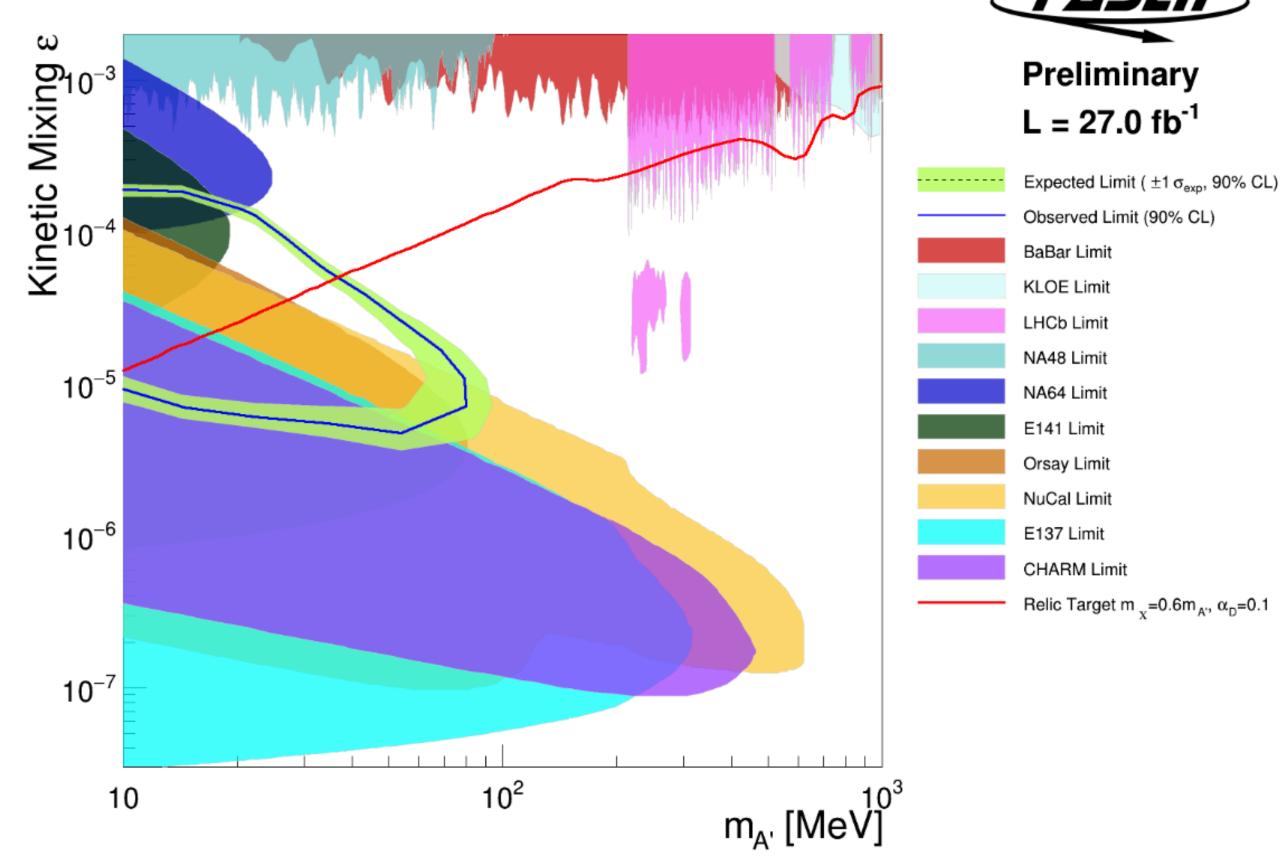
along the beam line


LLPs from weakly coupled light particles, with high statistics (higher forward production for lower masses), along the beam axis

FASER

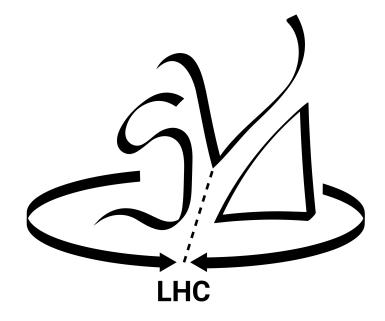

- https://faser.web.cern.ch/
- Approved in 2019, Installed during the Long Shutdown 2 Taking data!
- Designed to detect LLPs produced at the ATLAS Interaction Point in the forward region
 - For highly collimated and extremely weakly coupled particles
 - decay products ~ TeV energies
- Sensitivity to dark photons, HNLs, ALPs ...
 - $pp \rightarrow LLP + X$, LLP travels ~480 m, LLP \rightarrow charged tracks + X

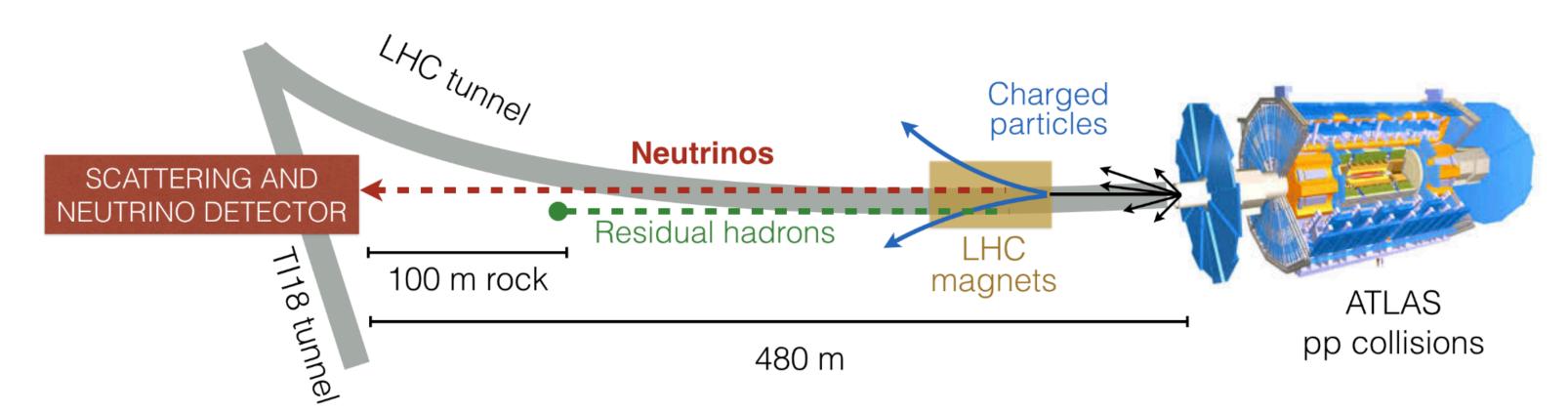
ForwArd Search ExpeRiment, $\sim 1 \text{ m}^3 480 \text{ m}$ downstream from the ATLAS interaction point (on-axis)

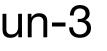


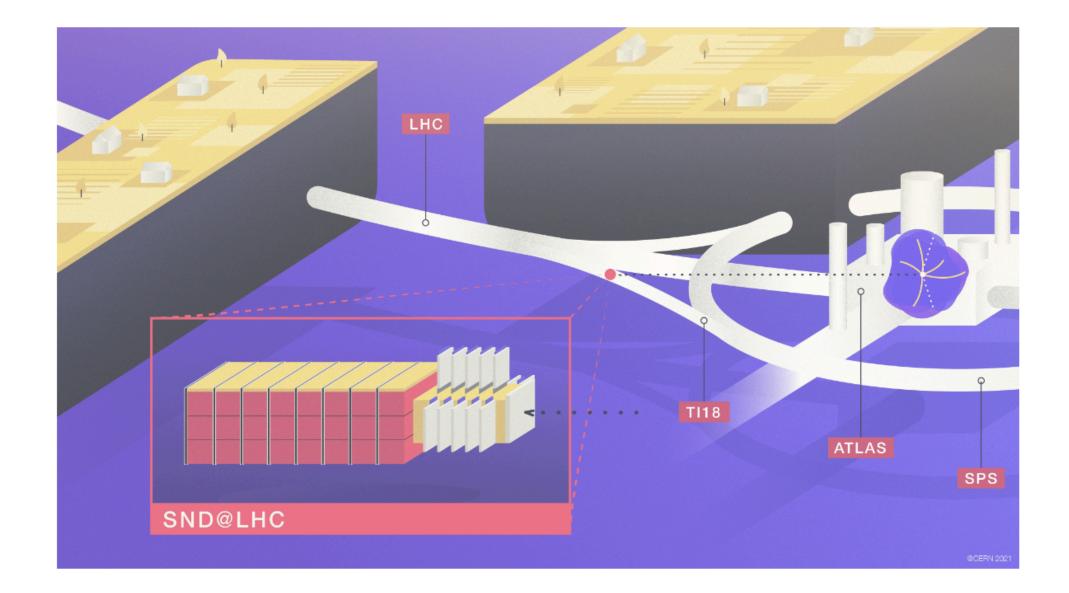
First results from FASER

- First observation of collider neutrino events: arXiv:2303.14185
- First limits on previously unconstrained regions of dark photon parameter space:
 - <u>https://cds.cern.ch/record/</u> 2853210/
- Talk by Charlotte Cavanagh: [link]

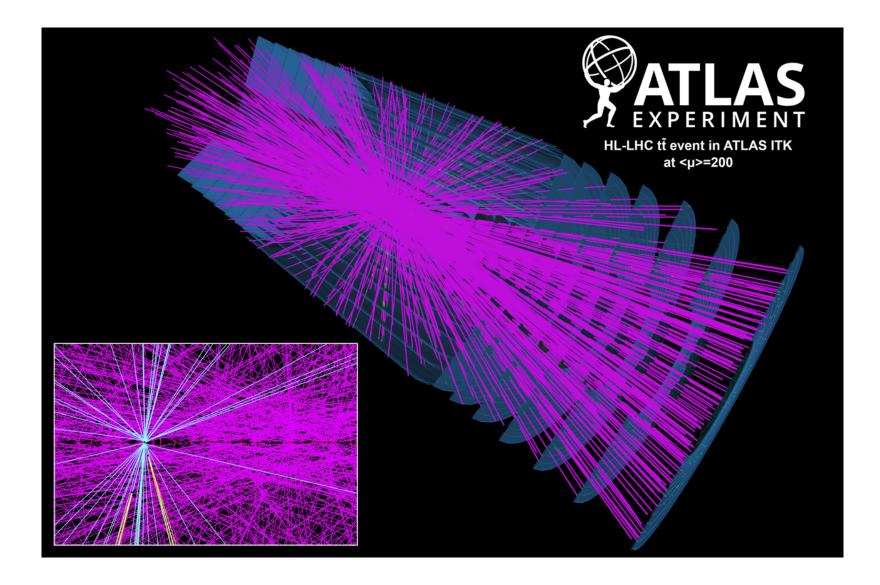



SND@LHC

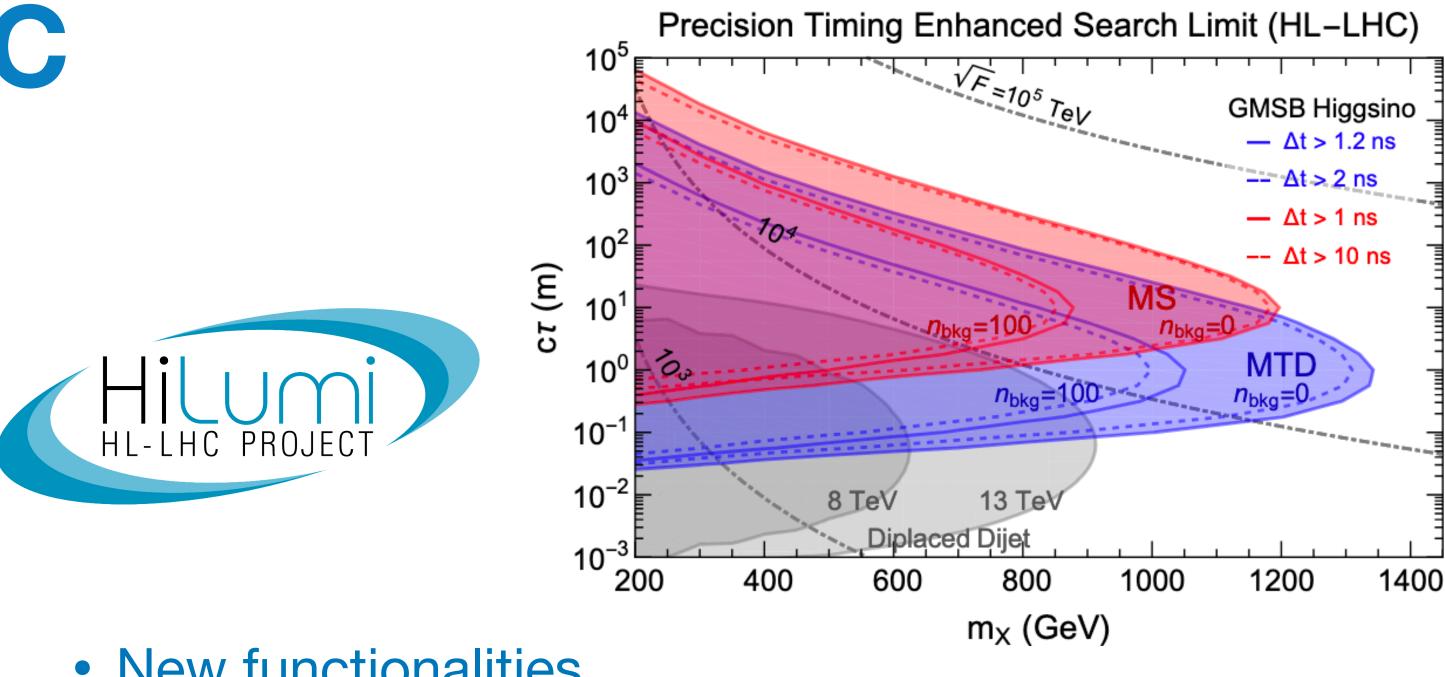

- Neutrino experiment approved in 2021, installed, commissioned and taking data since the start of Run-3
- https://snd-lhc.web.cern.ch/ lacksquare
- 480 m from the ATLAS collision point (on the other side), 100 m of rock shielding
- Diverse neutrino physics program, can also probe LLPs in Hidden Sector models
- Talk by Carlo Battilana [link]



Scattering and Neutrino Detector at the LHC



LLPs beyond the LHC



First stop: HL-LHC

- High luminosity comes with high pile-up, ~200 pp collisions are expected every 25 ns (Vs. ~36-37 in Run-2)
- Neither track reconstruction or trigger are going to get any easier

New functionalities

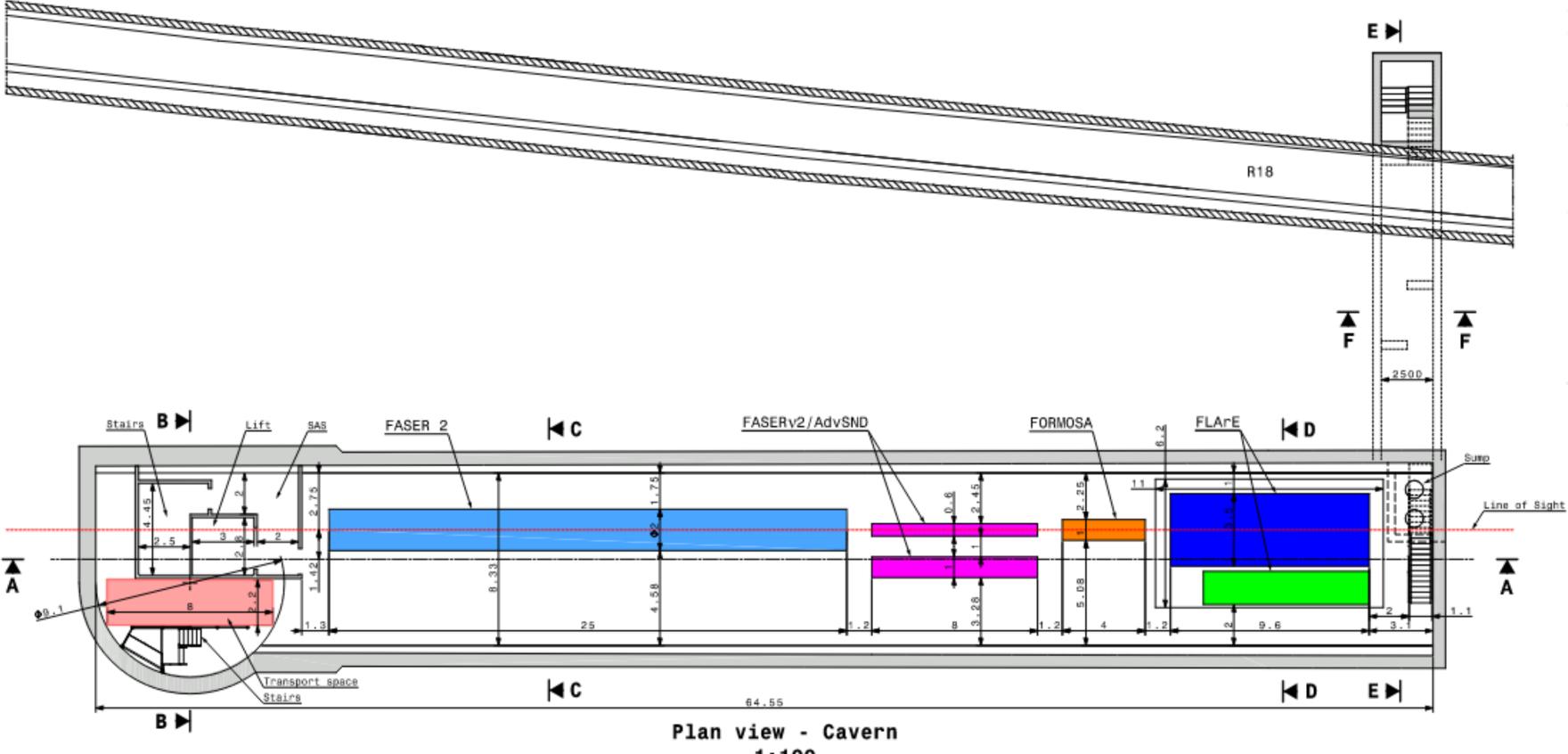
- Track triggers (arXiv:1907.09846): e.g. trigger on displaced muons from the same vertex to find dark photons (arXiv:1705.04321)
- Better timing information: using timing information to target pair-produced LLPs significantly delayed (arXiv:1805.05957)

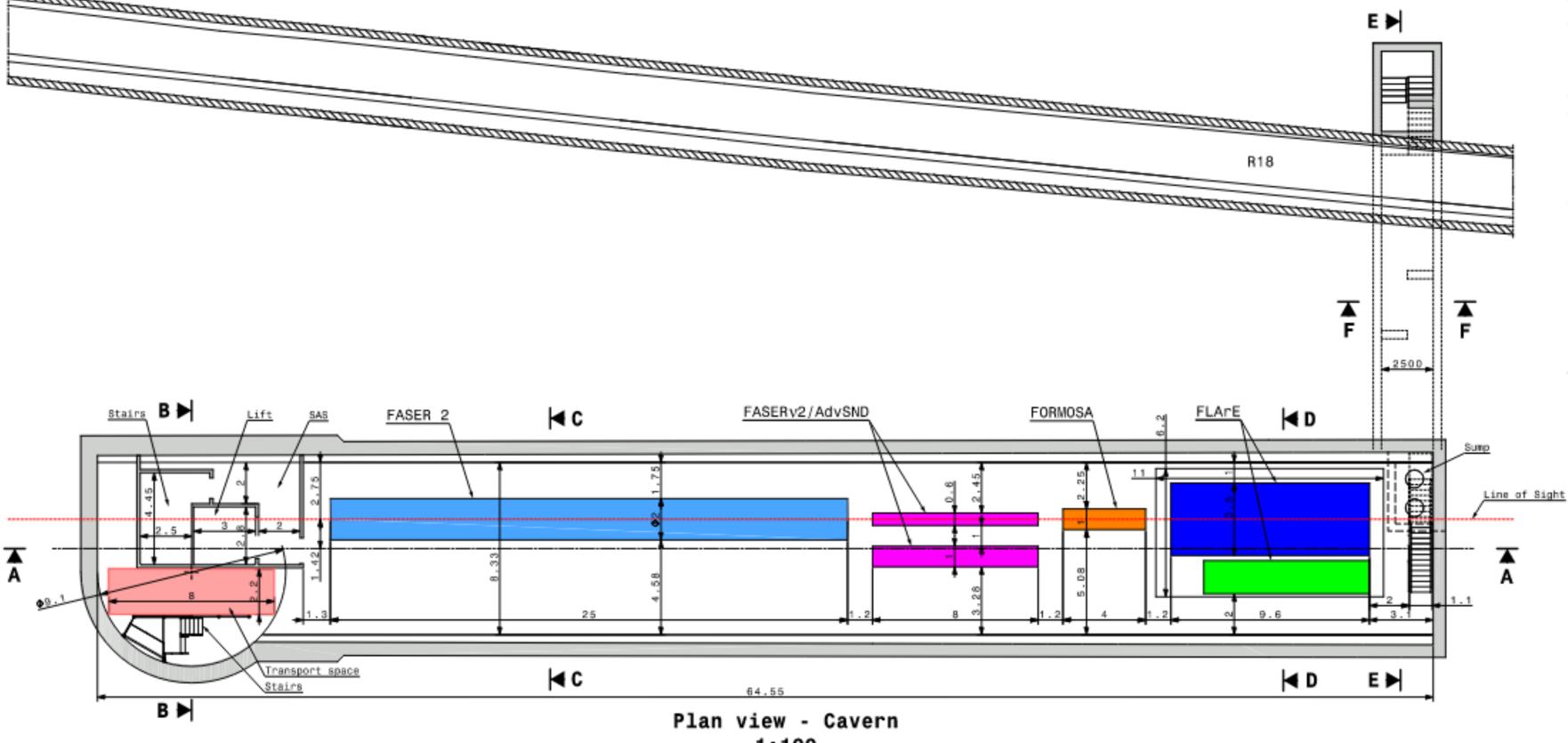
HL-LHC: Dedicated experiments

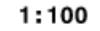
- ATLAS or CMS (off-axis) <u>arXiv:2009.01693</u> <u>website</u>
 - Constructing a 64-channel, 4-layer prototype at University of Victoria
- CODEX-b: (proposed) ~10³m³ detector in the LHCb cavern (off-axis) <u>arXiv:2203.07316 git</u>
 - Building of CODEX-β demonstrator unit ongoing.
- AL3X: (proposed) cylindrical~900 m³ detector inside the L3 magnet and the timeprojection chamber of the ALICE experiment (on-axis) <u>arXiv:1810.03636</u>
- ANUBIS: (proposed) 1×1 m² units on top of ATLAS/CMS (off-axis) <u>arXiv:1909.13022 twiki</u>
 - The proANUBIS prototype just been installed in the ATLAS experimental cavern
- FACET: (proposed) ~100m in front of CMS (on-axis). Large decay volume (50 m) arXiv:2201.00019

• MATHUSLA: (proposed) large-scale surface detector instrumenting ~8×10⁵m³ above

CODEX-b






- FASER and SND@LHC: highly constrained by 1980's infrastructure that was never intended to support experiments
- Proposed dedicated **Forward Physics** Facility (FPF) for the HL-LHC

More LLP experiments at the LHC

- Beam dump using the SPS proton beam line in the North area
 - NA62: (running) fixed-target experiment, kaon and beam-dump physics program with sensitivity to hidden sector (dark photon/Higgs, ALPs, HNLs..)
- SHiP: (proposed) Intensity-frontier wide-spectrum (~GeV-scale) FIP search, zero-background reachable
- SHIP Search for Tildden Particles SHADOWS: (proposed) competitive to CODEX-b and FASER2 for FIPs from charm/beauty
 - Experiments for exotic electromagnetic charge:
 - MilliQan: (demonstrator taking data) searching for dark-sector millicharged particles with feeble coupling strength in the drainage gallery of CMS

- MoEDAL-MAPP: (running) First LHC dedicated search experiment! looking for highly ionizing particles like magnetic monopoles at LHCb, upgrade with sensitivity to millicharged particles, SUSY LLP states, and even HNLs
- FORMOSA: (proposed) millicharged particles in the 10 MeV to 100 GeV mass range using the FPF
- Many other experiments can also search for LLPs, e.g. Neutrino experiments, B-factories or dark matter experiments.

And then?

After the HL-LHC

2020 European Strategy Update

"An electron-positron Higgs factory is the highest-priority next collider.

For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy."

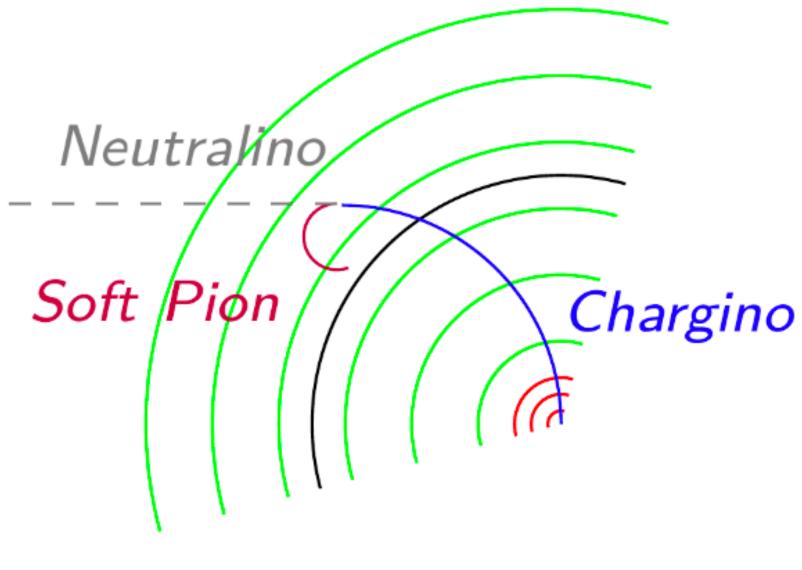
(European Strategy Update brochure)

1st physics case right off the bat for LLPs: Exotic Higgs decays

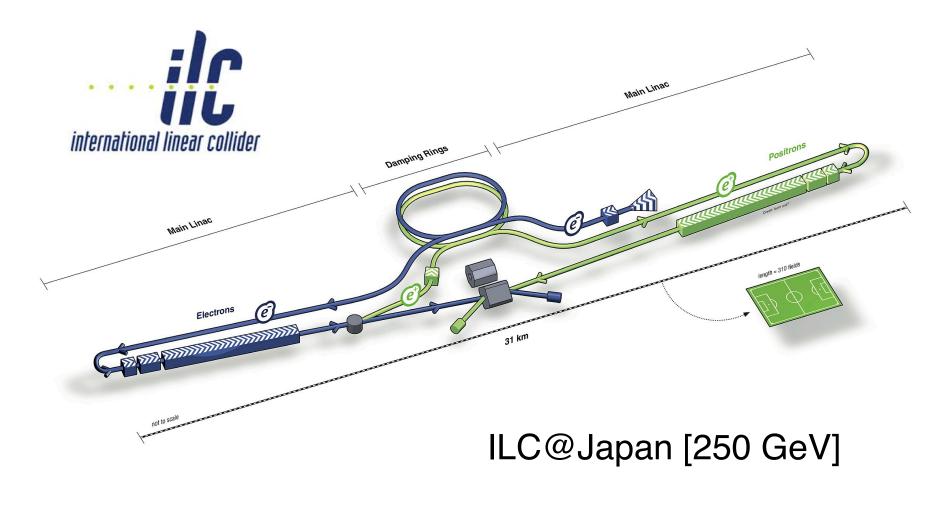
Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023

Snowmass 2021 *"The intermediate future is an e+e- Higgs"* factory, either based on a linear (ILC, C3) or circular collider (FCC-ee, CepC). In the long term EF envision a collider that probes the multi-TeV scale, up or above 10 TeV parton center-of-mass energy (FCC-hh, SppC, Muon Coll.)"

(Energy Frontier Plenary by Alessandro Tricoli)

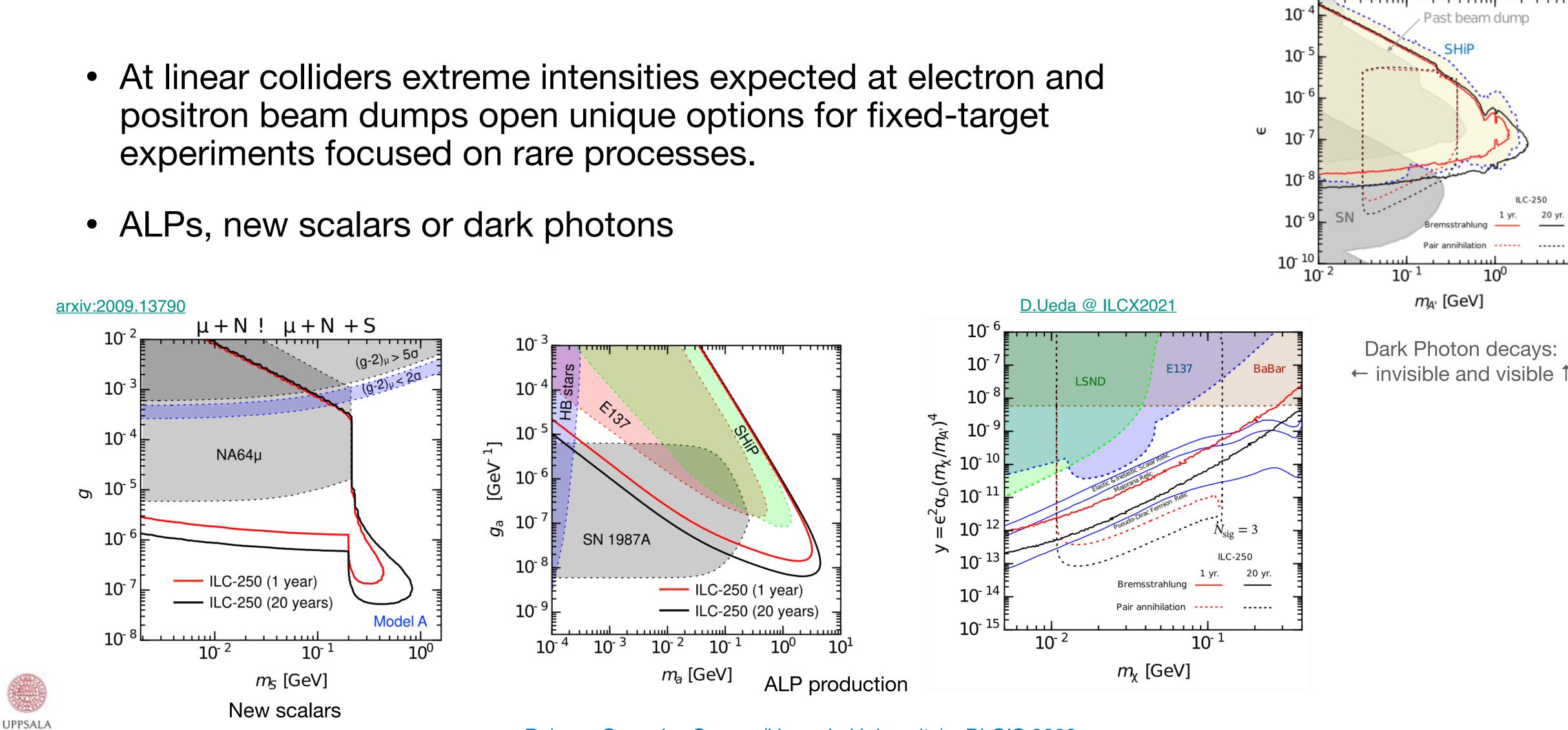

Linear e+e- Colliders

- CLIC: (https://agenda.linearcollider.org/event/8217/ contributions/44770/)
 - Hidden valley searches in Higgs boson decays with displaced vertices (https://cds.cern.ch/record/2625054)
 - Degenerate Higgsino Dark Matter \rightarrow chargino pair production (disappearing tracks) (arXiv:1812.02093, arXiv:1812.06018)



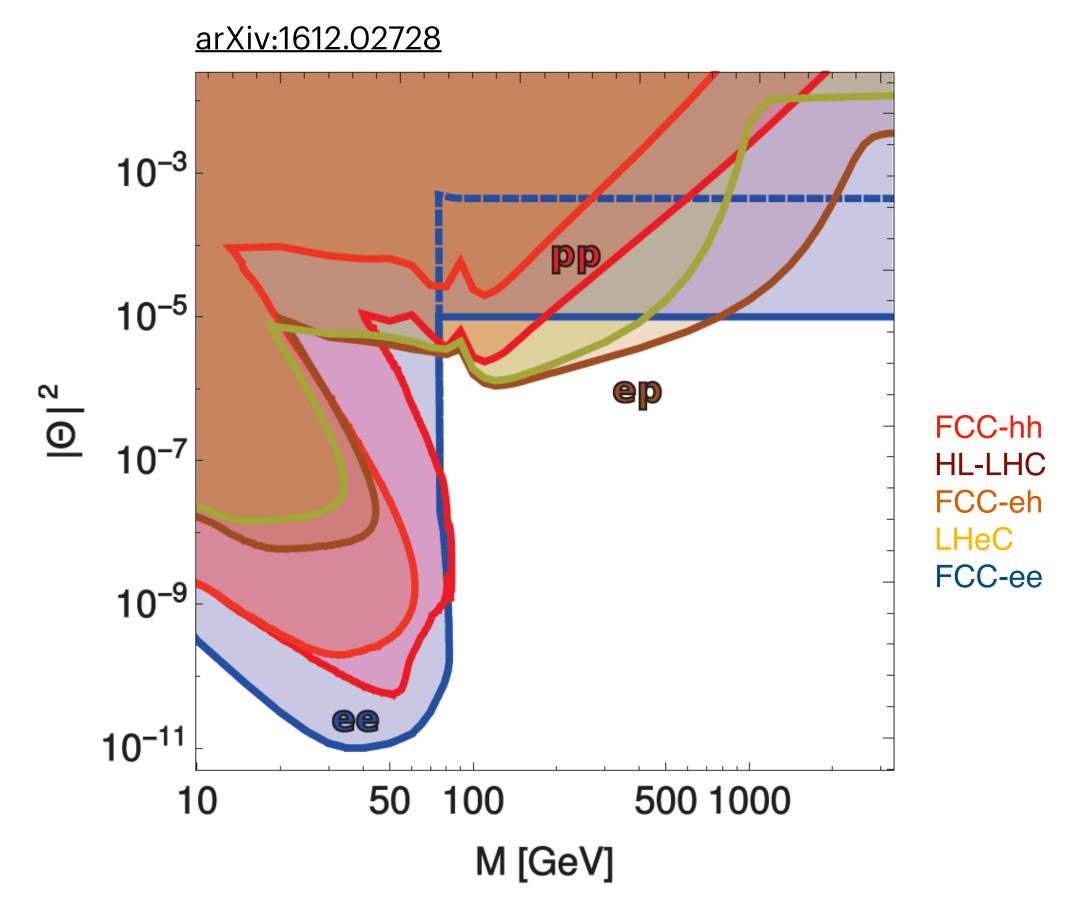
UPPSALA UNIVERSITET

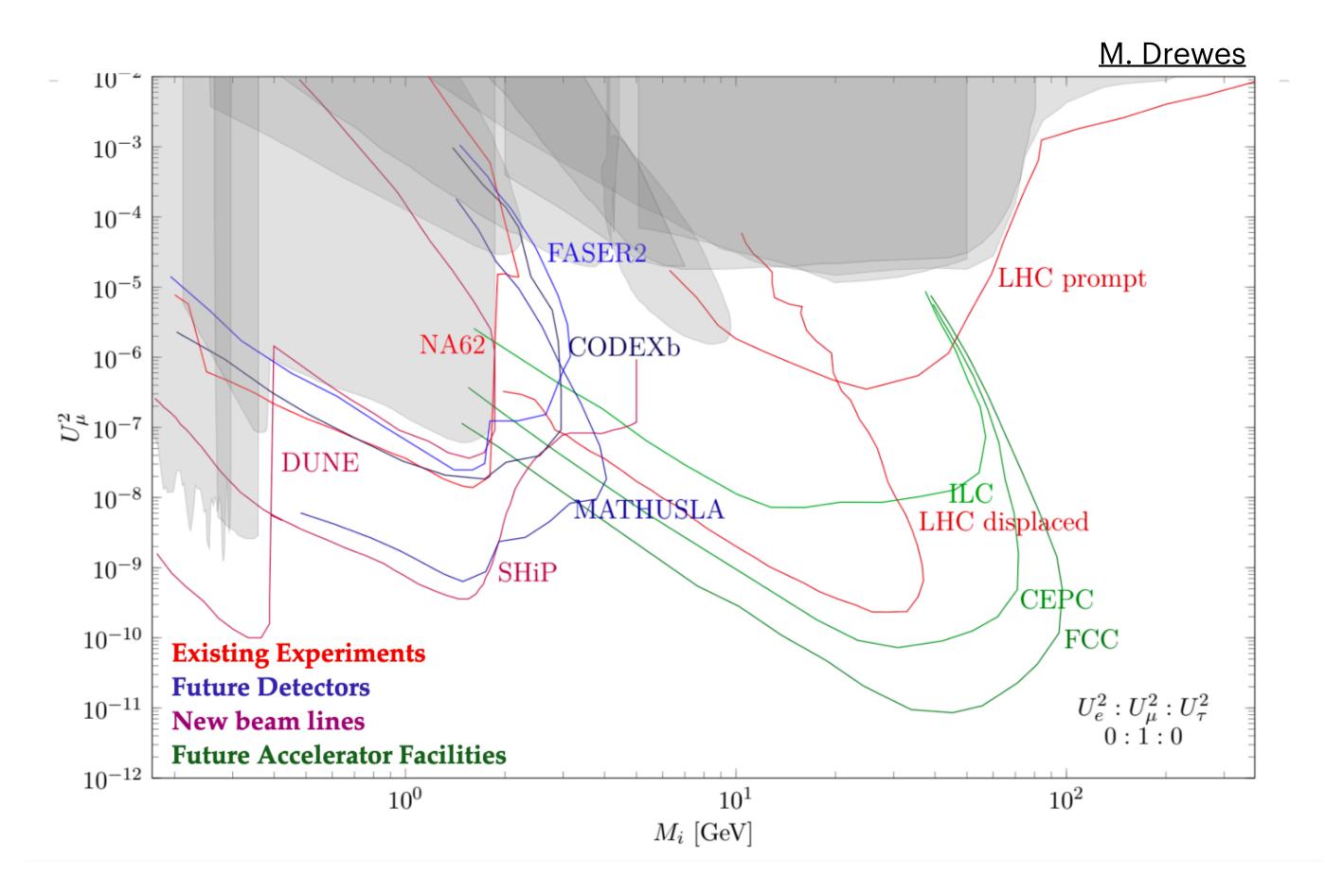
Ryu Sawada



Beam dump experiments at linear colliders

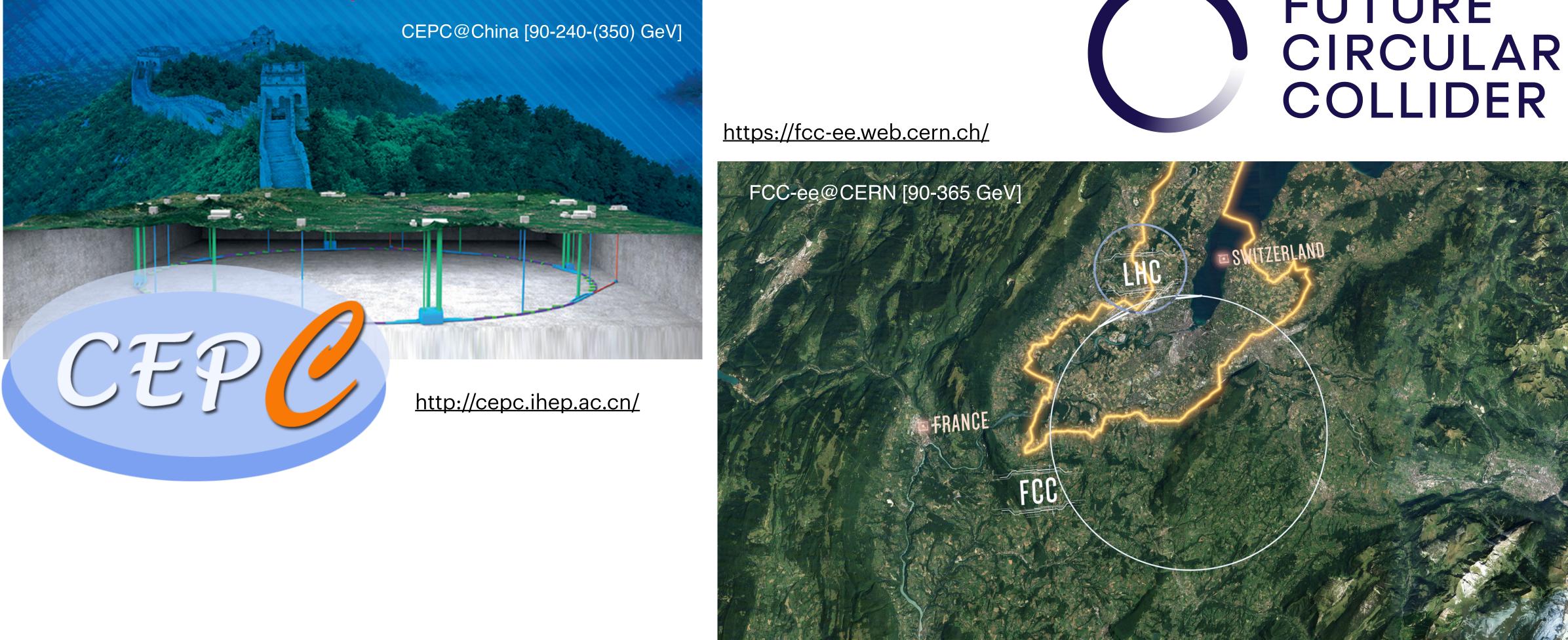
UNIVERSITET



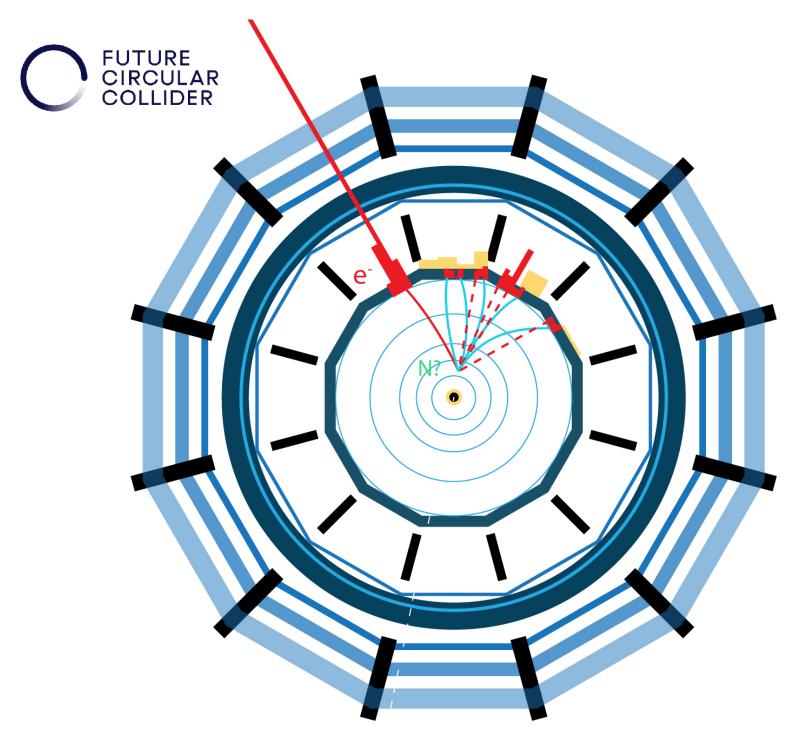


An e+e- circular collider could be fantastic for LLPs

And complementary to high-energy hadron machines for interesting physics cases

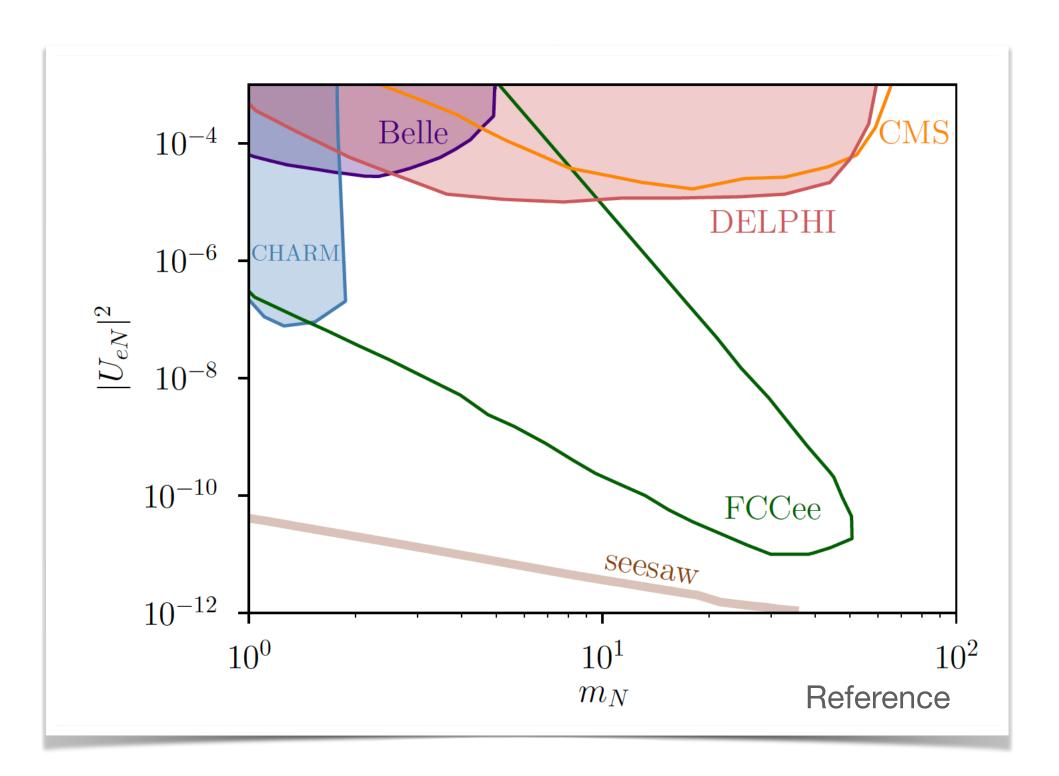


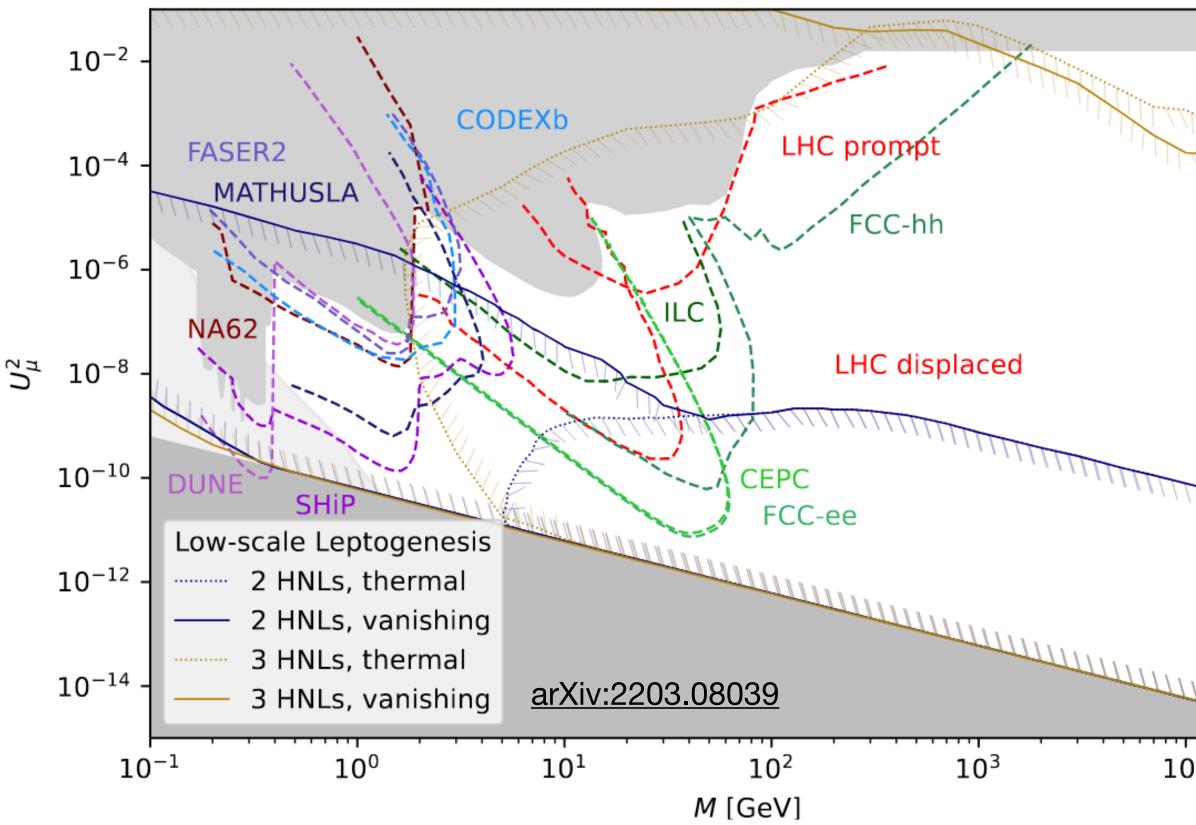
Circular e+e- Colliders



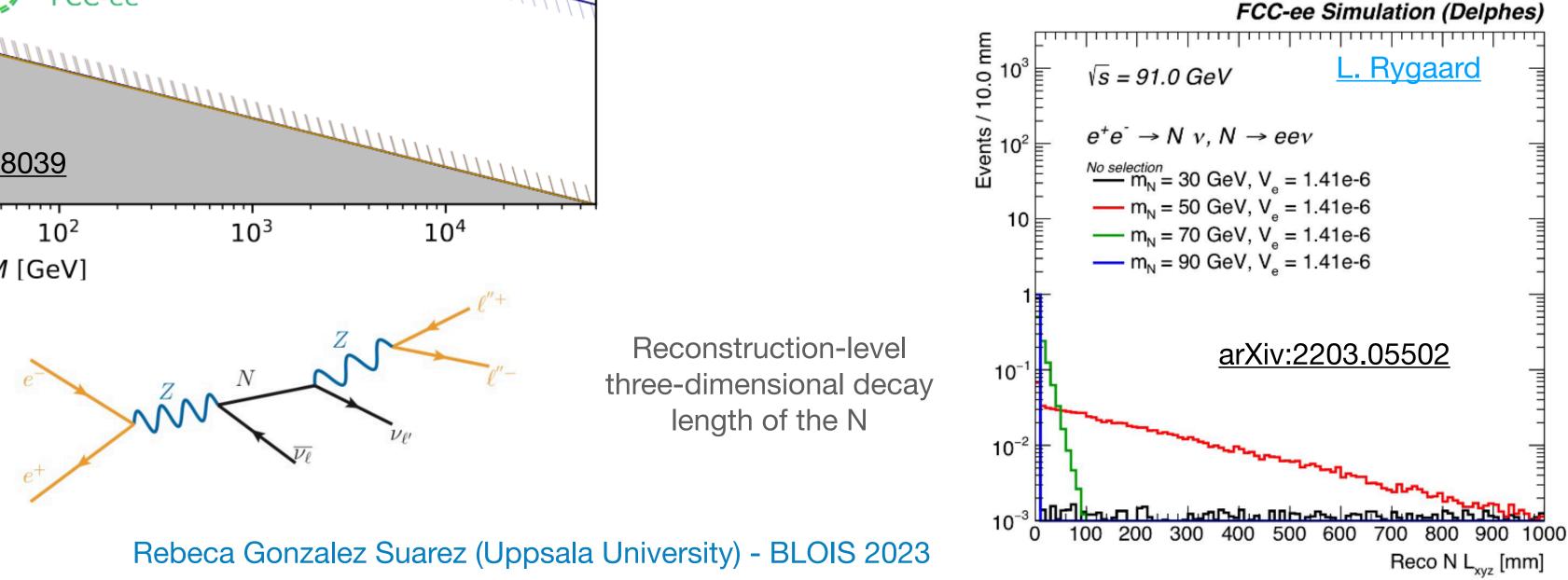
FCC-ee: Heavy Neutral Leptons

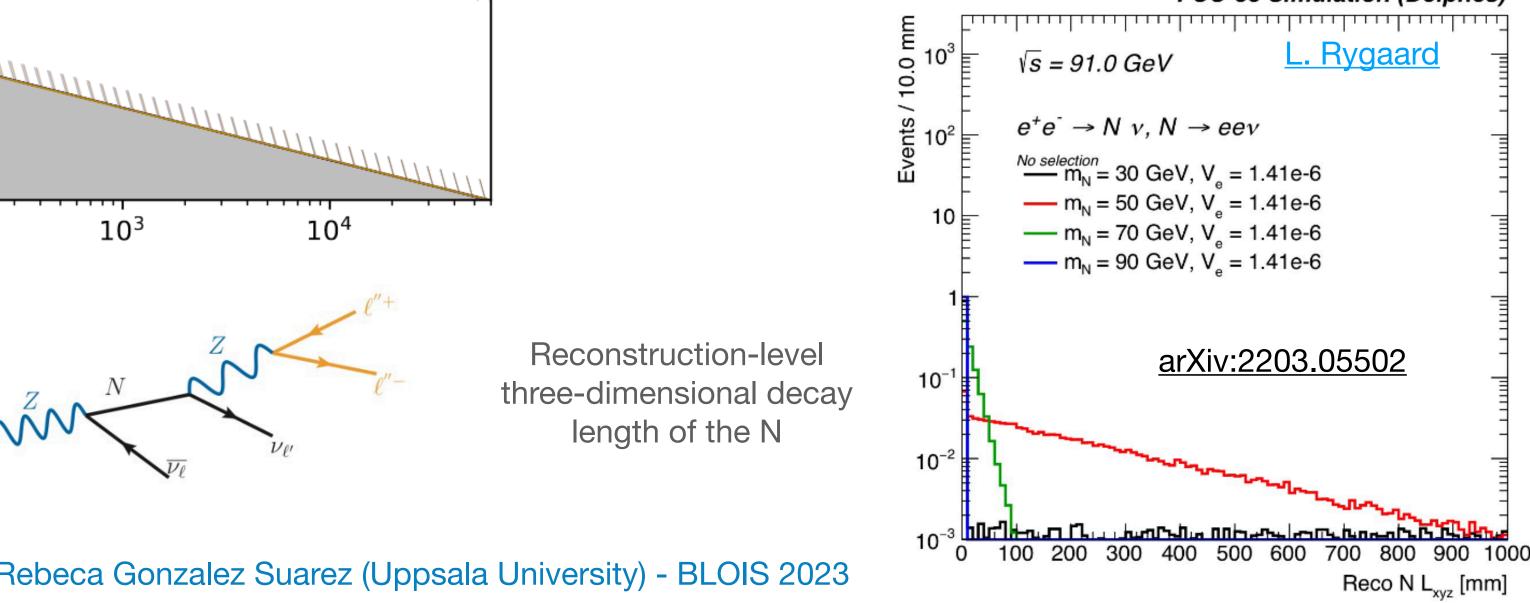
- searches in this collider




• Many of the current HNL limits cover large neutrino mixing angles. For small values of the mixing angle, the decay length of the HNL can be significant \rightarrow LLP signature (displaced vertex search)

• The FCC-ee will offer an unbeatable reach for HNL at the Z-Pole, making it the flagship of LLP


Experimental sensitivity studies

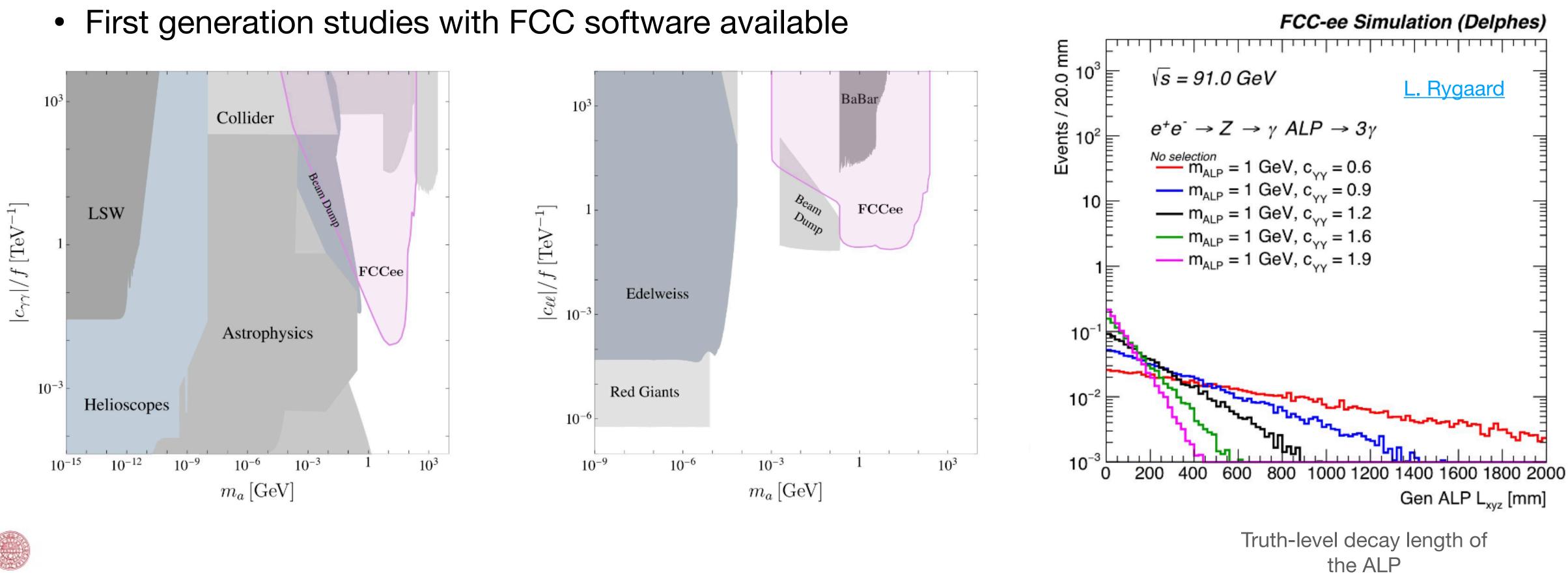


Master theses: Sissel Bay Nielsen, Rohini Sengupta, Lovisa Rygaard, Tanishq Sharma, Dimitri Moulin

UPPSALA

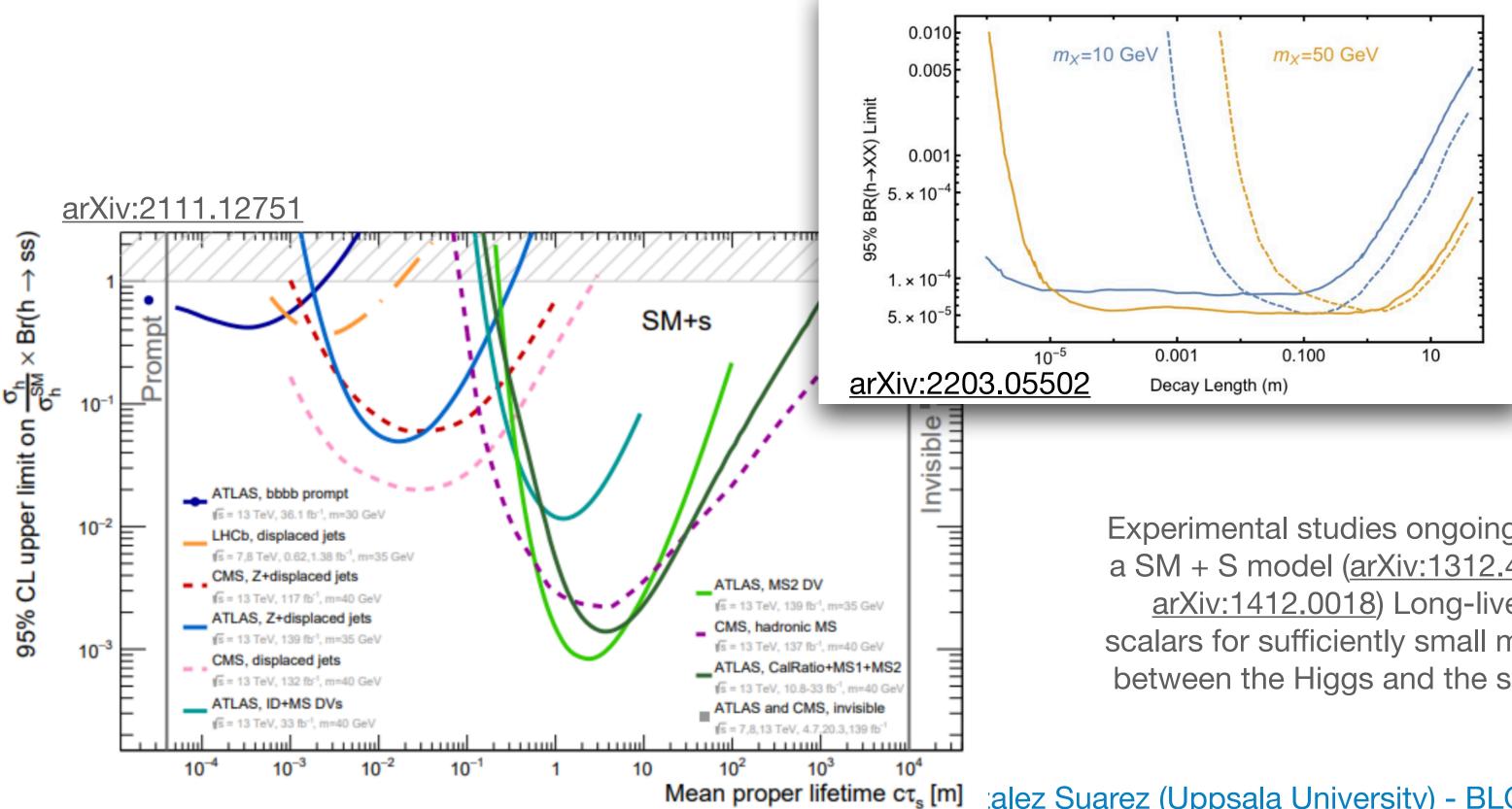
UNIVERSITET

Work in progress towards a complete sensitivity analysis implemented in FCC software

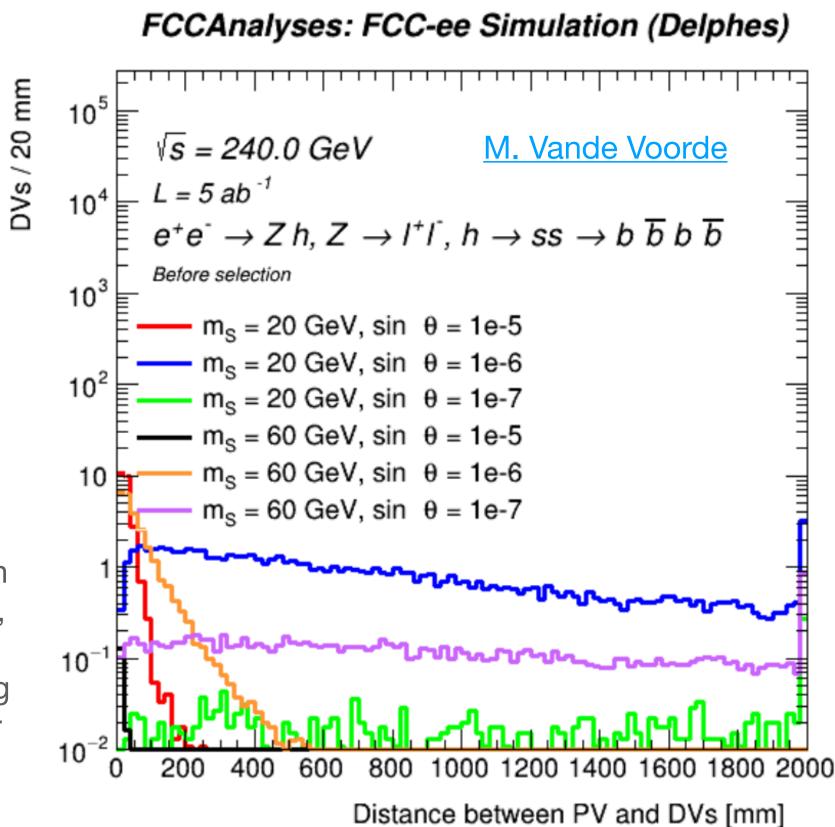

- First steps in eev final state (other final states to be added)
- Majorana/Dirac nature also studied (T. Sharma)

FCC-ee: ALPs

- Specially sensitive final states at the FCC-ee of ALPs produced with photons
 - Calorimetry crucial to study this signature \bullet

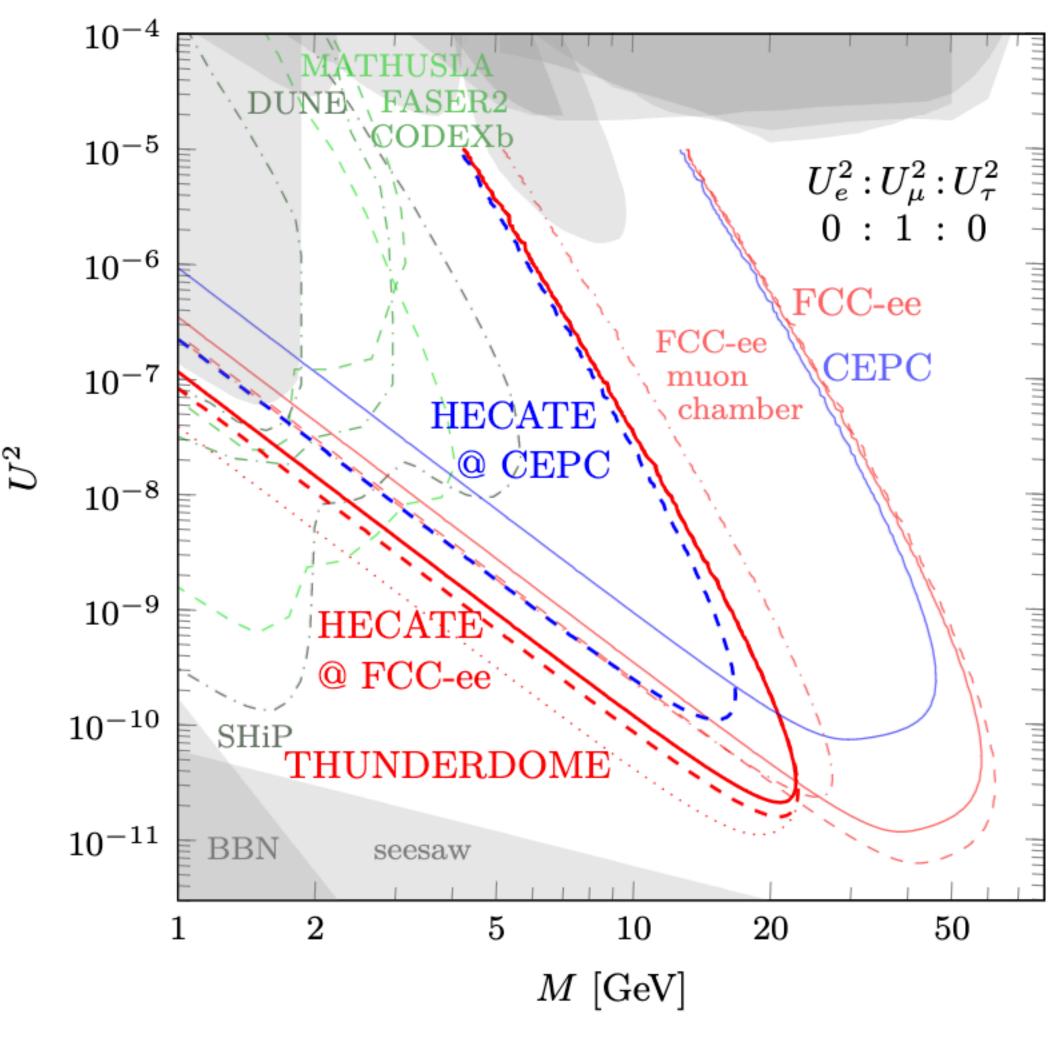

arXiv:2203.05502

FCC-ee: Exotic Higgs boson decays


- - Higgs (arXiv:1312.4992, arXiv:1812.05588, arXiv:1712.07135)

Exotic Higgs decays to long-lived particles (LLPs) are possible and present in many models:

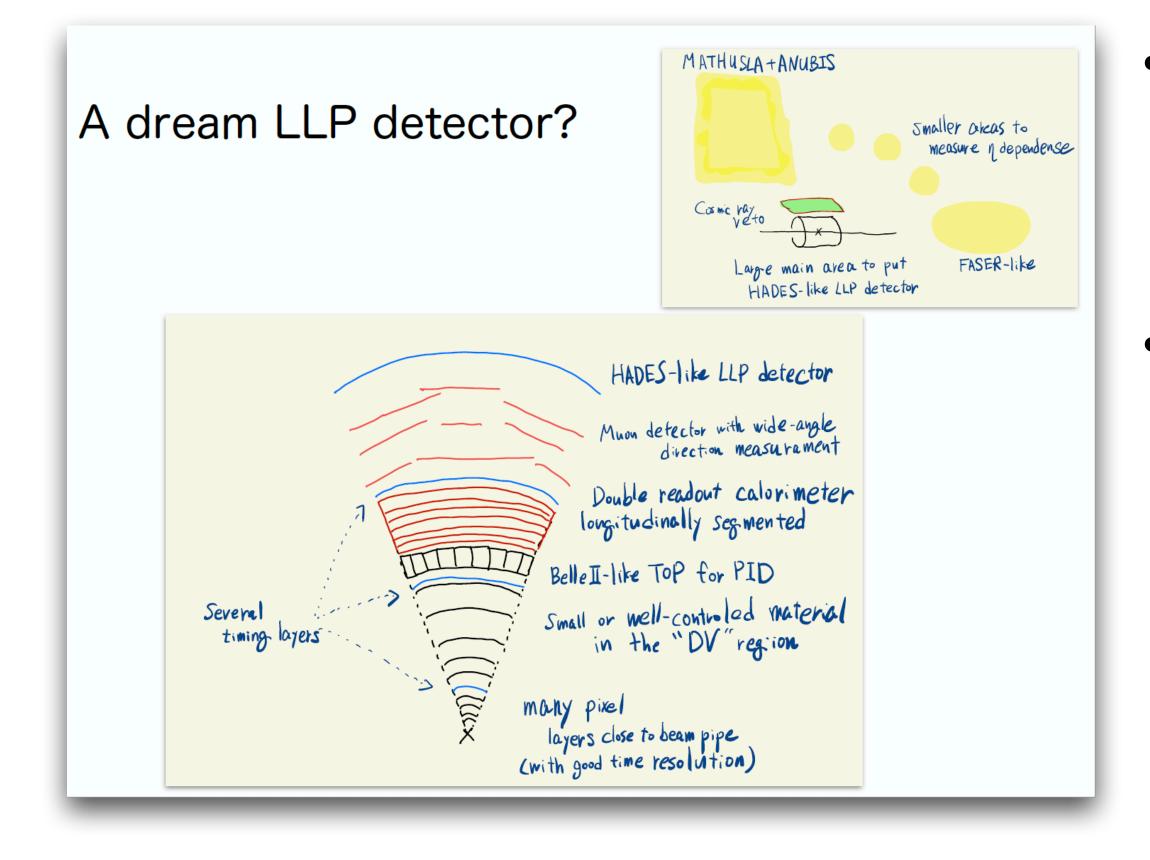
• SM extensions with scalars/fermions/ vectors, MSSM, NMSSM, Hidden Valleys, Twin


Experimental studies ongoing with a SM + S model (arXiv:1312.4992, arXiv:1412.0018) Long-lived scalars for sufficiently small mixing between the Higgs and the scalar

alez Suarez (Uppsala University) - BLOIS 2023

Extra detectors!

UPPSALA UNIVERSITET


- Following the plans for different additional LLP experiments at the HL-LHC it is possible to also envision similar concepts at other future colliders
- HECATE: A long lived particle detector concept for the FCC-ee or CEPC: arXiv:2011.01005
- The civil engineering of the FCC-ee will have much bigger detector caverns than needed for a lepton collider (to use them further for a future hadron collider)
- We could install extra instrumentation at the cavern walls to search for new long lived particles

FAr Detectors arXiv:1911.06576 for ALPs at FCC-ee, CepC arXiv:2201.08960

One thing is clear

It is a good time to plan our *dream LLP detectors*, following Ryu Sawada first example at the LLP workshop in November 2020 (link)

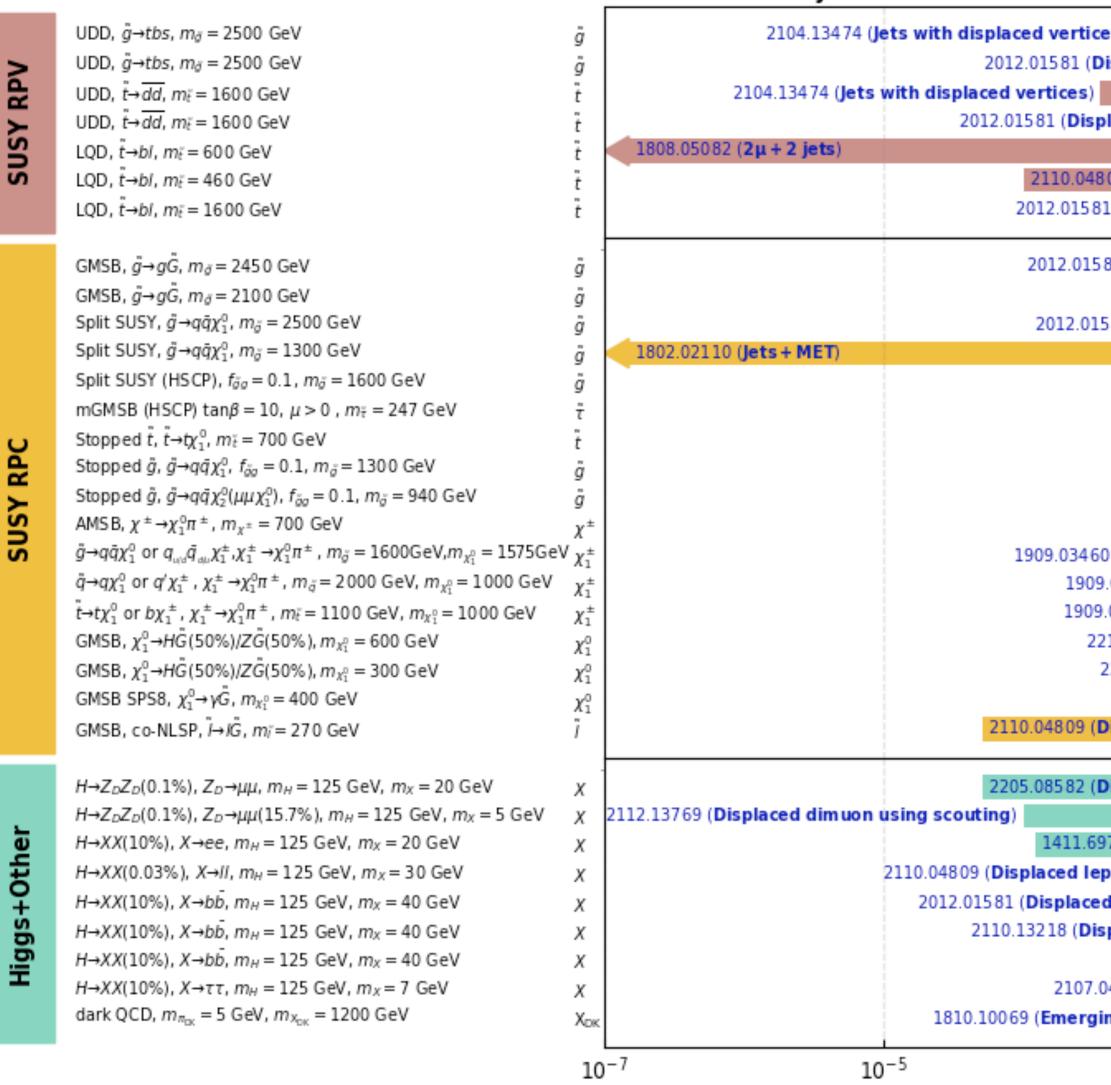
- No matter what we build, LLP challenges will be common (caveats: trigger much more crucial in hadron machines, muon colliders coming with their own special challenges)
- At this point we have two ways to go:
 - Design the future detectors as usual and then try to make the best out of them for LLPs
 - which can be done but won't be easy as we know from the experience at the LHC -and before-
 - Design the future detectors with LLP in mind, prioritising for example displaced tracking and timing, and budgeting for unexpected signals

In Summary

- Searches for long-lived particles offer a powerful, signature-driven alternative and complement to mainstream searches for new physics at colliders
 - Connected to very interesting physics questions, such as neutrino masses, and central to hidden sectors that could explain dark matter
 - They probe challenging, non-standard experimental signatures that defy reconstruction and identification techniques at collider experiments
- A variety of additional experiments ongoing and proposed to complement the LHC experiments at collision points, or using beam dumps, at the LHC and beyond
- In future lepton colliders, precision machines built to stress-test the Higgs sector, long-lived signatures could hold the key to new physics: HNLs, ALPs, exotic decays of the Higgs boson
 - **Opportunity to plan the future facilities with LLPs in mind!**

The perfect environment for creativity: in both methods and experimental setup

tatus: July 2022	Cianoturo	(c.h.l	n -11			<u>∫</u> -	£ dt = (\$	32.8 – 139) fb $^{-1}$	$\sqrt{s} = 13 \text{ Te}$
Model	Signature	∫£ dt [f	<u>г</u>	Lifetime limit					Reference
$RPV\ ilde{t} o \mu q$	displaced vtx + muon	136	t̃ lifetime			0.003-6.0 m		$m(ilde{t}) = 1.4 \text{ TeV}$	2003.11956
$RPV\tilde{\chi}^0_1 \to eev/e\mu v/\mu$	$\mu \nu$ displaced lepton pair	32.8	${ ilde \chi}^0_1$ lifetime		0.003-1.0 m			$m(\widetilde{q})$ = 1.6 TeV, $m(\widetilde{\chi}_1^0)$ = 1.3 TeV	1907.10037
$\operatorname{GGM} \tilde{\chi}_1^0 \to Z \tilde{G}$	displaced dimuon	32.9	${ ilde \chi}^0_1$ lifetime			0.029	-18.0 m	$m(ilde{g}){=}$ 1.1 TeV, $m(ilde{\chi}_1^0){=}$ 1.0 TeV	1808.03057
GMSB	non-pointing or delayed	lγ 139	${ ilde \chi}_1^0$ lifetime		0.3	24-2.4 m		$m(\tilde{\chi}_1^0, \tilde{G})$ = 60, 20 GeV, $\mathcal{B}_{\mathcal{H}}$ = 2%	CERN-EP-2022-09
GMSB $\tilde{\ell} \to \ell \tilde{G}$	displaced lepton	139	$\widetilde{\ell}$ lifetime		6-750 mm			$m(ilde{\ell}){=}600~{ m GeV}$	2011.07812
GMSB $ ilde{ au} o au ilde{G}$	displaced lepton	139	$ ilde{ au}$ lifetime		9-270 mm			$m(ilde{\ell}){=}$ 200 GeV	2011.07812
AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^0$	${}^+_{\rm L} \tilde{\chi}^1$ disappearing track	136	${\widetilde \chi}_1^{\pm}$ lifetime		0	.06-3.06 m		$m({ ilde \chi}_1^{\pm}){=}$ 650 GeV	2201.02472
AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}$	$^+_{\mathfrak{l}} { ilde \chi}^1$ large pixel dE/dx	139	${\widetilde \chi}_1^{\pm}$ lifetime		0.3-30.	0 m		$m(ilde{\chi}_1^{\pm}){=}$ 600 GeV	2205.06013
Stealth SUSY	2 MS vertices	36.1	S lifetime		0.1-519 m			$\mathcal{B}(\tilde{g} ightarrow \tilde{S}g) = 0.1, \ m(\tilde{g}) = 500 \ \mathrm{GeV}$	1811.07370
Split SUSY	large pixel dE/dx	139	ğ lifetime		> 0).45 m		$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	2205.06013
Split SUSY	displaced vtx + E_{T}^{miss}	32.8	g lifetime			0.03-13	<mark>8.2 m</mark>	$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	1710.04901
Split SUSY	0 ℓ , 2 – 6 jets + $E_{\rm T}^{\rm miss}$	36.1	ğ lifetime		0.0	<mark>0-2.1 m</mark>		$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	ATLAS-CONF-2018
$H \rightarrow s s$	2 MS vertices	139	s lifetime		0.31-7	2.4 m	-	<i>m</i> (<i>s</i>)= 35 GeV	2203.00587
$H \rightarrow s s$	2 low-EMF trackless jet	ts 139	s lifetime			0.19-6.94 m		<i>m</i> (<i>s</i>)= 35 GeV	2203.01009
VH with $H \to ss \to k$	2ℓ + 2 displ. vertices	139	s lifetime	4-85	mm			<i>m</i> (<i>s</i>)= 35 GeV	2107.06092
FRVZ $H ightarrow 2\gamma_d + X$	2 μ –jets	139	γ_{d} lifetime		0.654-939 mm			$m(\gamma_d) = 400 \text{ MeV}$	2206.12181
FRVZ $H ightarrow 4 \gamma_d + X$	2 μ –jets	139	γ_{d} lifetime		2.7-534 mm			$m(\gamma_d) =$ 400 MeV	2206.12181
$H \rightarrow Z_d Z_d$	displaced dimuon	32.9	Z _d lifetime	0.009-24.0 r	n			$m(Z_d) =$ 40 GeV	1808.03057
$H ightarrow ZZ_d$	2 e, μ + low-EMF trackles	s jet 36.1	Z _d lifetime			0.21-5.2 m		$m(Z_d) = 10 \text{ GeV}$	1811.02542
$\Phi(200 \text{ GeV}) \rightarrow s s$	low-EMF trk-less jets, MS	3 vtx 36.1	s lifetime		0.41	I-51.5 m	-	$\sigma imes \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
$\Phi(600 \text{ GeV}) \rightarrow s s$	low-EMF trk-less jets, MS	3 vtx 36.1	s lifetime		0.04-21.5 m			$\sigma \times \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
$\Phi(1 \text{ TeV}) \rightarrow s s$	low-EMF trk-less jets, MS	S vtx 36.1	s lifetime		0.06-52.4 m			$\sigma imes \mathcal{B} =$ 1 pb, $m(s) =$ 150 GeV	1902.03094
$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee)	+ <i>µ</i> 139	N lifetime	0.74-42 mm	_		_	m(N) = 6 GeV, Dirac	2204.11988
$W ightarrow N\ell, N ightarrow \ell\ell u$	displaced vtx ($\mu\mu$, μe , ee)	+ <i>µ</i> 139	N lifetime	3.1-33 mm				m(N) = 6 GeV, Majorana	2204.11988
$W ightarrow N\ell, N ightarrow \ell\ell v$	displaced vtx ($\mu\mu$, μe , ee)	+ <i>e</i> 139	N lifetime	0.49-81	mm			m(N) = 6 GeV, Dirac	2204.11988
$W ightarrow N\ell, N ightarrow \ell\ell u$	displaced vtx ($\mu\mu$, μe , ee)	+ <i>e</i> 139	N life <mark>time</mark>	0.39-51 mm				m(N) = 6 GeV, Majorana	2204.11988
			0.00	0.01	0.1	1	10	¹⁰⁰ cτ [m]	
	$\sqrt{s} = 13 \text{ TeV}$ $\sqrt{s} = 12 \text{ partial data}$	13 TeV data							
nly a selection of the	e available lifetime limits		_{n.} 0.001	0.01 0.1	1	10		100 τ [ns]	


Latest Briefing: https://atlas.cern/updates/ briefing/search-long-lived-<u>particles</u>

37

Overview of CMS long-lived particle searches

CMS Preliminary

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

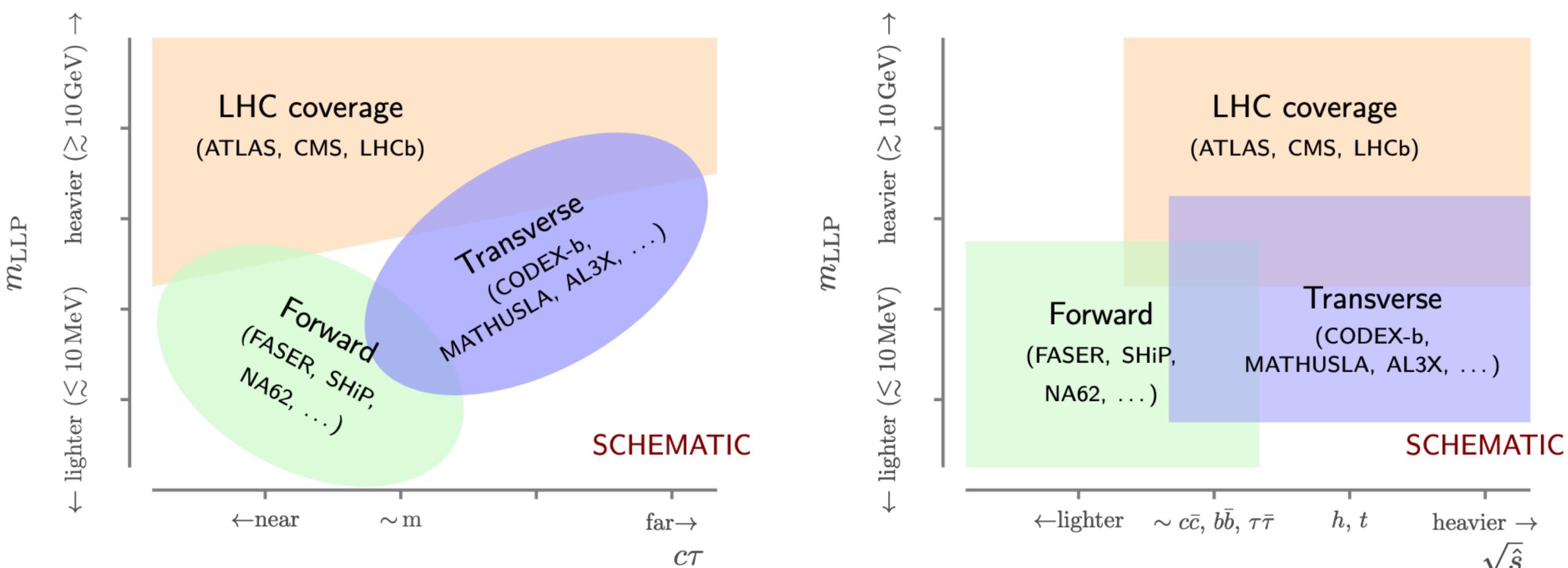
Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023

						March 2023	
ces)	0.0006-0.09 m						140 fb ⁻¹
Displaced jets)		0.003-1 m					132 fb ⁻¹
	0.00035-0.08 m						140 fb ⁻¹
placed jets)		0.002-1.32 m					132 fb ⁻¹
	<0.031 m						36 fb ⁻¹
809 (Displaced le	ptons)		0.0001-10 m				118 fb ⁻¹
81 (Displaced jets) 0.005–0.	24 m					132 fb ⁻¹
581 (Displaced jet	ts) 0.0	06-0.55 m					132 fb ⁻¹
19	906.06441 (Delayed jet		0.3	32-34 m			137 fb ⁻¹
1581 (Displaced je	ets) 0.007	-0.36 m					132 fb ⁻¹
		<1 m					36 fb ⁻¹
		CMS	-PAS-EXO-16-0	36 (dE/dx)		>0.7 m	13 fb ⁻¹
			C	MS-PAS-EXO-16-0	036 (dE/dx + TOF)	>7.5 m	13 fb ⁻¹
			1801.00359 (Delayed jet)		60-1.5e+13 m	39 fb ⁻¹
		1	801.00359 (D	elayed jet)		50-3e+13 m	39 fb ⁻¹
				1801.00359 (Delayed μμ)	600-3.3e+12 m	39 fb ⁻¹
	2004.05153 (Disappe	aring track)	0.1	7–30 m			140 fb ⁻¹
60 (Disappearing 1	tracks + jets with M _{T2})		0.11-10 m				137 fb ⁻¹
9.03460 (Disappe a	aring tracks+ jets with	1 M _{T2}) 0.26-2	m				137 fb ⁻¹
9.03460 (Disappea	aring tracks+ jets with	M _{T2})	0.25-9 m				137 fb ⁻¹
212.06695 (Tracki	ess jets + MET)		0.04-12 n	n			138 fb ⁻¹
2212.06695 (Trac	kless jets + MET)		0.05-	-24 m			138 fb ⁻¹
	1909.06166 (Delayed γ	(y))	0.2-6 m				77 fb ⁻¹
Displaced lepton	s)	5e-05-2.6	5 m				118 fb ⁻¹
Displaced dim uoi	n)	5e	-05–5 m				98 fb ⁻¹
	0.0001-0	.25 m					101 fb ⁻¹
977 (Displaced di	electron)		0.00012-	- 25 m			20 fb ⁻¹ (8
eptons)	0.001-0.12 m						118 fb ⁻¹
ed jets)	0.0	01-0.53 m					132 fb ⁻¹
isplaced jets + Z)	0.004-0.2	248 m					117 fb ⁻¹
2107.04838 (Ha	dronic decays in CSCs			0	.12-450 m		137 fb ⁻¹
.04838 (LLP decay	s in CSCs)		0.02-	-23 m			137 fb ⁻¹
jing jet + jet)	0.0022	-0.3 m					16 fb ⁻¹
10-3	10	-1	10	0 ¹	10	3	
	כד [ו	n]					

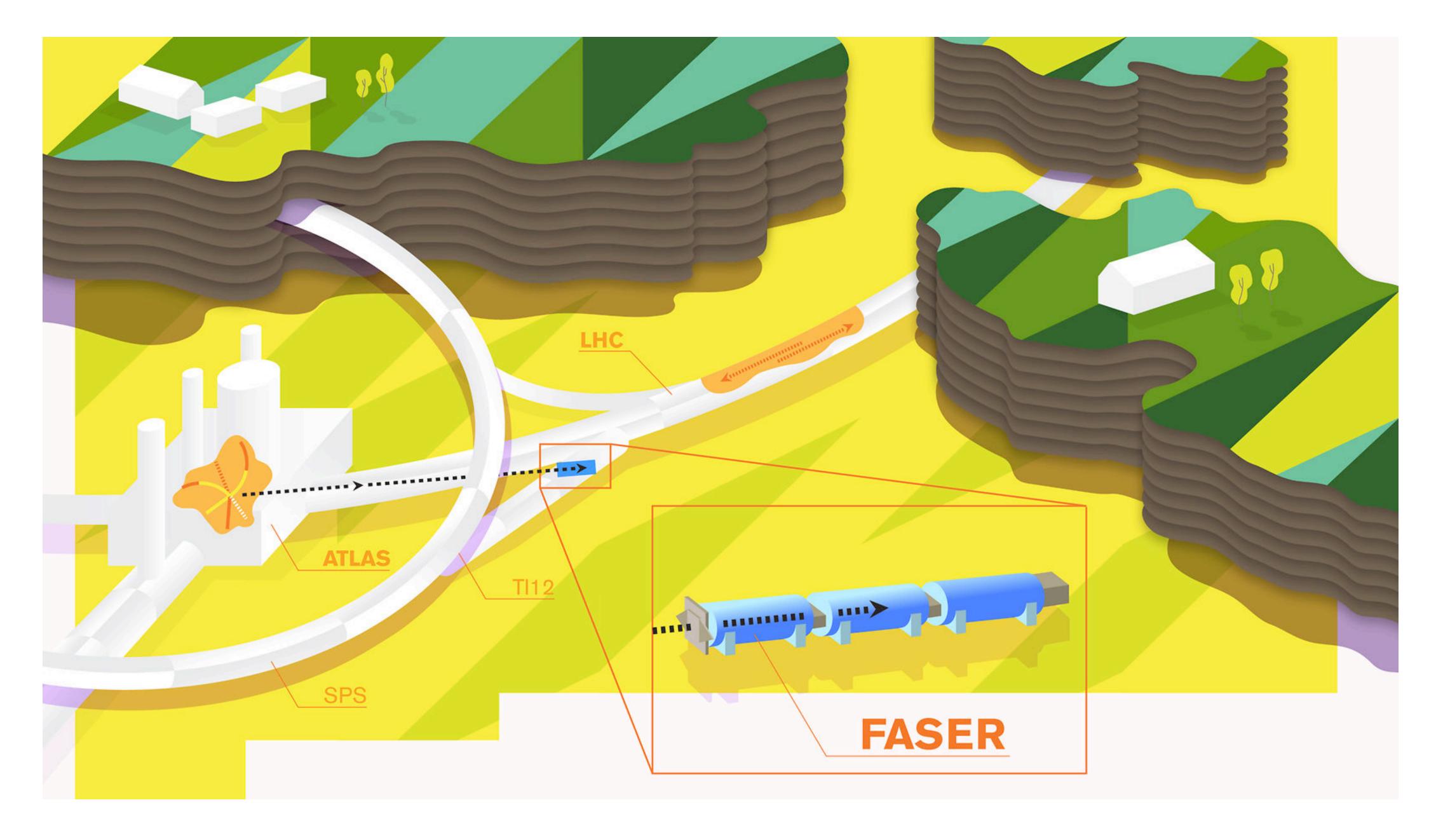
40 fb⁻¹ 32 fb⁻¹ 40 fb⁻¹ 32 fb⁻¹ fb⁻¹ 18 fb⁻¹ 32 fb⁻¹ 32 fb⁻¹ 37 fb⁻¹ 32 fb⁻¹ fb⁻¹ fb⁻¹ fb⁻¹ fb⁻¹ fb⁻¹ fb⁻¹ 40 fb -1 37 fb⁻¹ 37 fb⁻¹ 37 fb⁻¹ 38 fb⁻¹ 38 fb⁻¹ fb⁻¹ 18 fb -1 fb⁻¹ 01 fb⁻¹ fb⁻¹ (8 TeV)

Forward

- Forward detectors give access to light, weakly-interacting particles with significant lifetime
 - Even small, inexpensive detectors can have a strong, complementary physics case
 - Provide sensitivity to a wide range of BSM physics models (dark γ, ALPS, HNL, light) DM, mCP etc)
 - Probing uncovered regions of phase space, even with 2022 data already in some cases
- Three new detectors (FASER, SND@LHC, MoEDAL-MAPP) making great progress
 - First physics already there!
- Longer term, proposal for dedicated forward physics facility to take advantage of HL-LHC
 - Would give a rich and broad physics programme
 - Tight timeline so please contribute to studies if interested


Transverse

- Transverse experiments:
 - Search for decays of heavier particles: heavy mediators, eg. Higgs
- Dedicated transverse LLP are a relatively cheap way to explore a large region \bullet of the parameter space
 - Complementarity among different detectors (also forward)


Complementarity

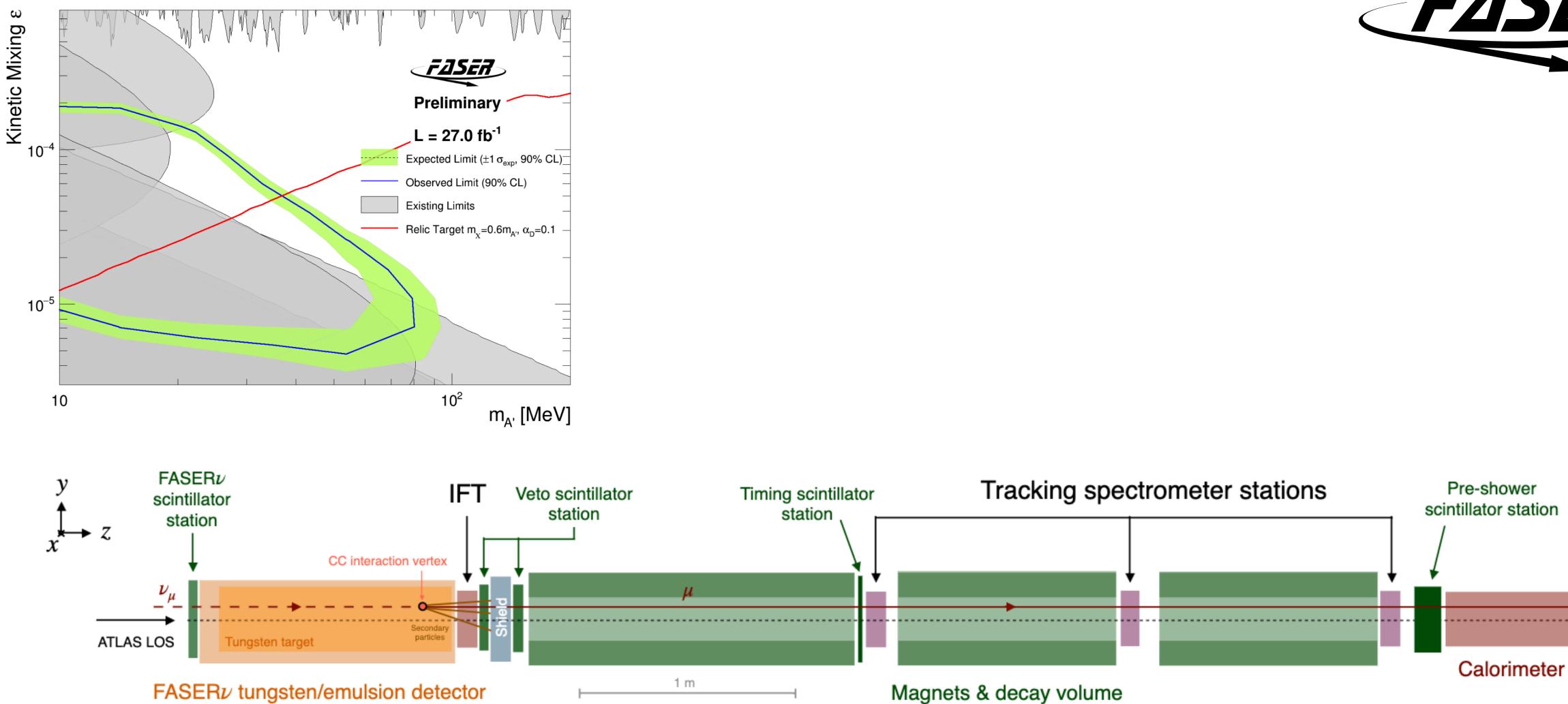
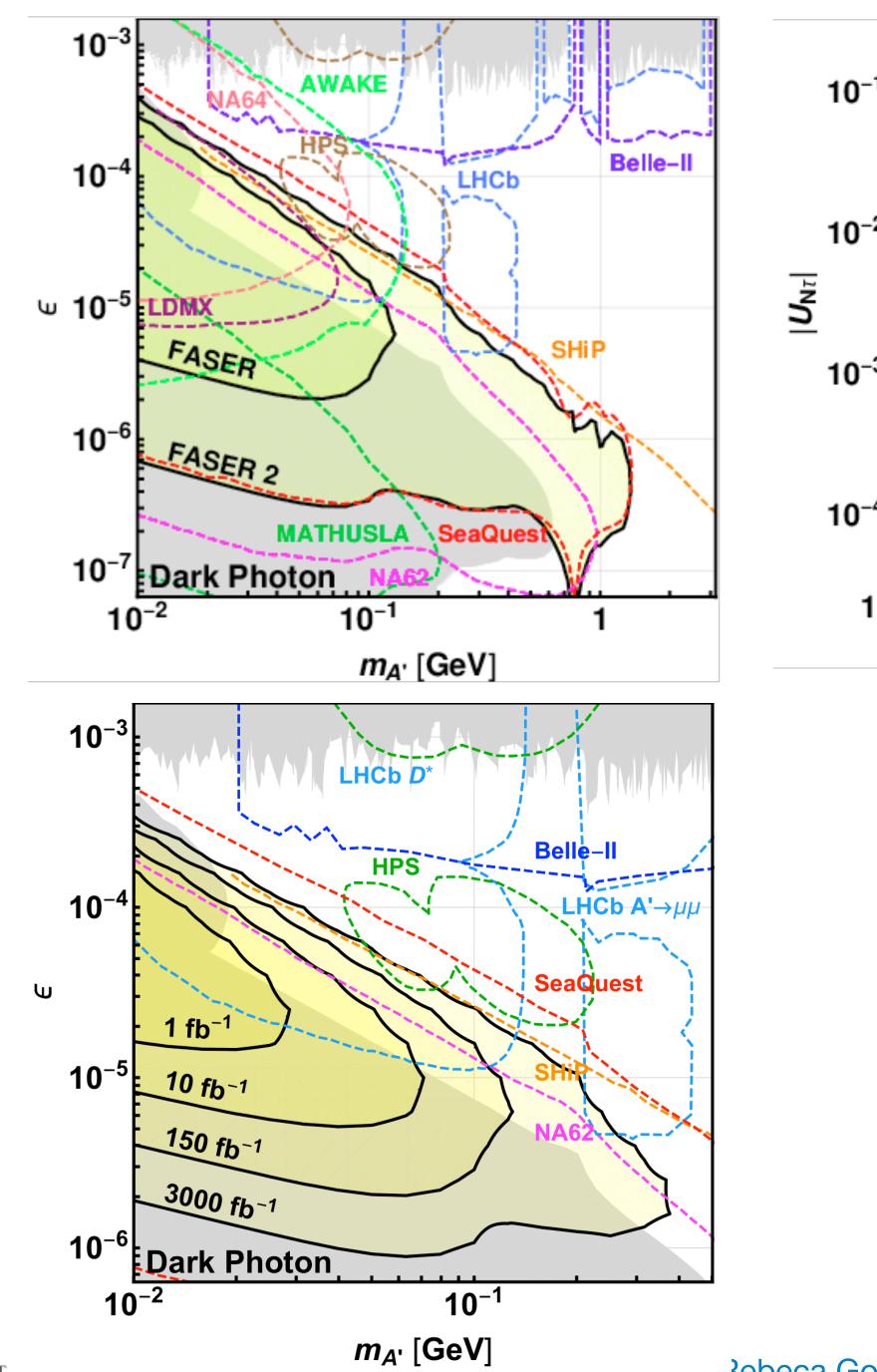
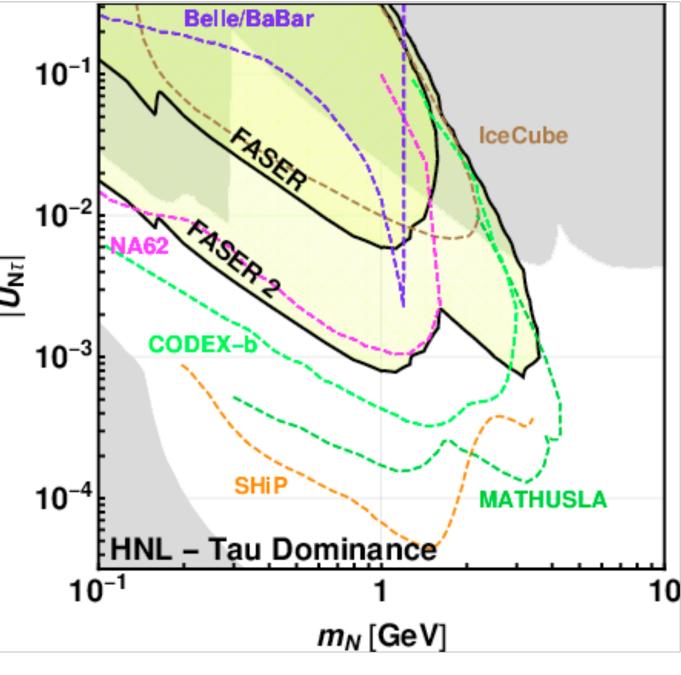


FIG. 1.

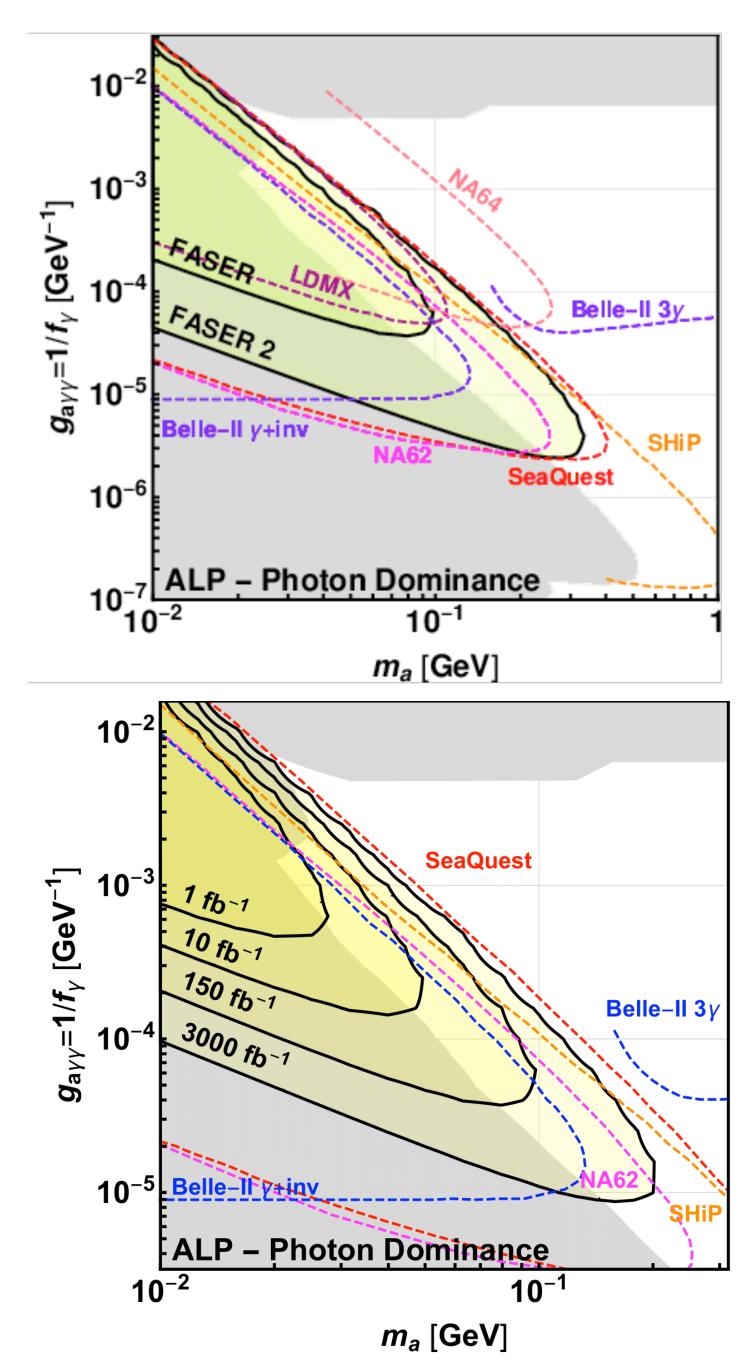

FASERv: subdetector of FASER designed to study neutrino interactions at high energies along the beamline.

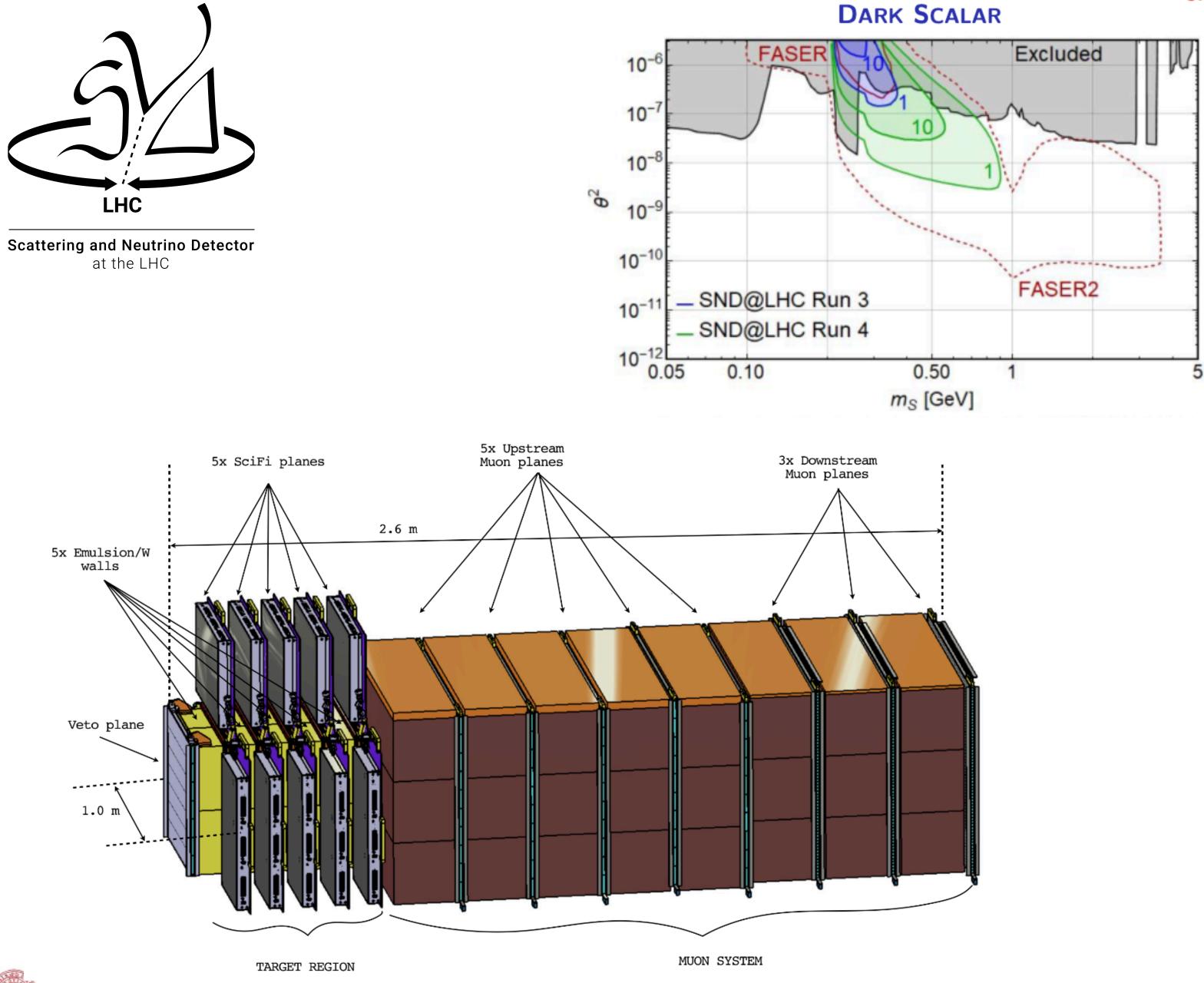



Schematic side view of the FASER detector with a muon neutrino undergoing a CC interaction in the emulsion target.

```
Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023
```

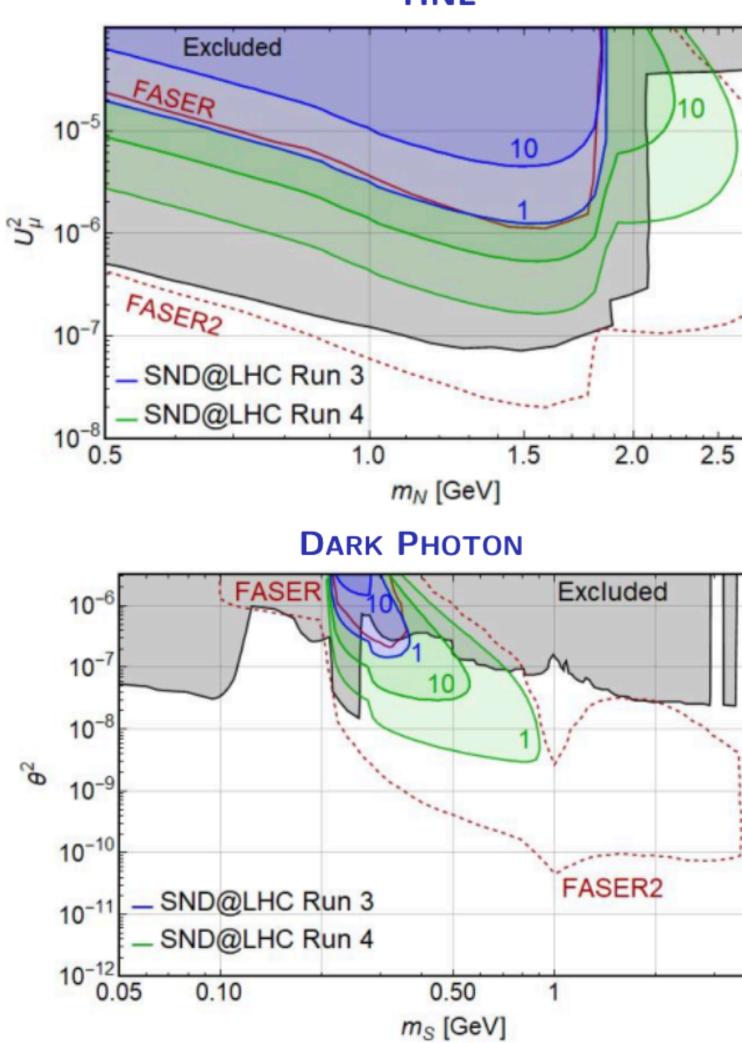

43

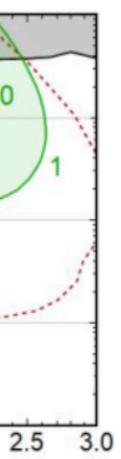


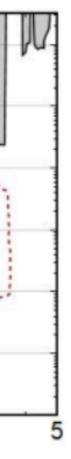


FASER: radius R = 10 cm, length D = 1.5 m luminosity L = 150 fb-1

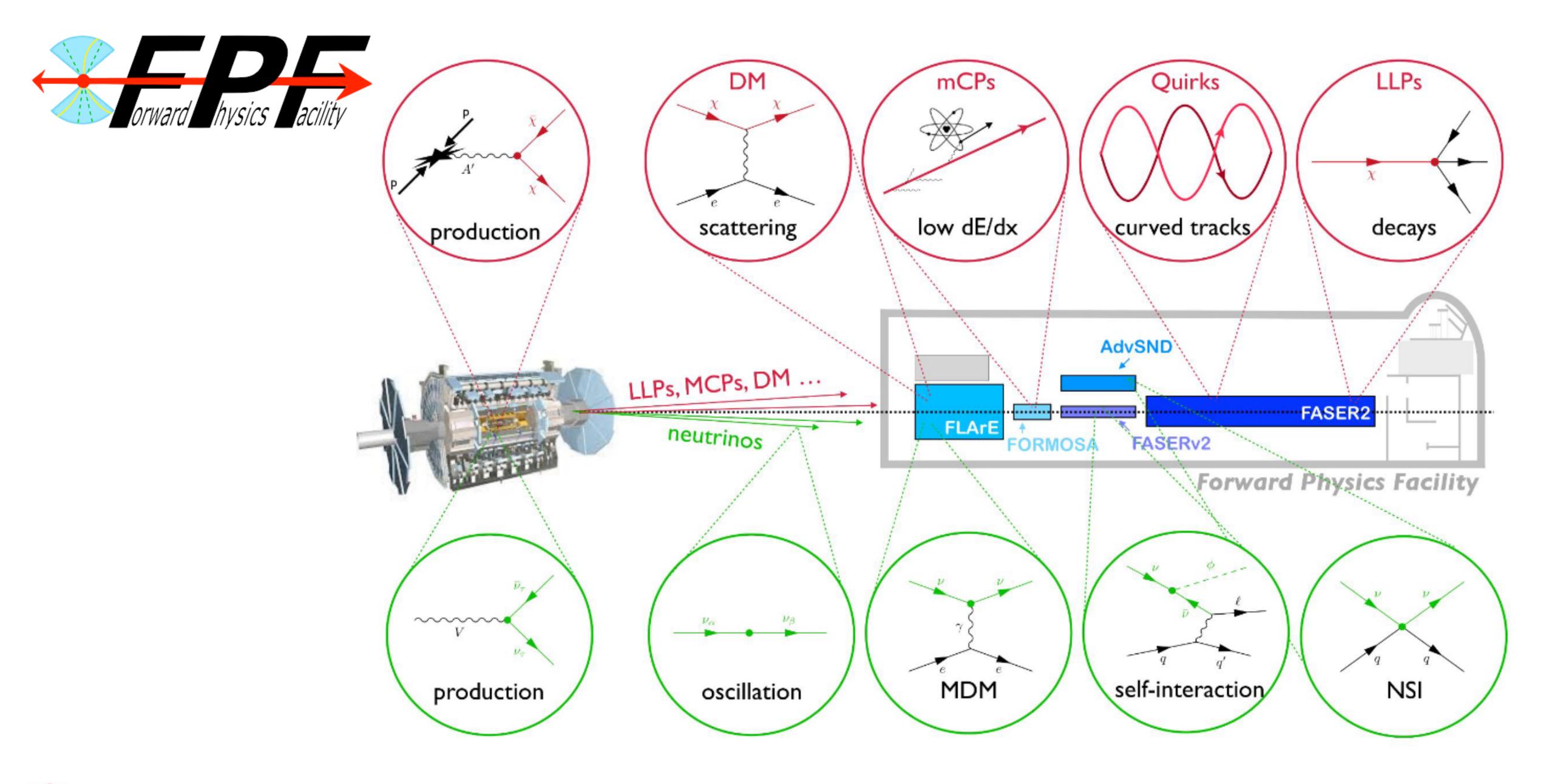
FASER 2: radius R = 1m, length D = 5mluminosity L = 3 ab-1

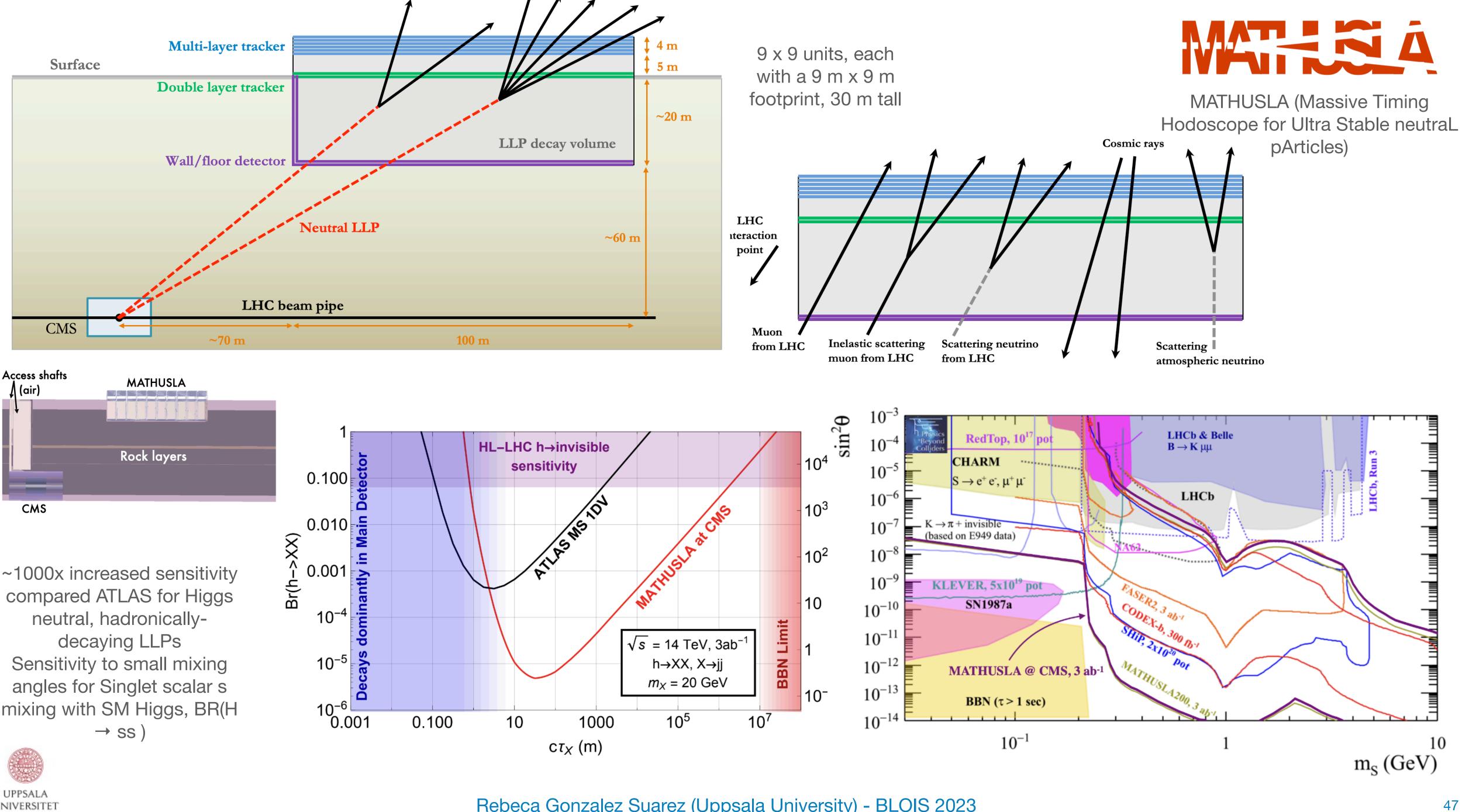


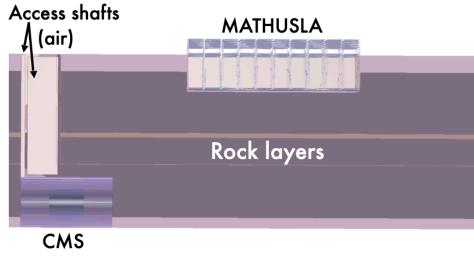


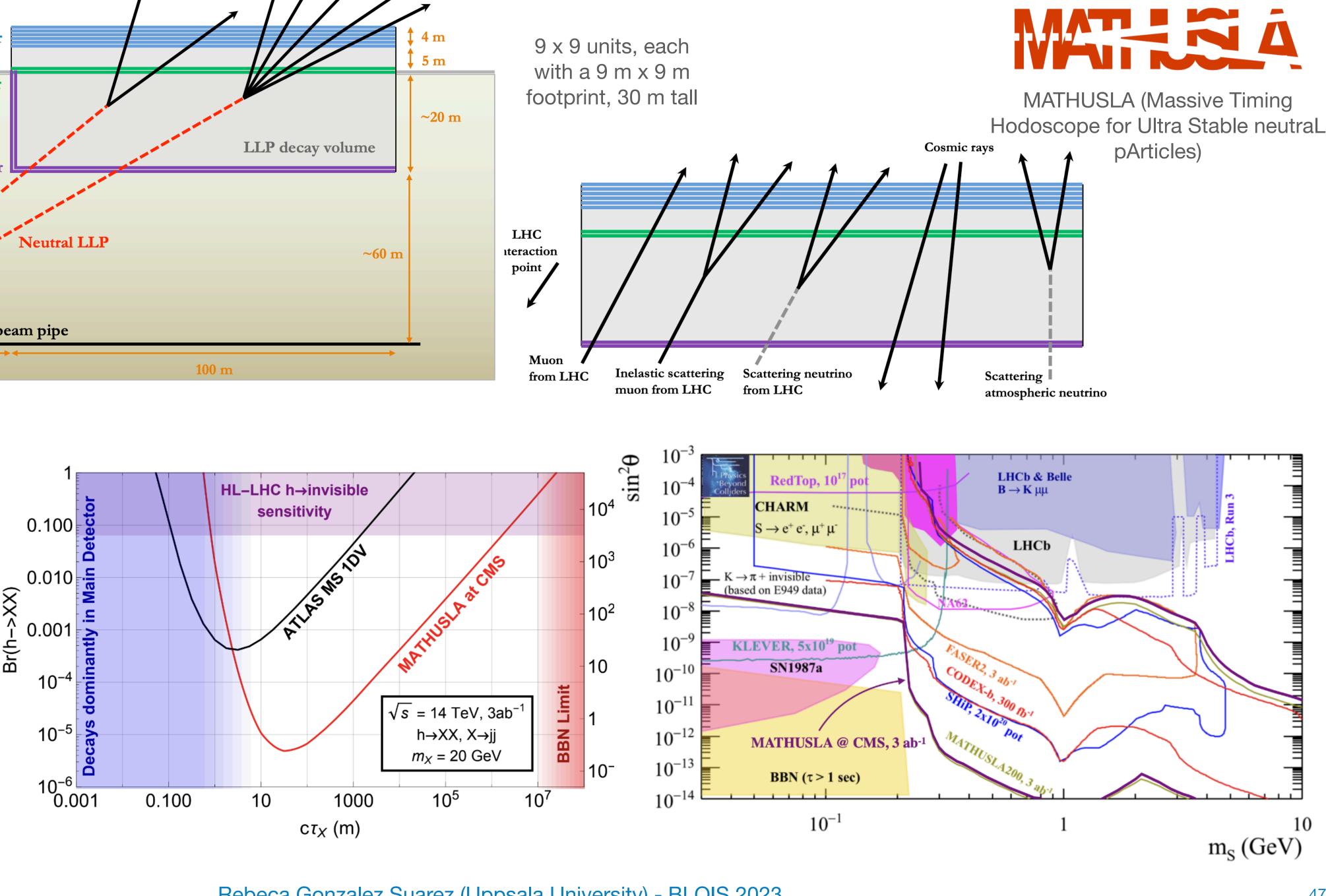


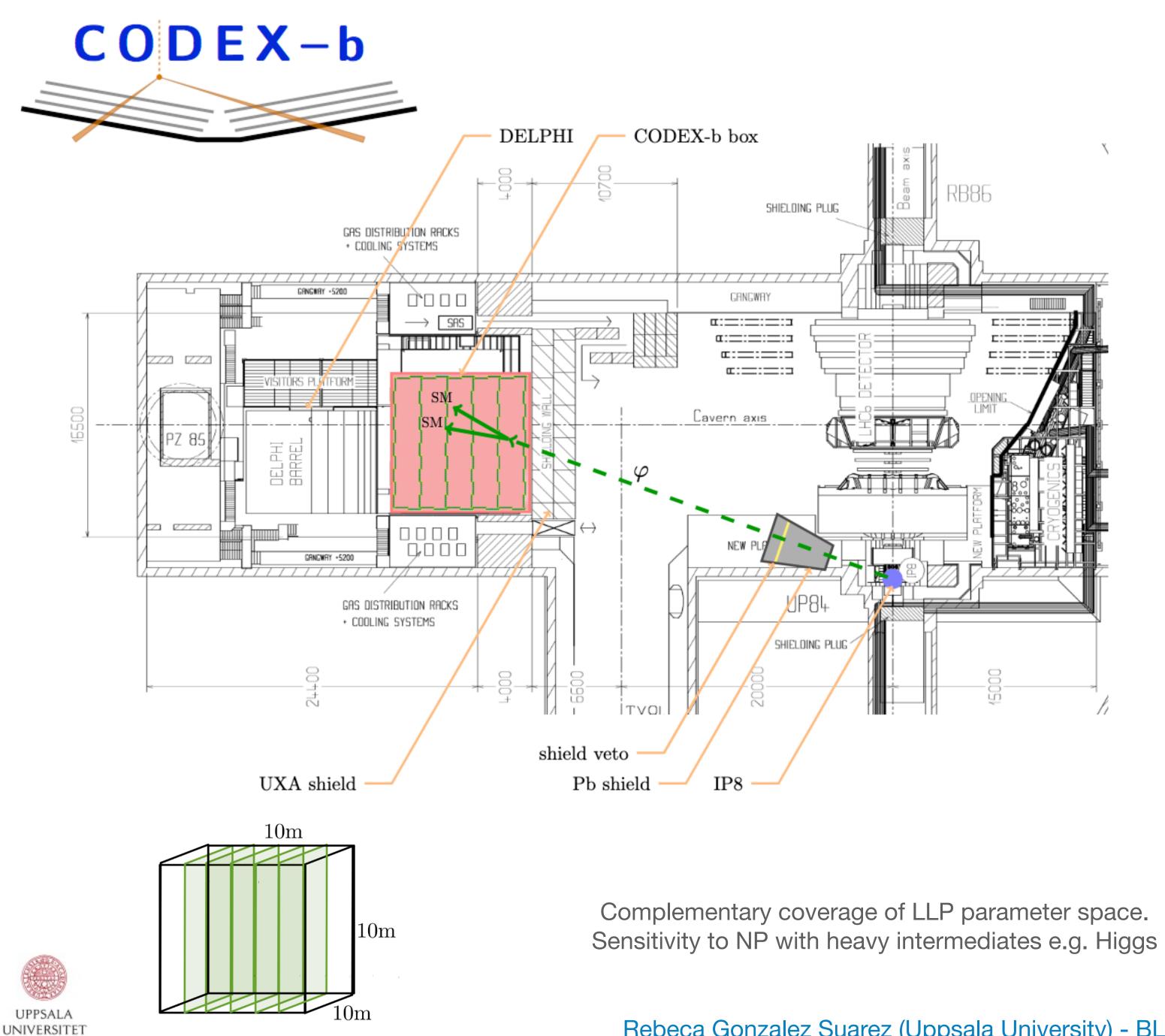
JHEP03(2022)006

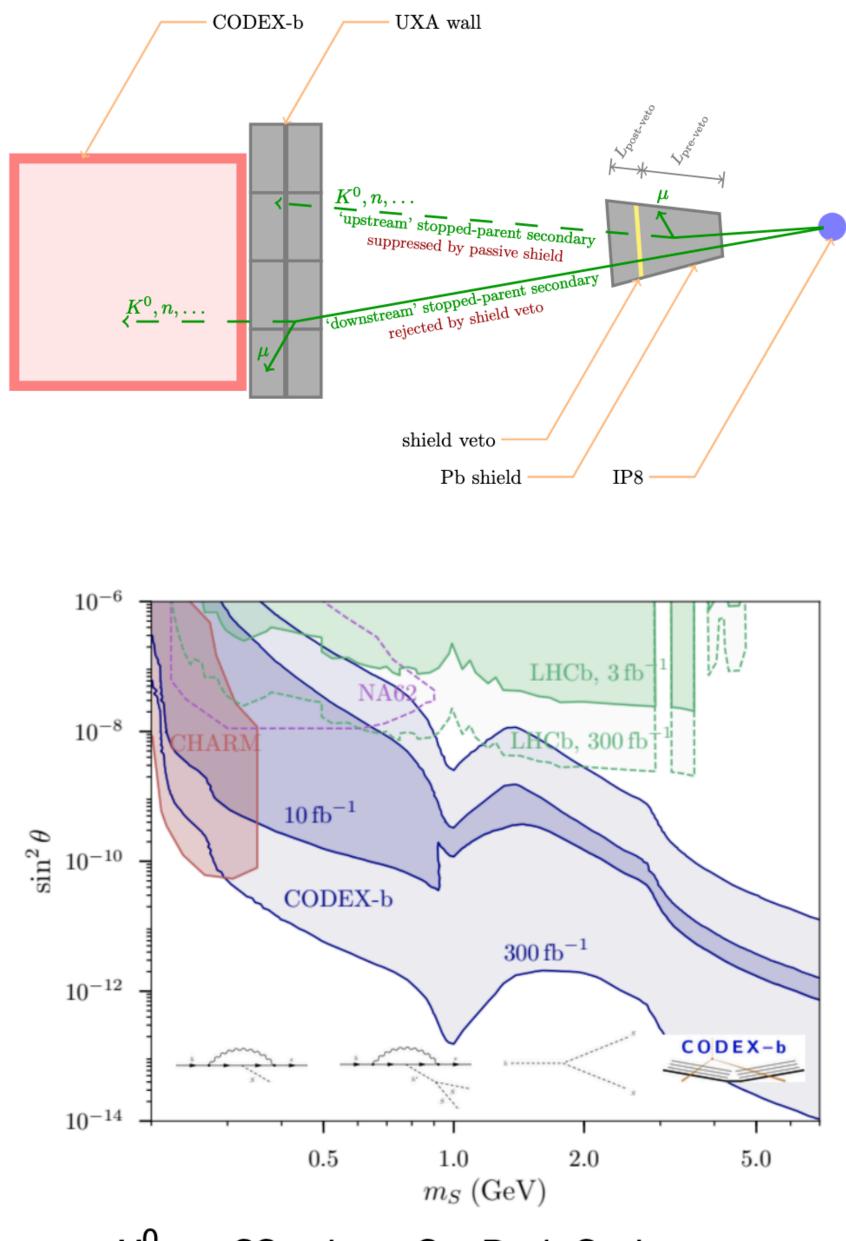

HNL



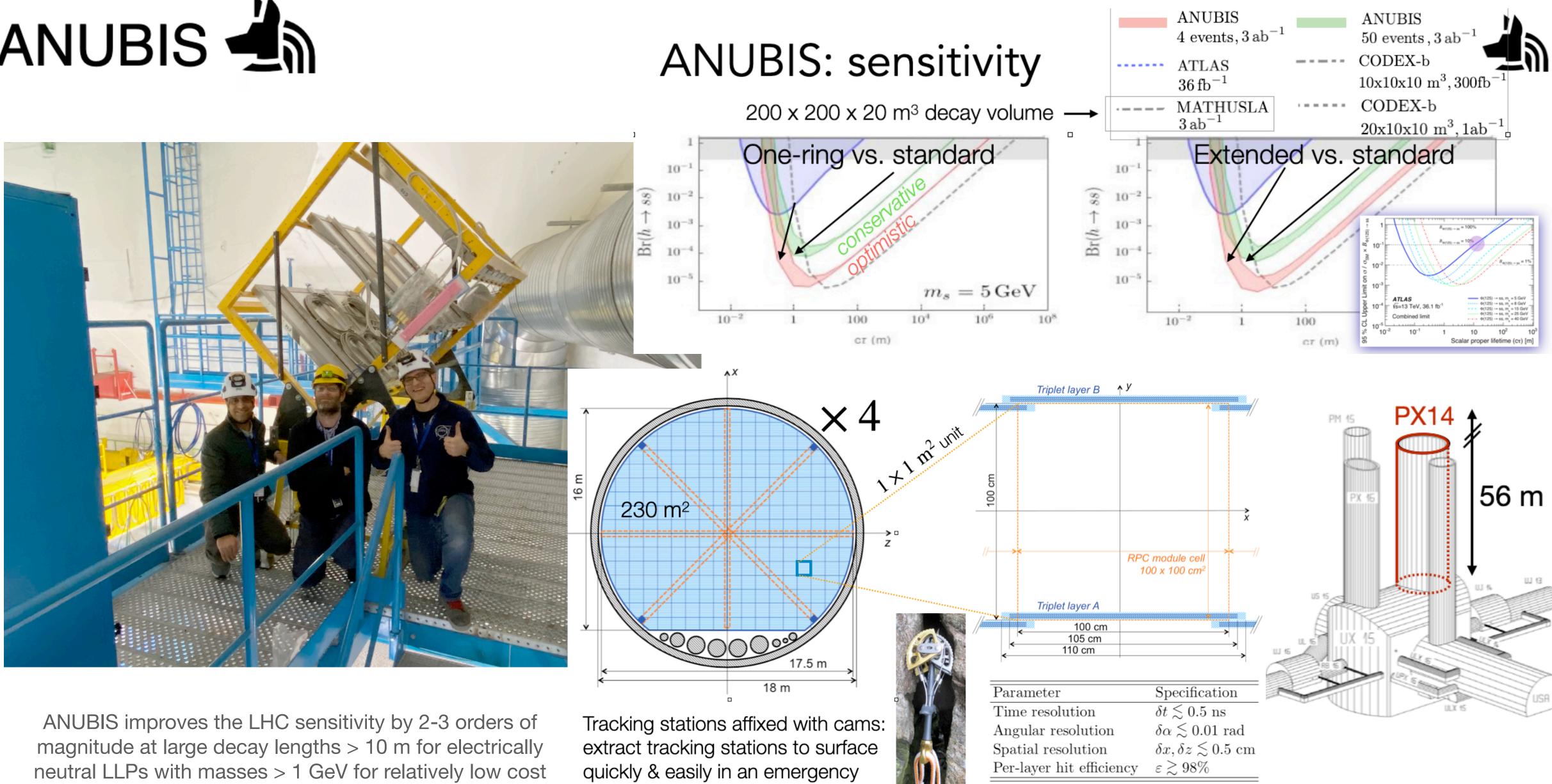




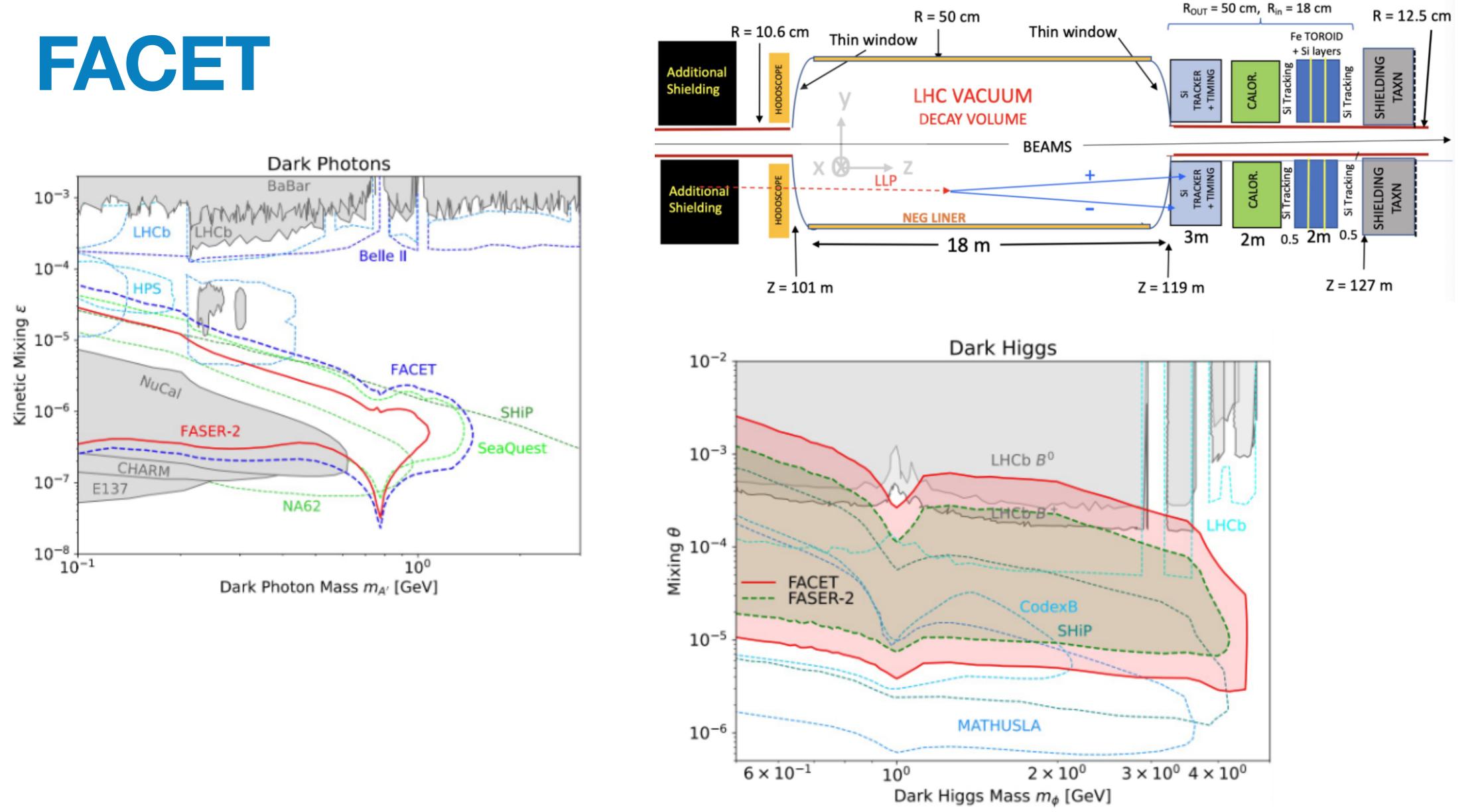




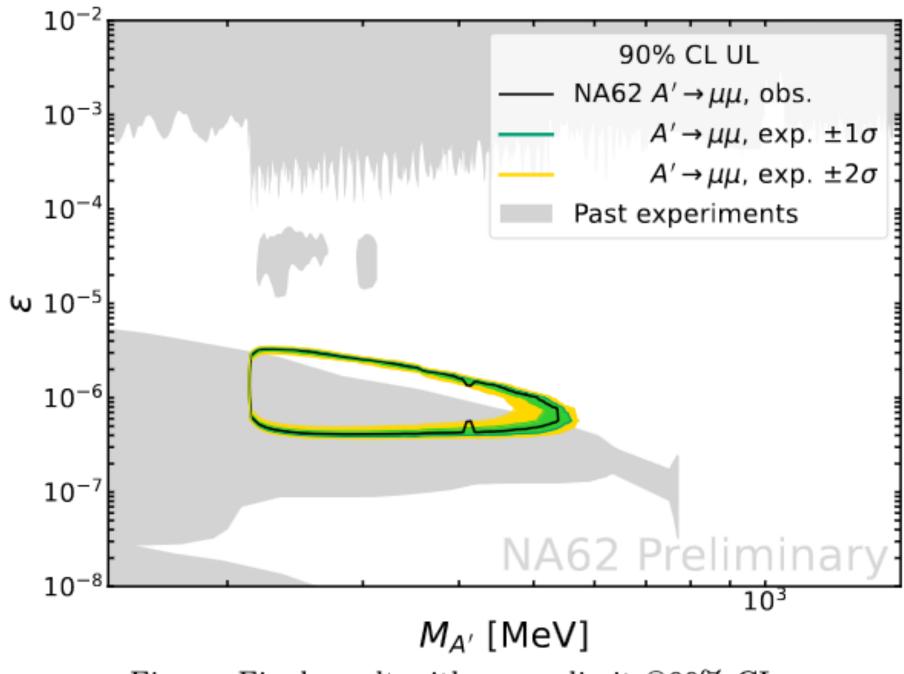
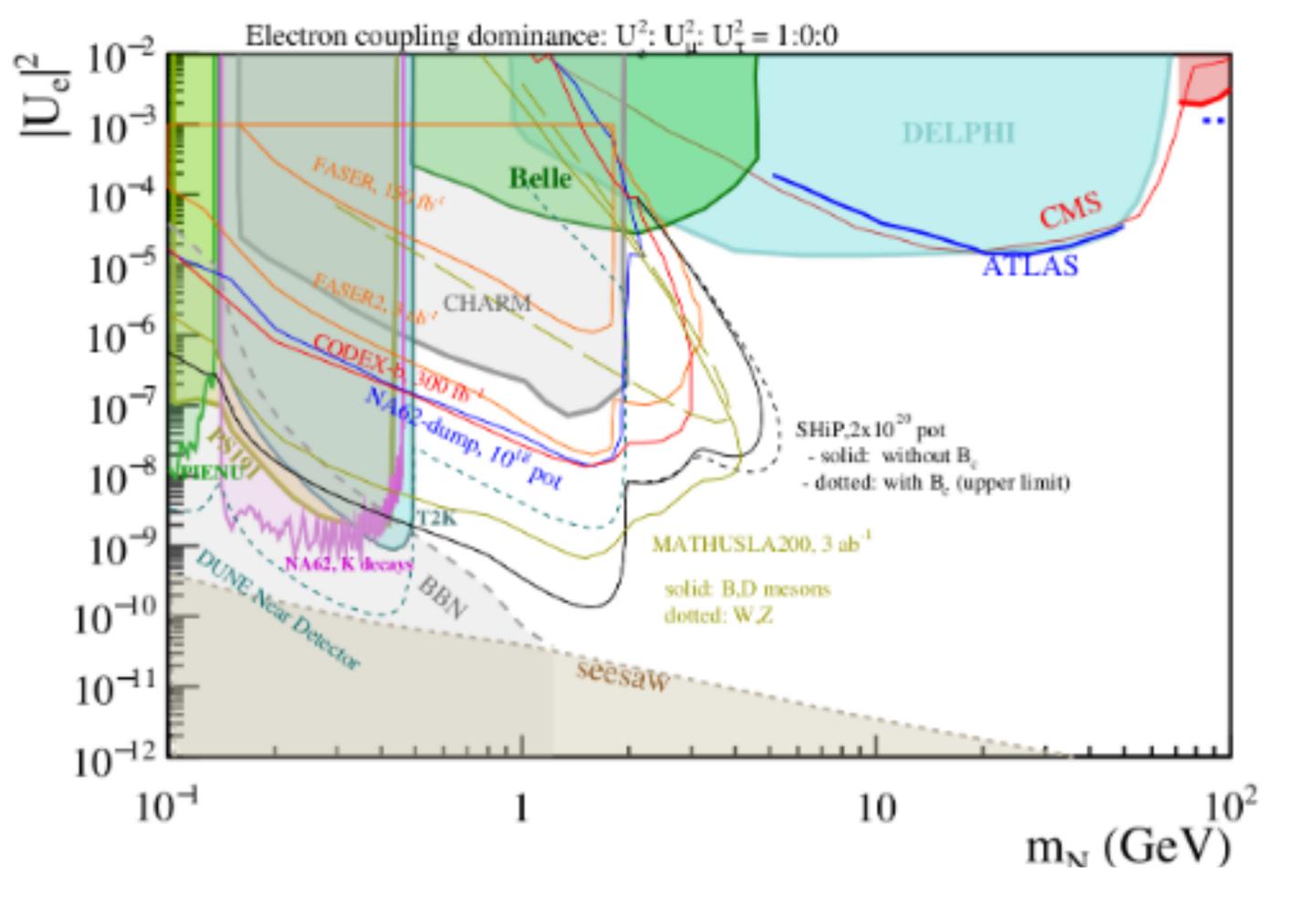
~1000x increased sensitivity compared ATLAS for Higgs mixing with SM Higgs, BR(H

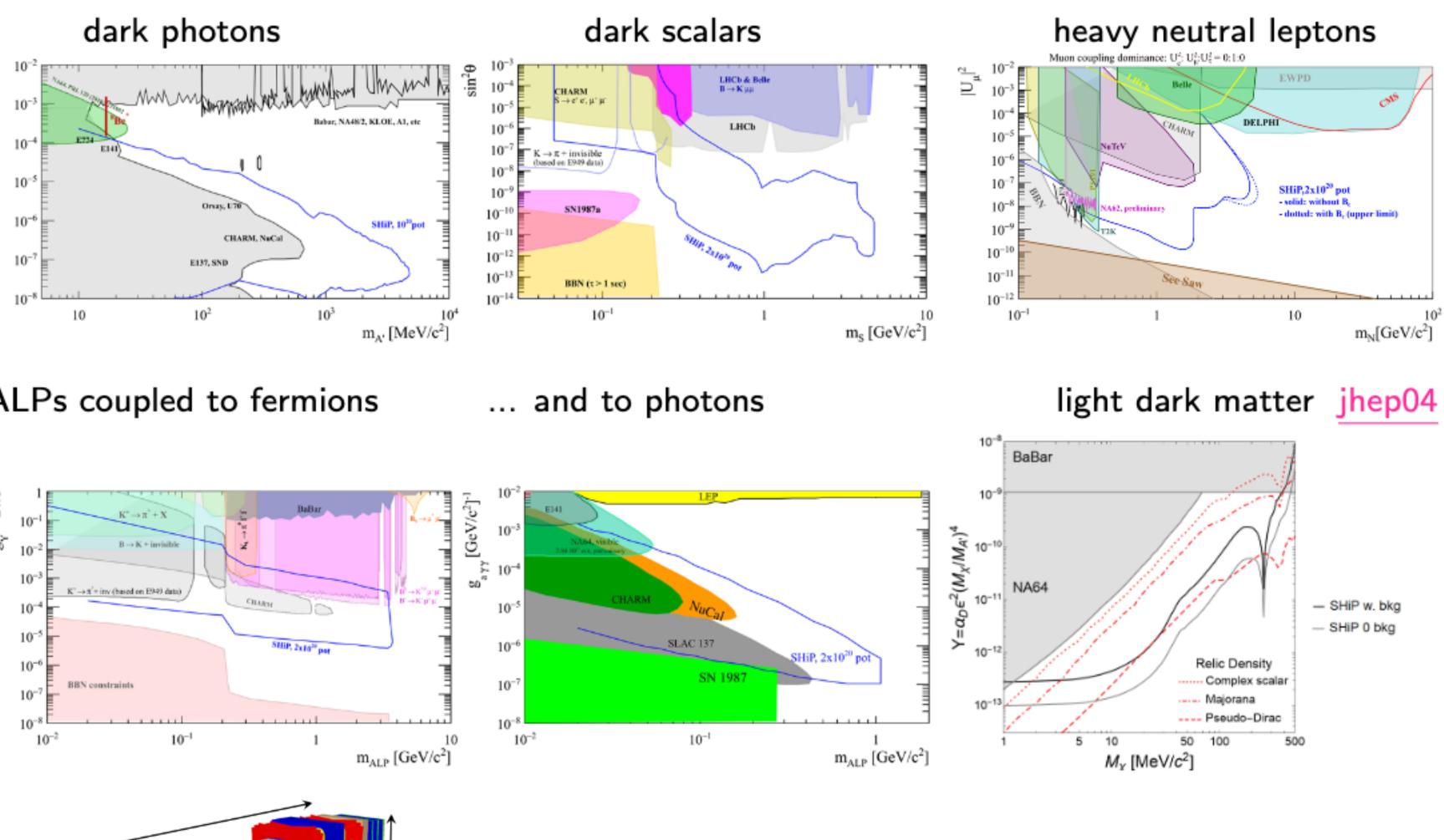


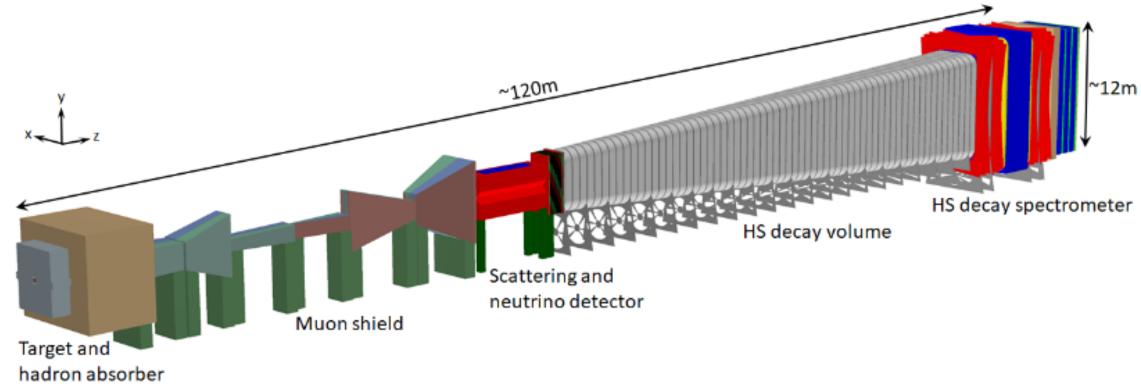
 $H^0 \rightarrow SS$, where S = Dark Scalar



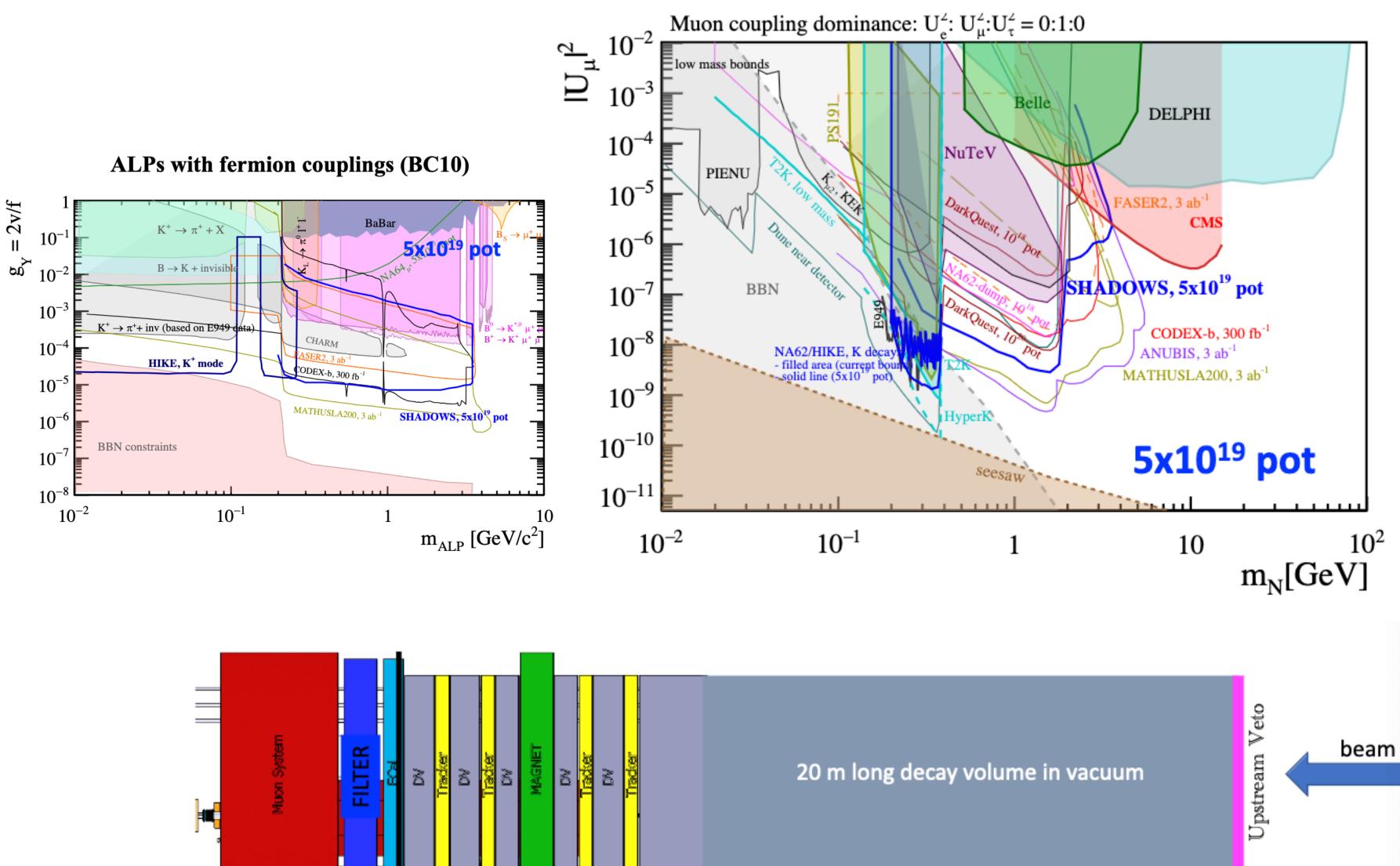
Kaon and beam dump modes, beam-dump mode sensitive to LLP signatures (HNL, dark photons/scalars, ALPs)

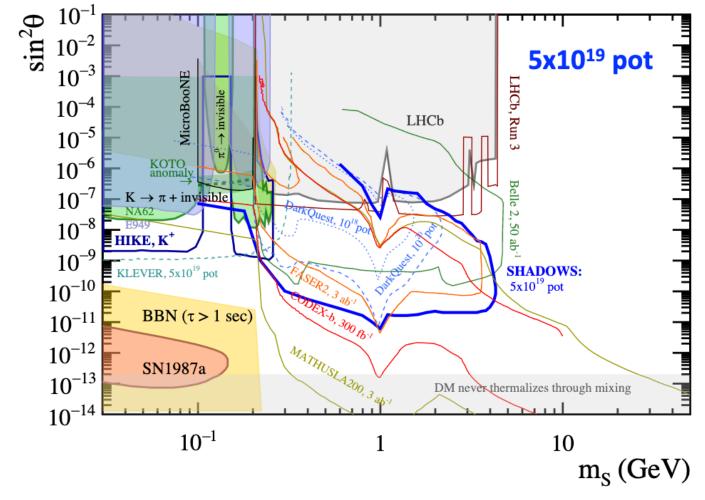



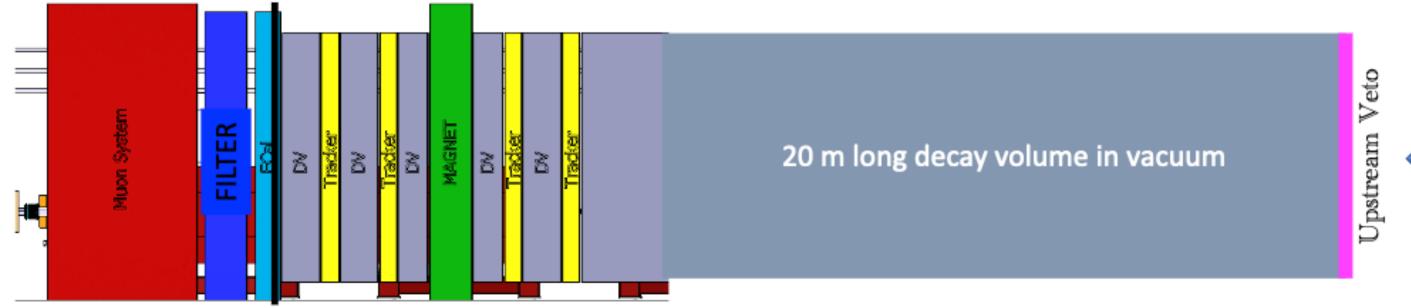

Figure: Final result with upper limit @90% CL.



Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023

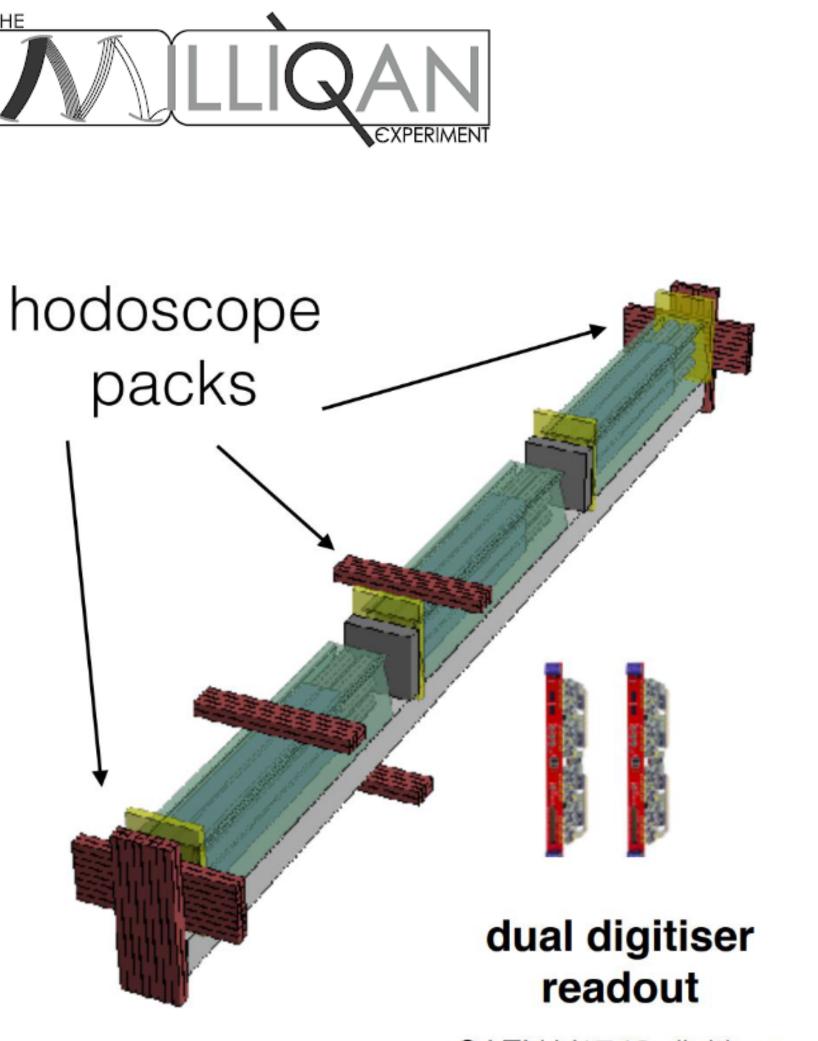


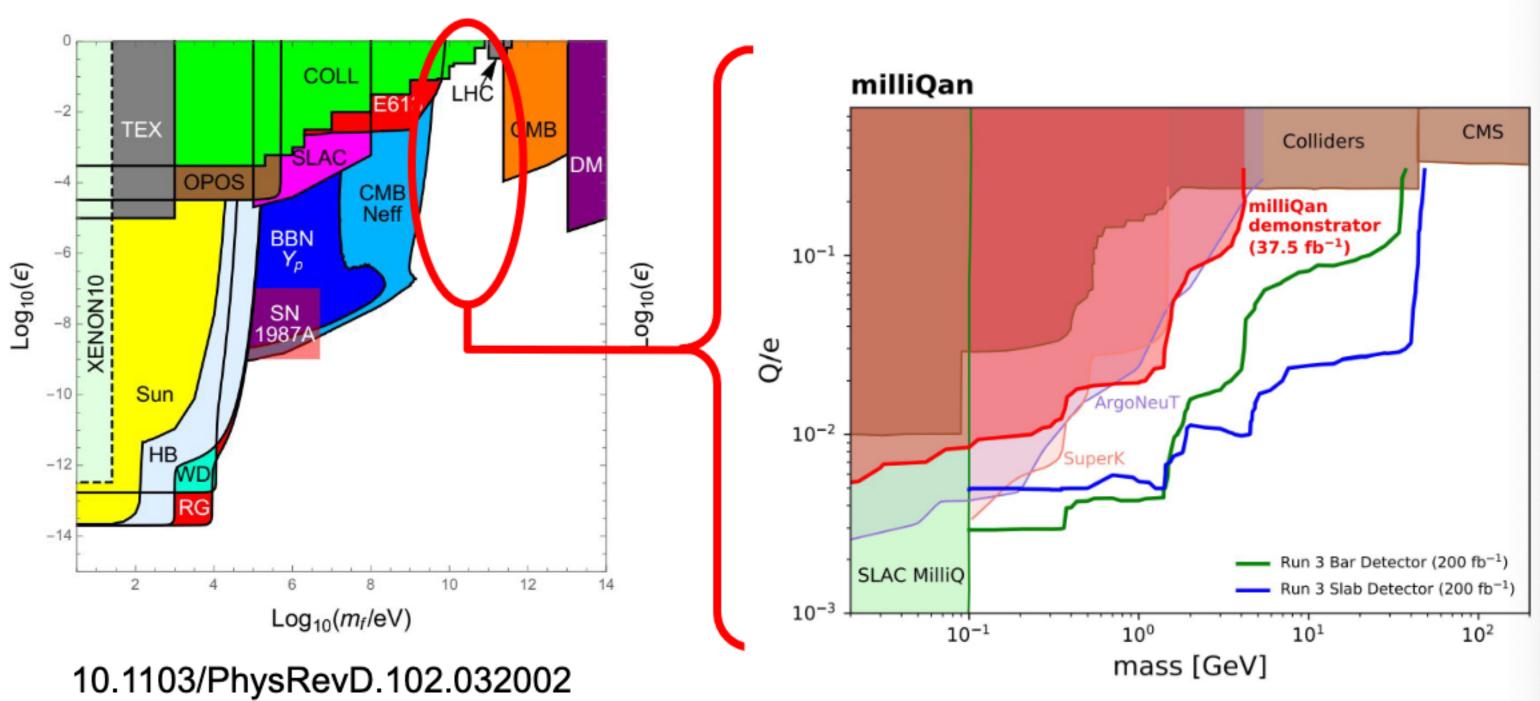




SHADOWS

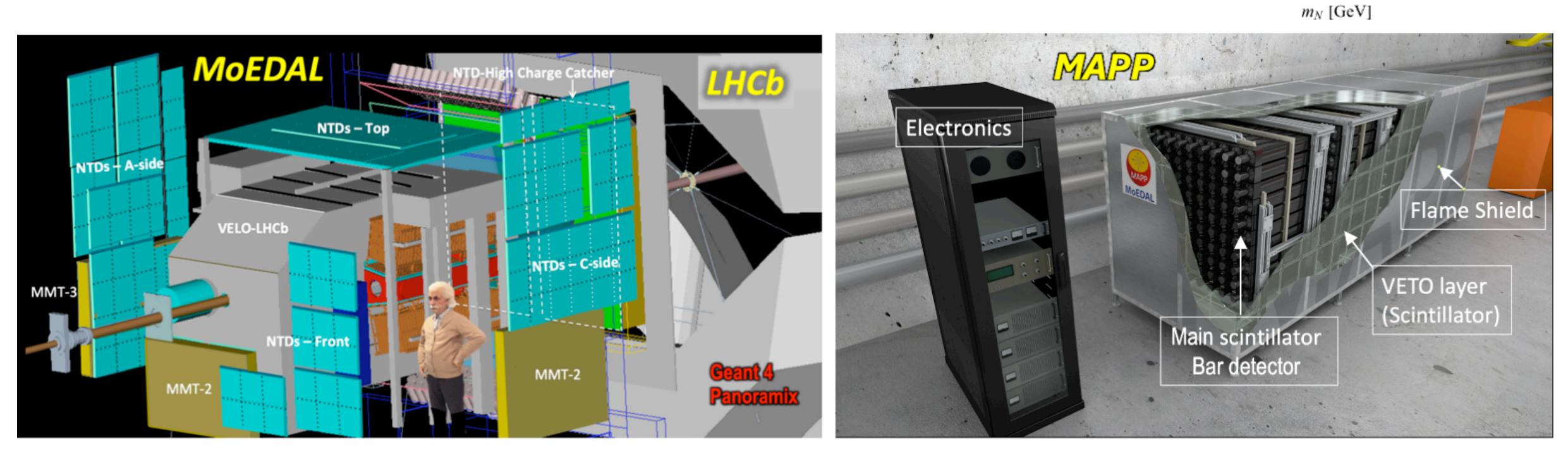
Light Dark Scalar mixing with the Higgs (BC4)



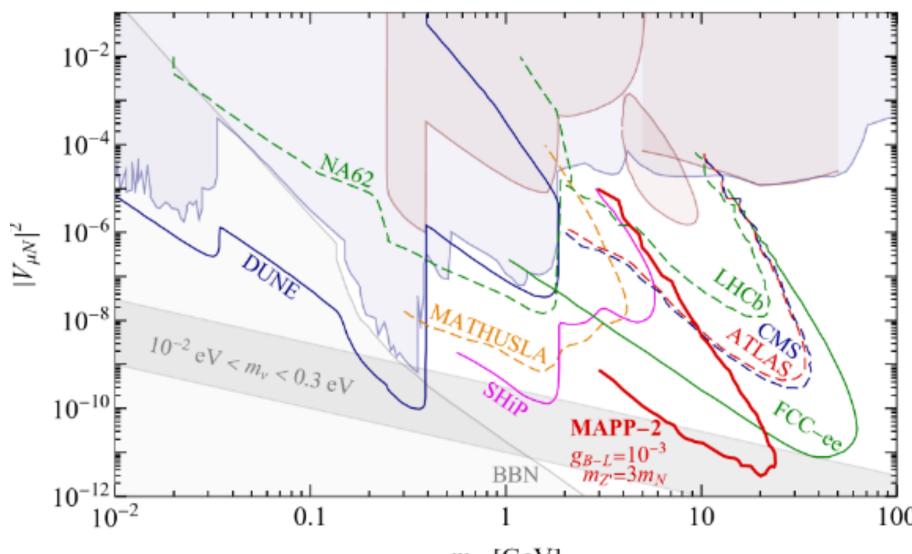


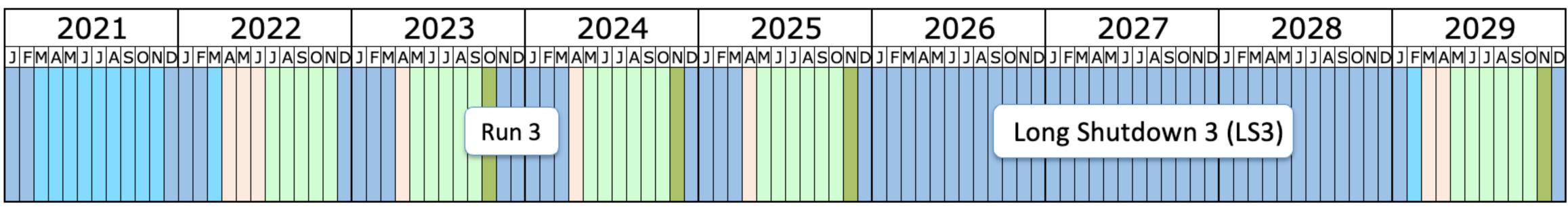
Timing Layer

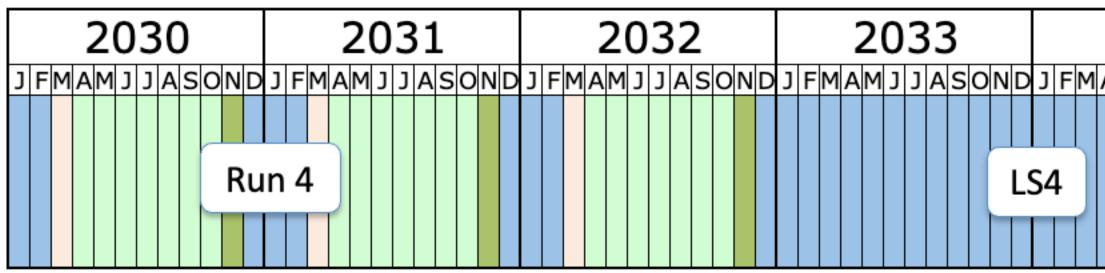
53

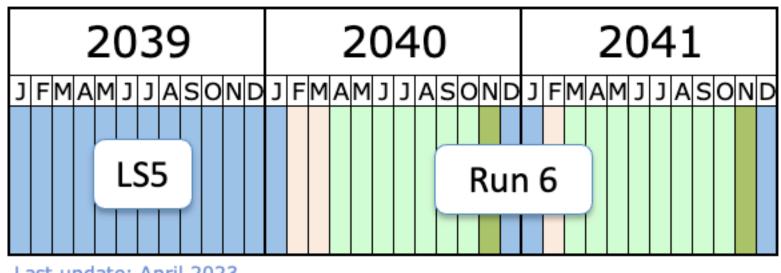


CAEN V1743 digitizer: 16 chan, 1.6 GS/s, 640 ns window





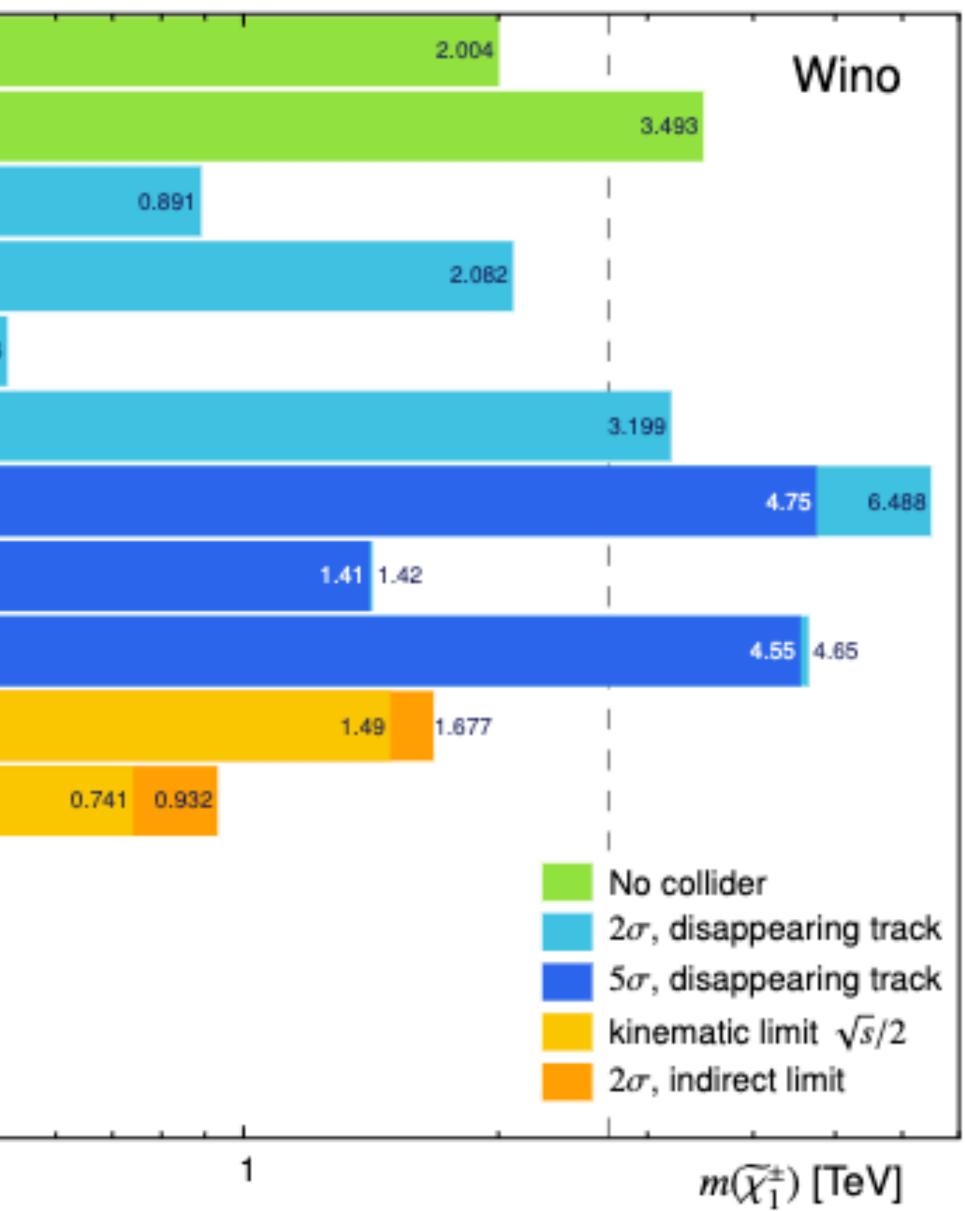


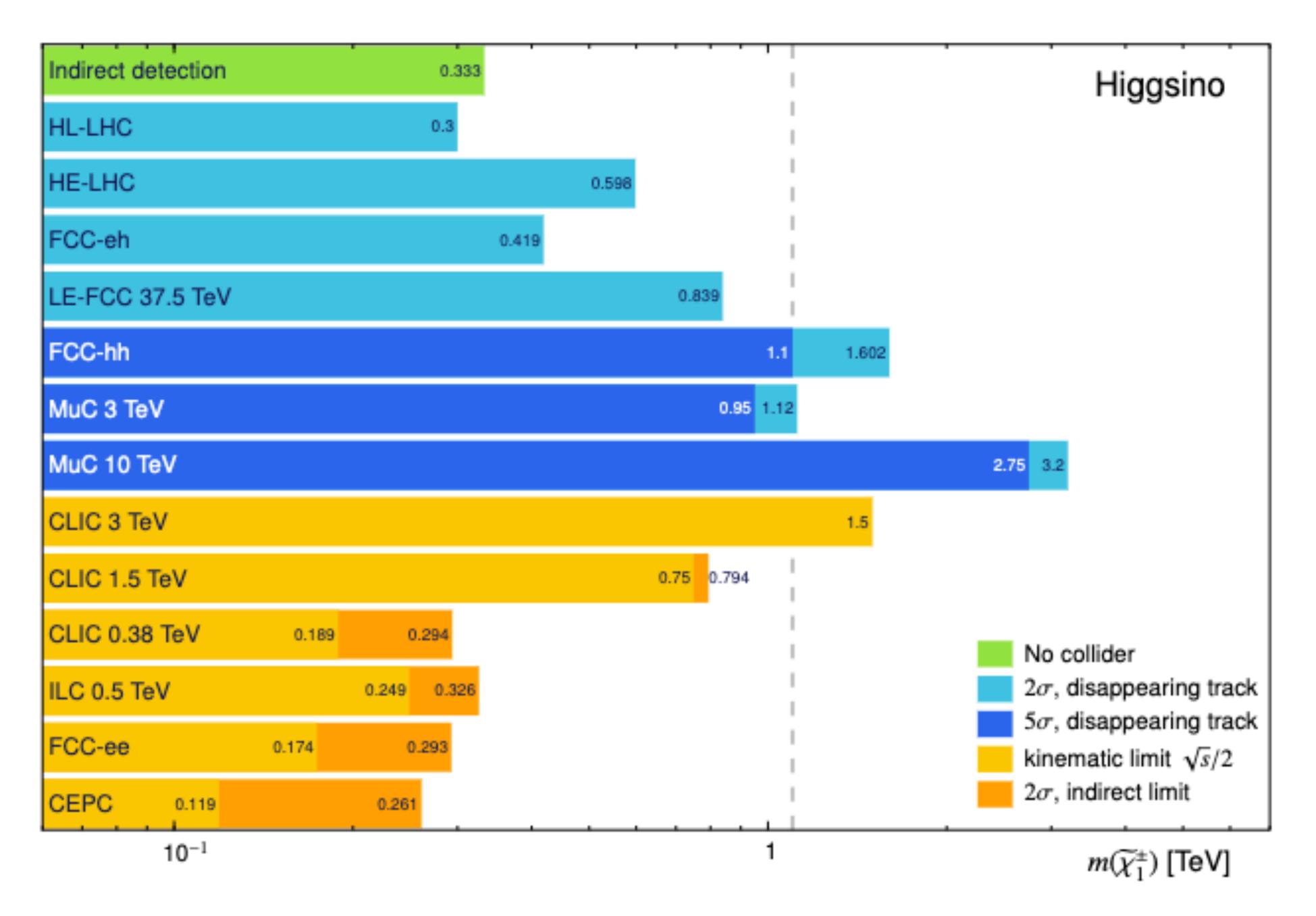


Last update: April 2023

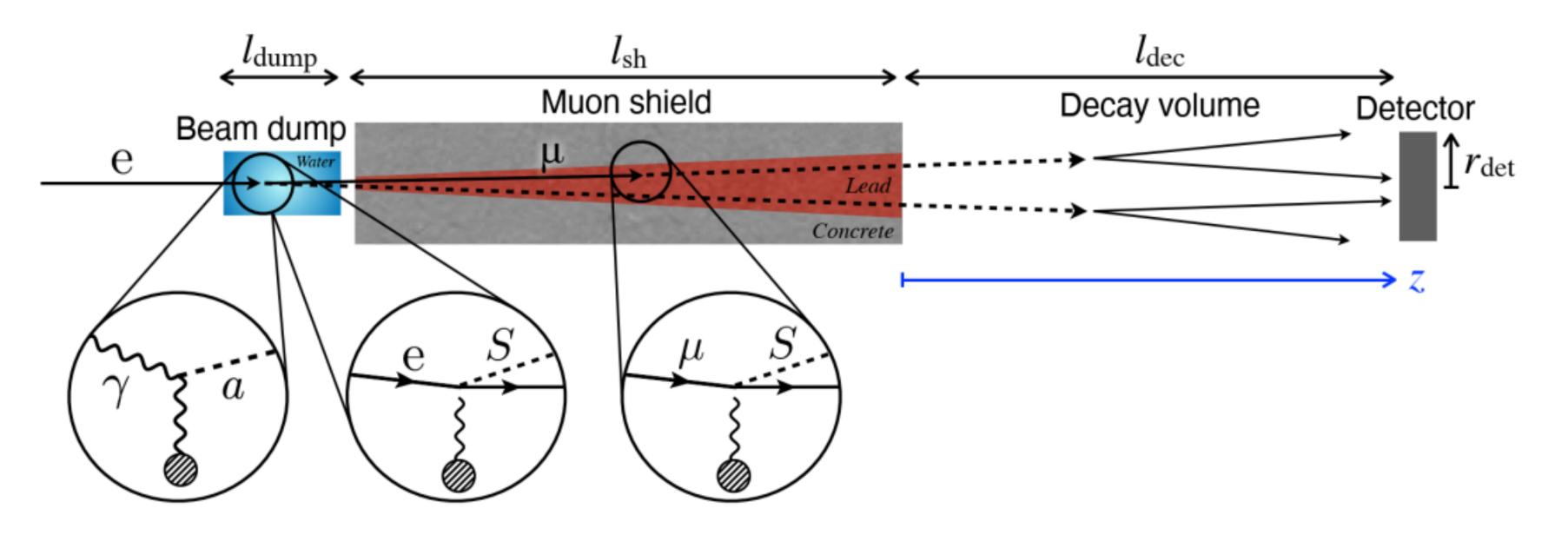
2034	2035	2036	2037	2038		
IAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND		
		F	Run 5			

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning



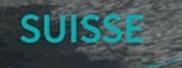


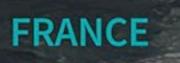
Direct detection proj	ection			
Indirect detection				
HL-LHC				
HE-LHC				
FCC-eh				0.526
LE-FCC 37.5 TeV				
FCC-hh				
MuC 3 TeV				
MuC 10 TeV				
CLIC 3 TeV				
CLIC 1.5 TeV				
CLIC 0.38 TeV	0.189		0.398	
ILC 0.5 TeV		0.249	0.427	
FCC-ee	0.175		0.397	
CEPC 0.119			0.359	
10 ⁻¹				



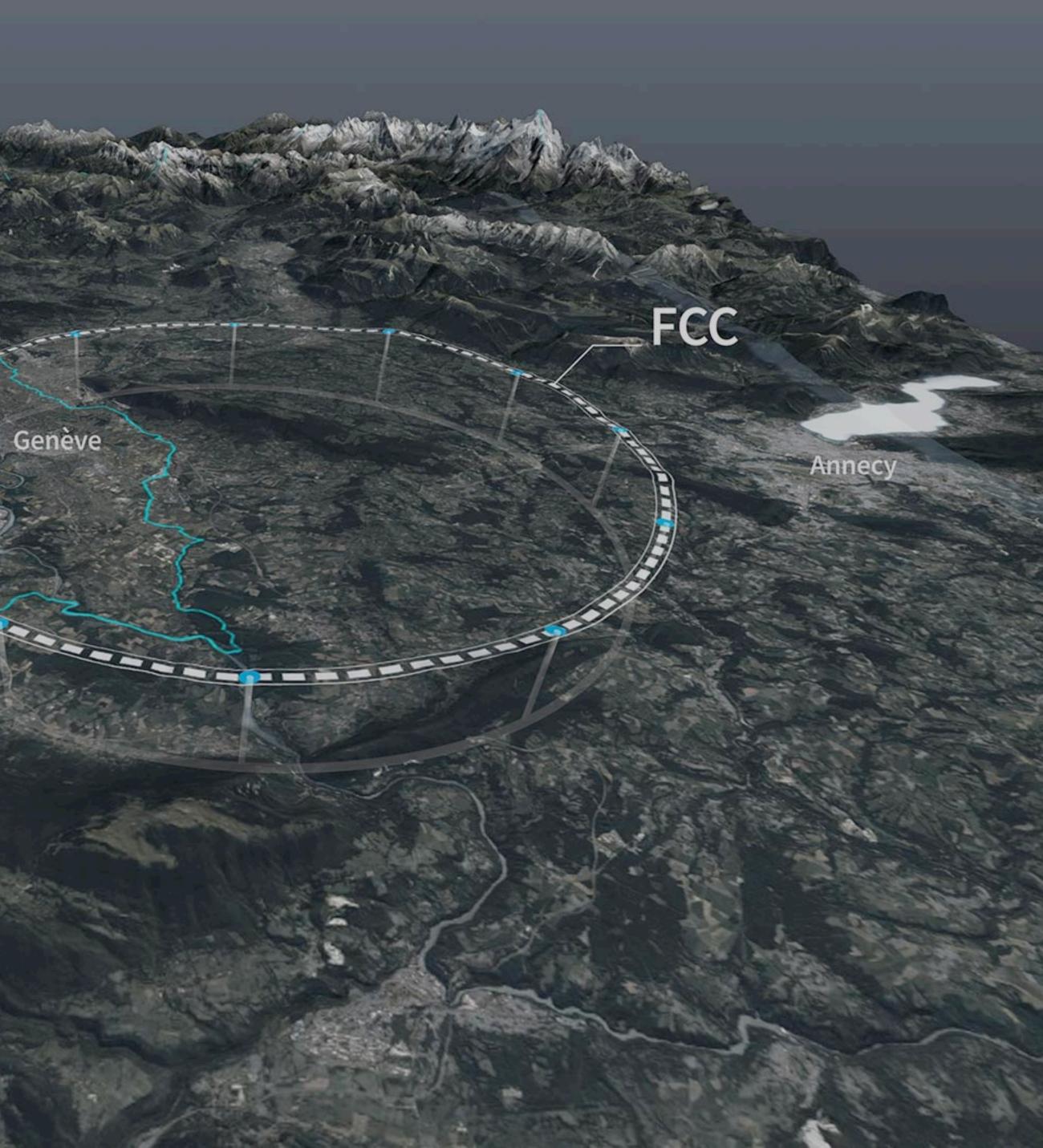
Beam dump experiments at linear colliders

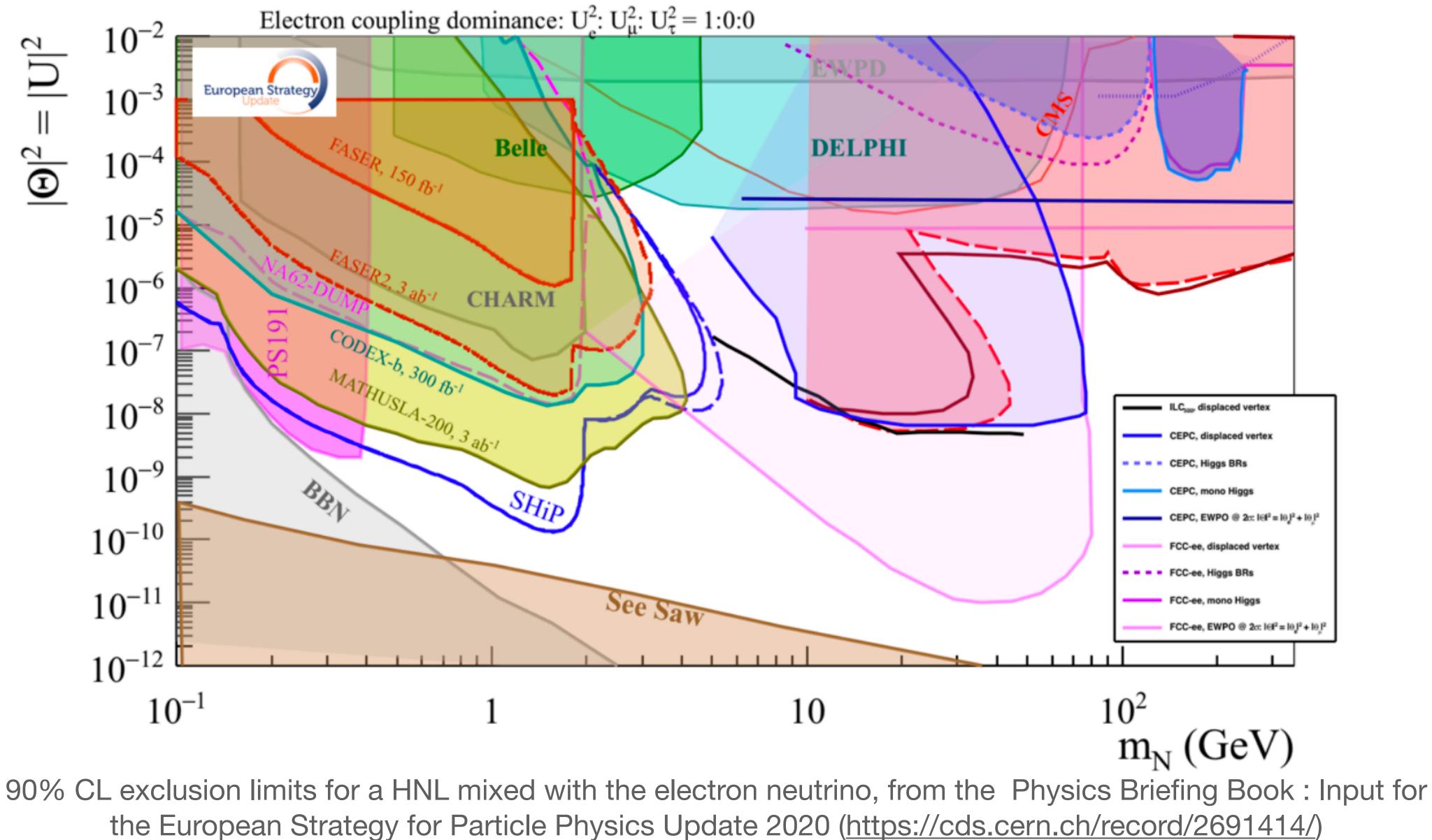
or dark photons

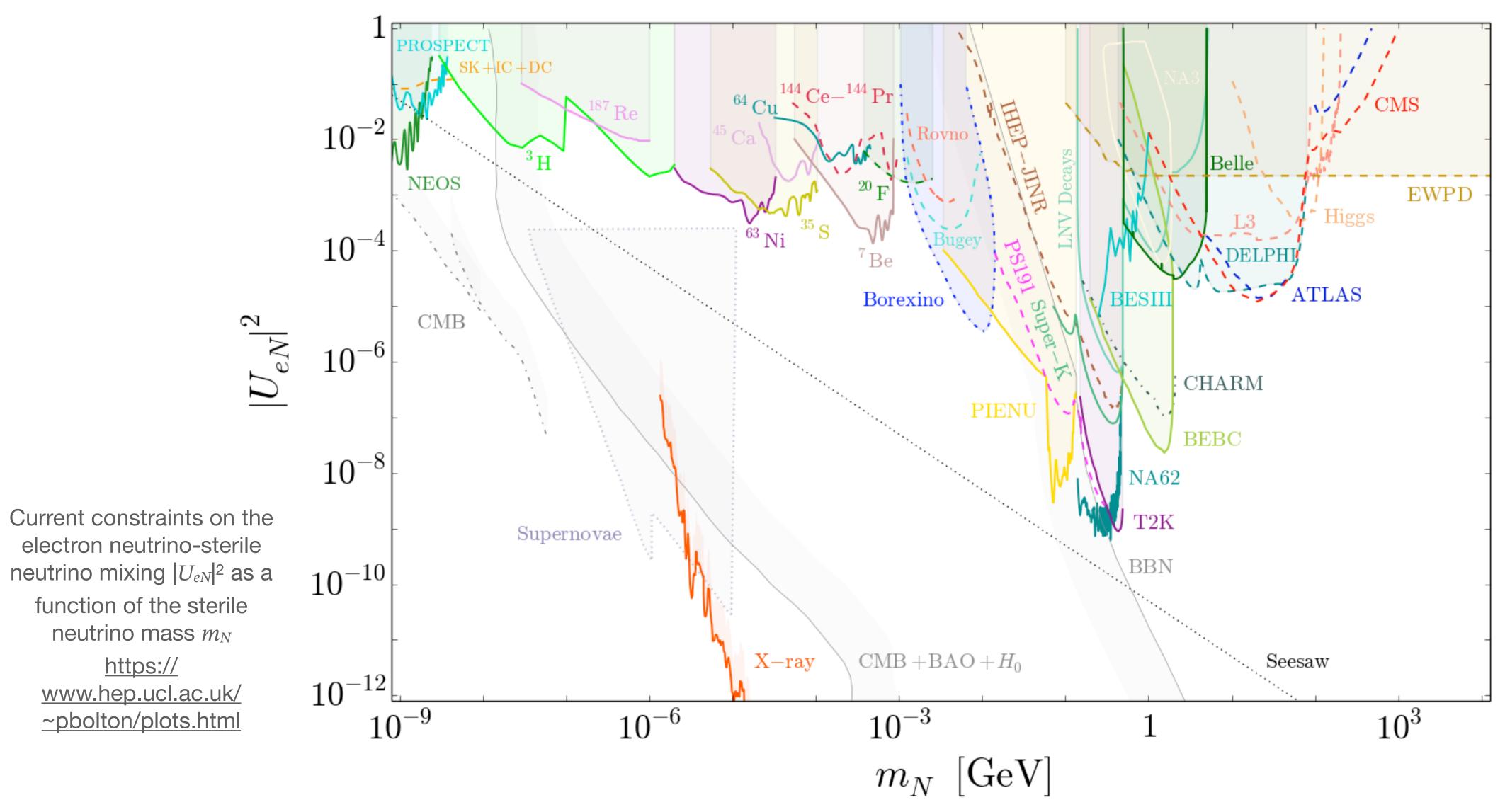

• One can look for visible products of LLPs decays (like a $\rightarrow \gamma\gamma$, S $\rightarrow \ell \ell$) or for in direct DM detection experiments; approach used in SLAC Beam Dump Experiment E137: <u>arXiv:1406.2698</u>

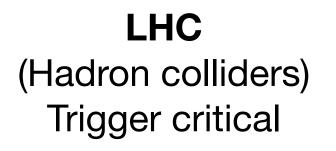


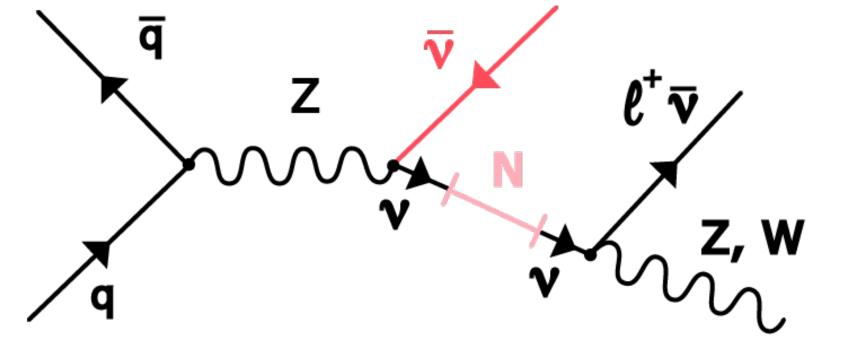
• General scheme of an experiment searching for axion-like particles, new scalars

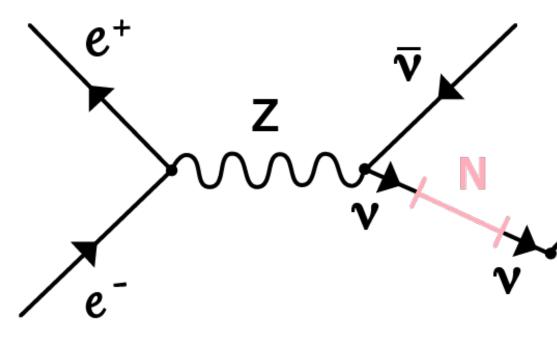

secondary interactions of invisible decay products in dedicated far detector (like

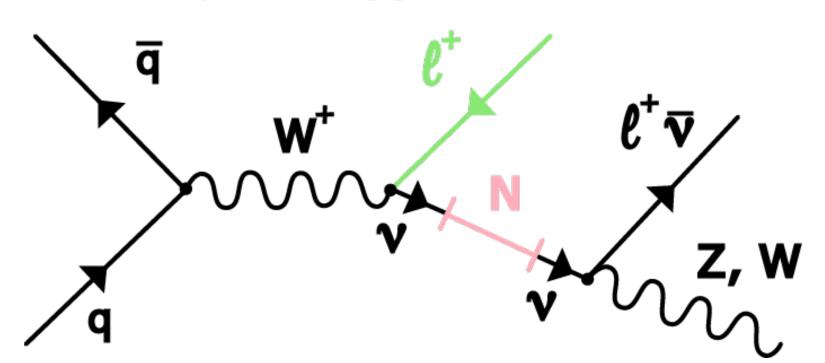


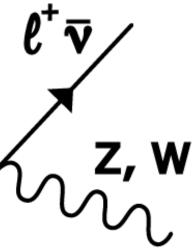

LHC_



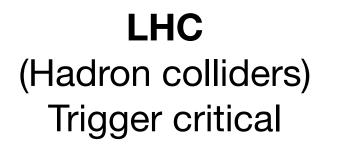


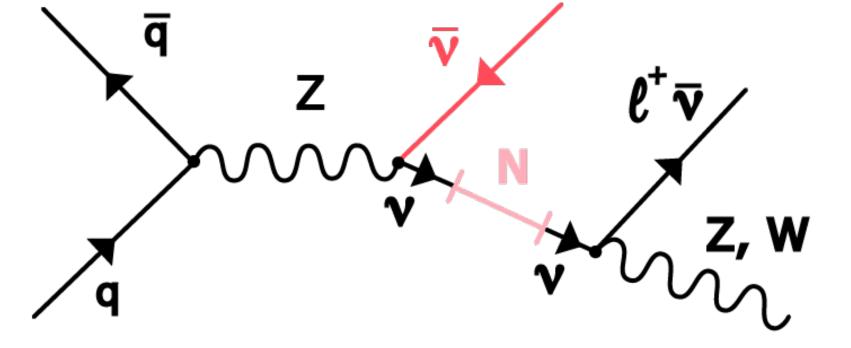




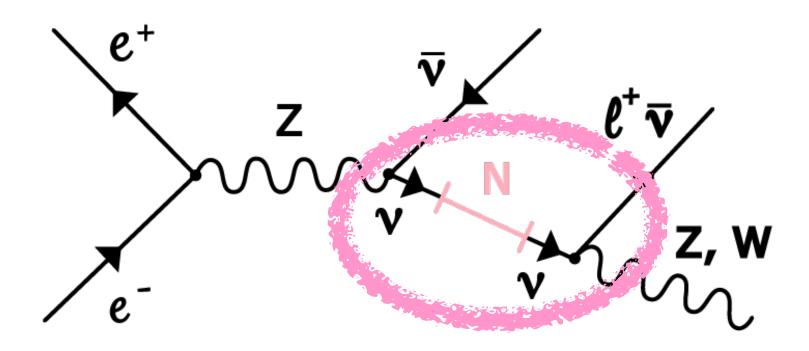

Future lepton collider at Z pole (FCC-ee) Much cleaner environment

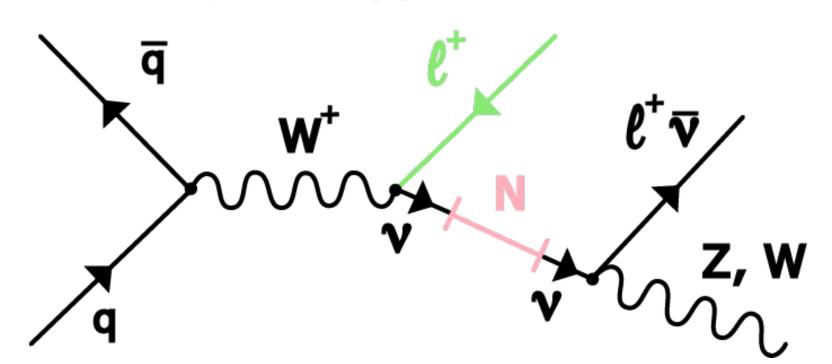
lepton trigger





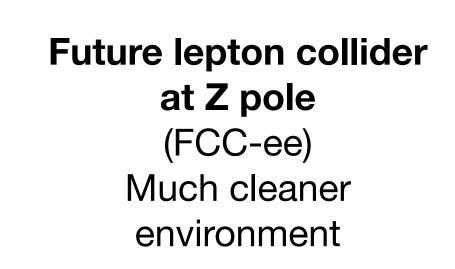
Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023

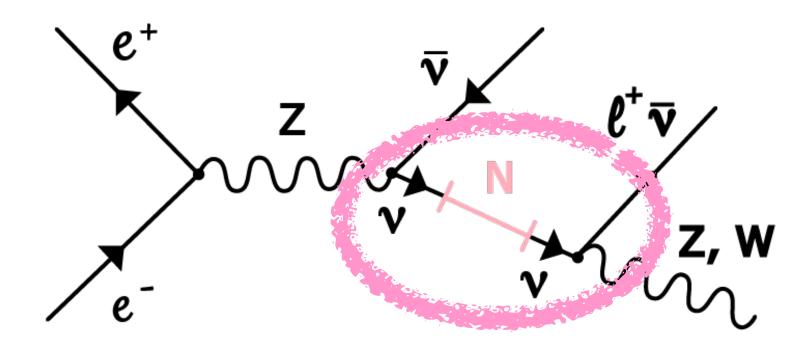




Future lepton collider at Z pole (FCC-ee) Much cleaner environment

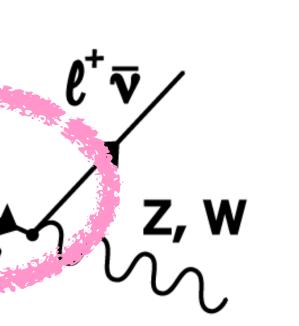
lepton trigger

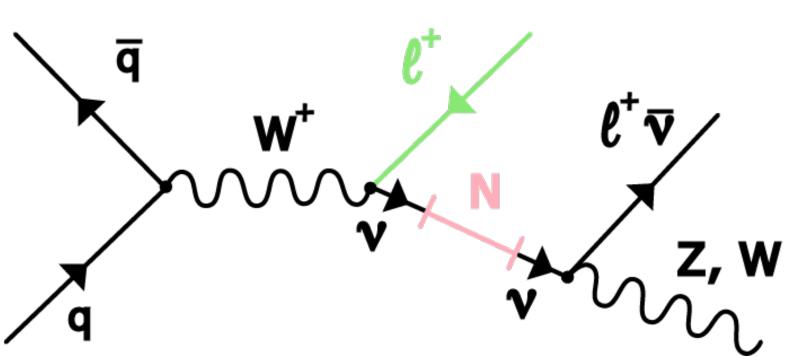

 \sim

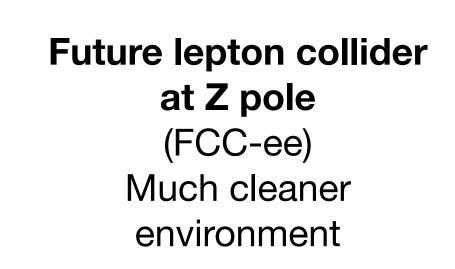

 $\overline{\mathbf{v}}$

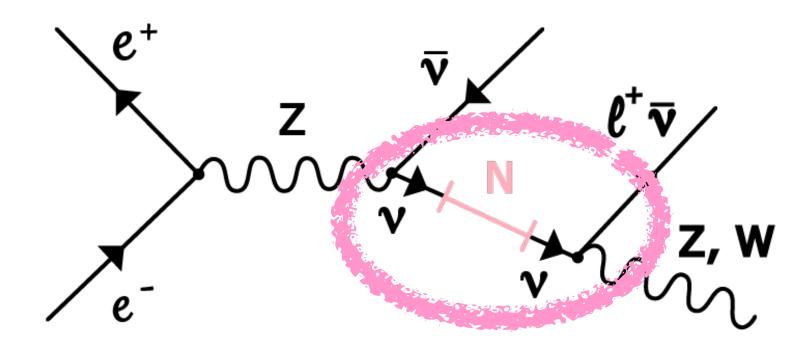
q

q


LHC (Hadron colliders) Trigger critical

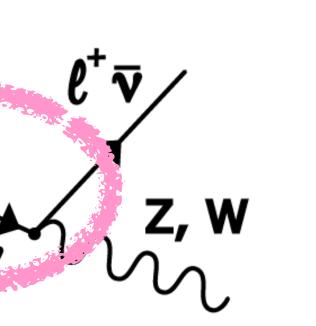


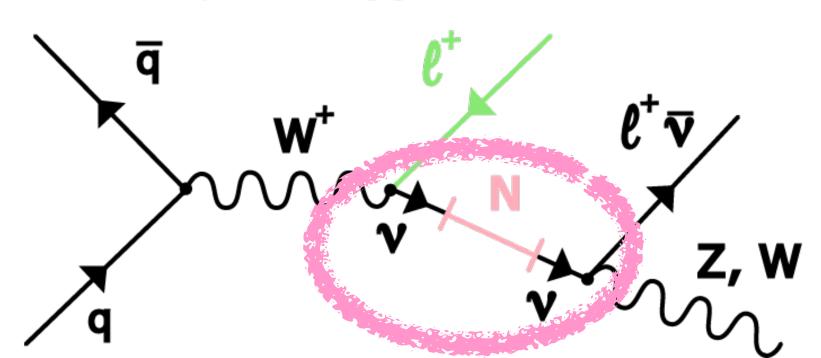

 \sim


V

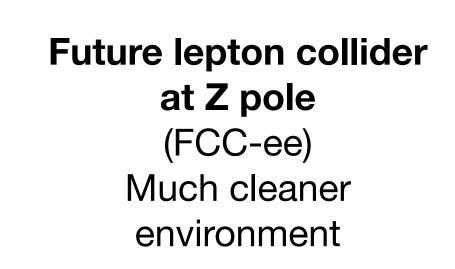
q

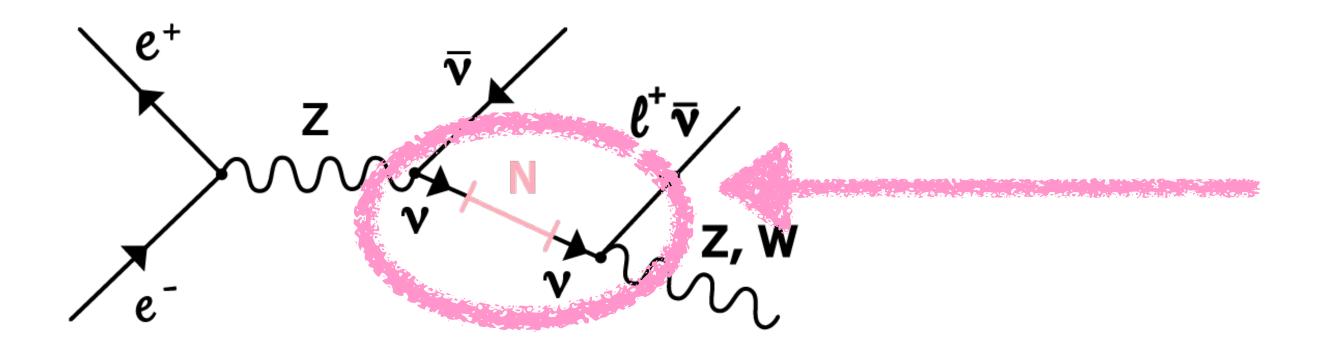
q


LHC (Hadron colliders) Trigger critical



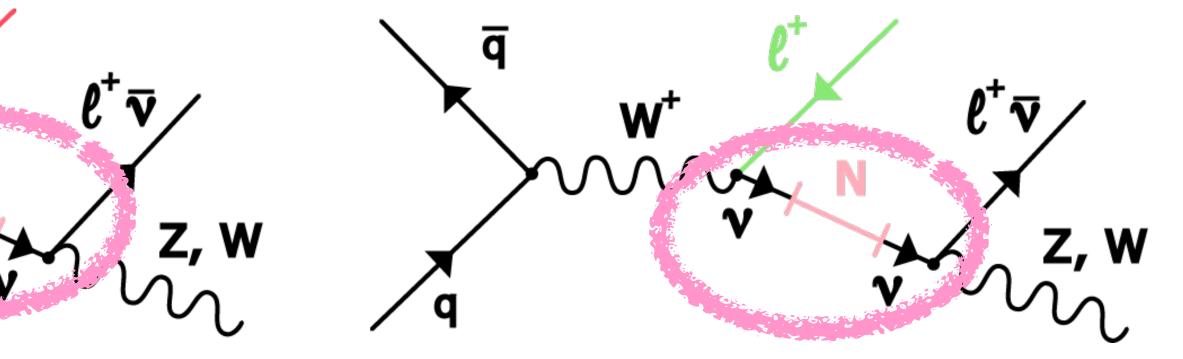
lepton trigger

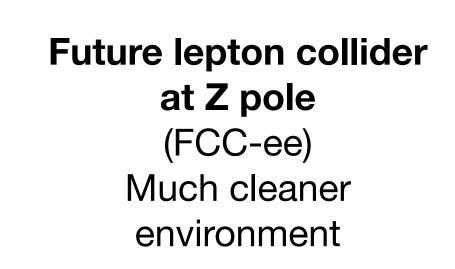

 \sim

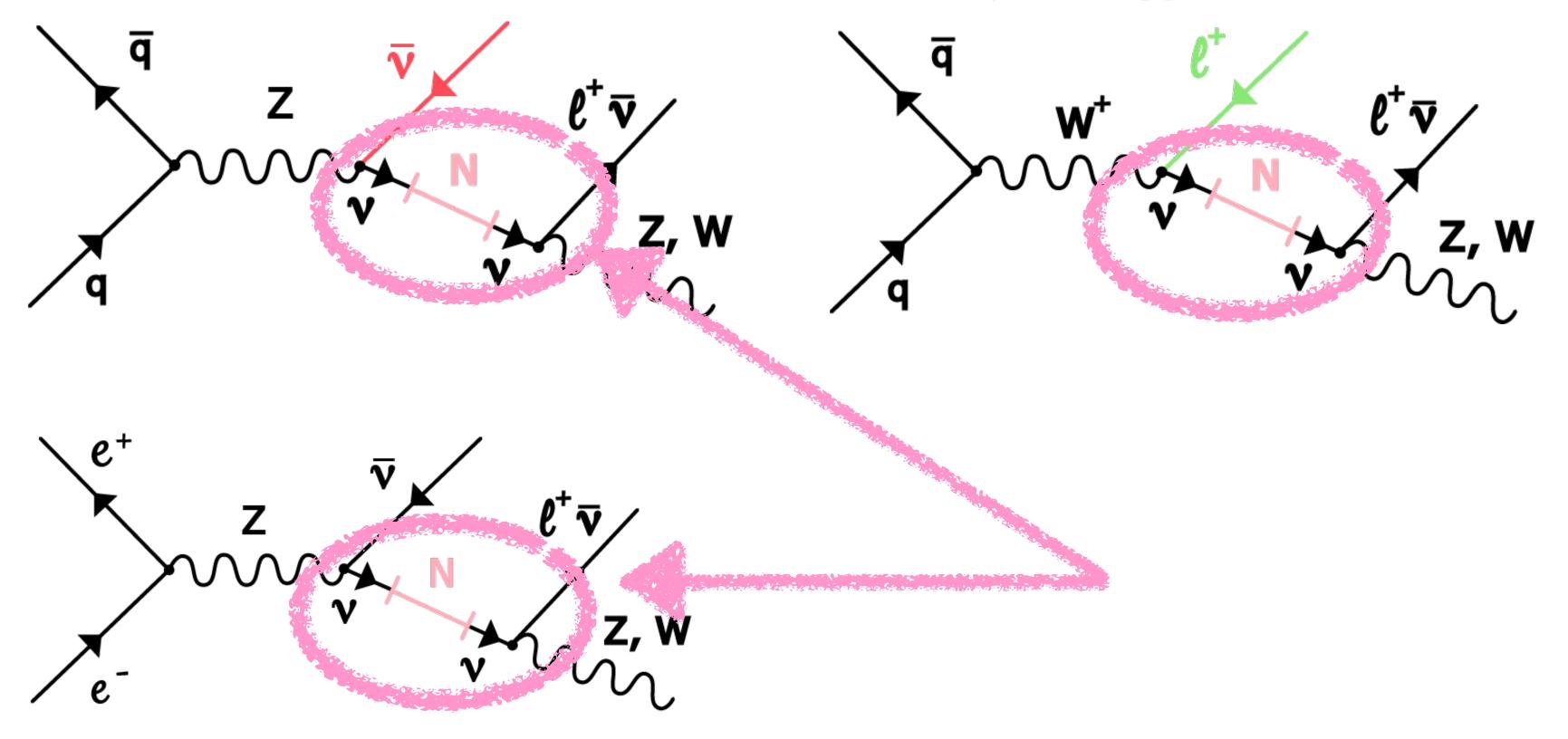

V

q

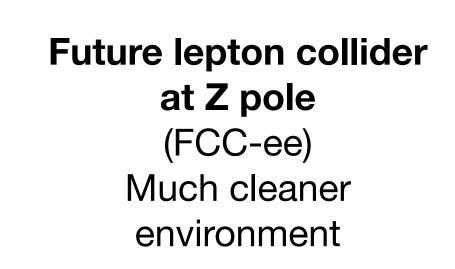
q

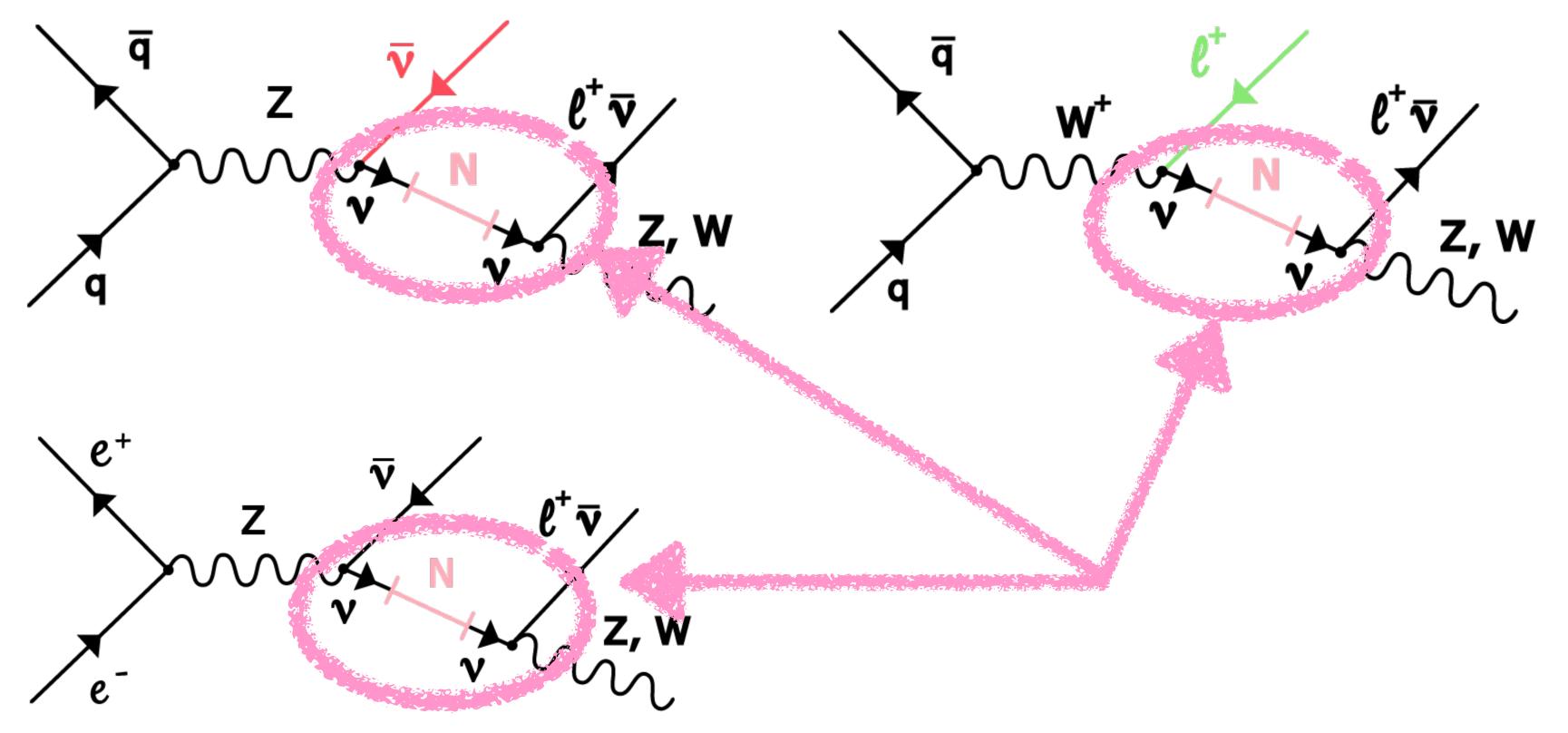

LHC (Hadron colliders) Trigger critical


lepton trigger

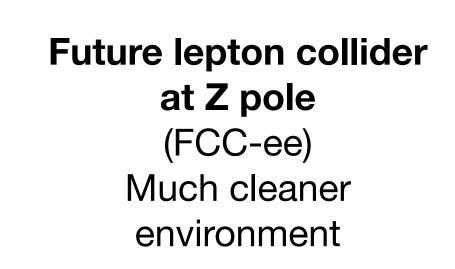


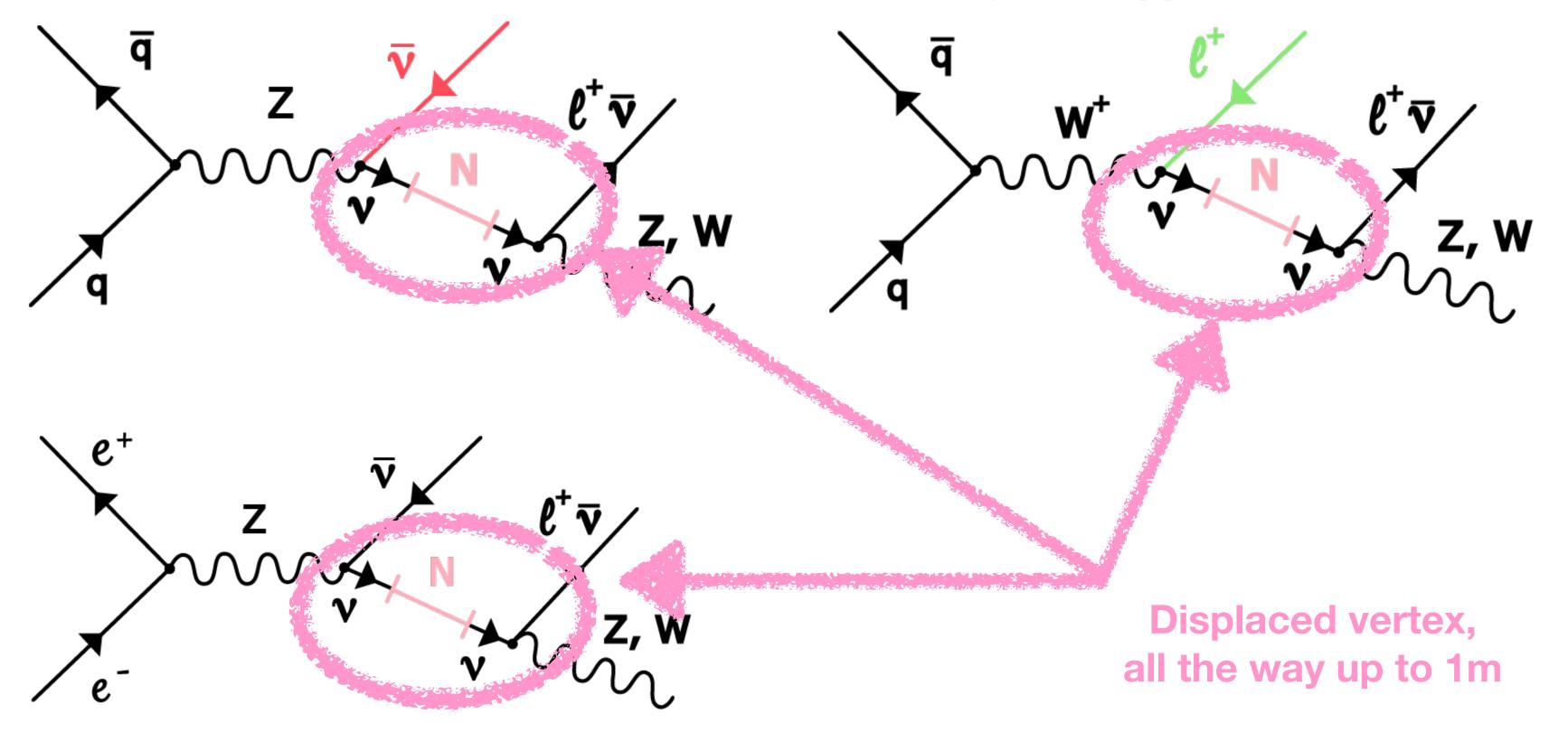
LHC (Hadron colliders) Trigger critical





LHC (Hadron colliders) Trigger critical

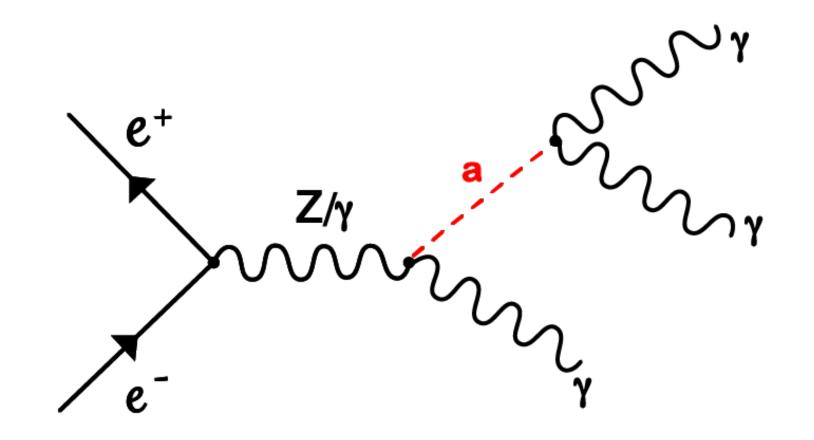




LHC (Hadron colliders) Trigger critical

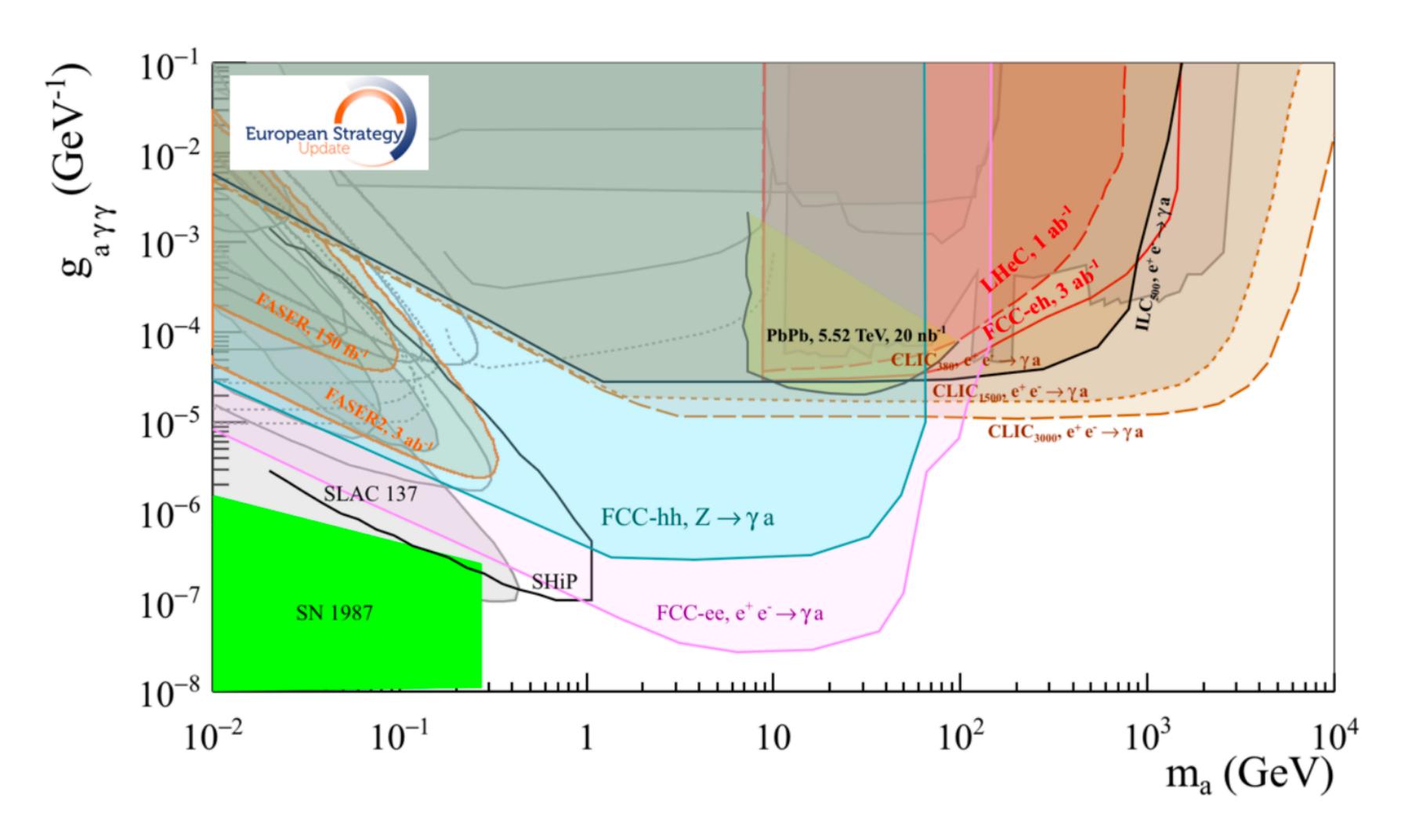
Beyond observation

- With enough luminosity (possible at the Tera-Z run) it would be possible to distinguish between Majorana or Dirac fermions
 - A majorana mass term will bring up different results in two observables $(Z \rightarrow vN, N \rightarrow IW channel)$ connected to two case-studies:
 - lepton forward-backward charge asymmetry: Important to distinguish the leading lepton charge (may be complicated if there is large displacement beyond the tracker)
 - polarization measurement: using the leading lepton momentum distributions, independently of the charge
 - arXiv:2105.06576
- For HNL with long enough lifetime → neutrino oscillations can be studied
 - arXiv:1709.03797


FERMILAB-PUB-21-227-T, NUHEP-TH/21-03 cays into Majorana or Dirac (Heavy) Neutrino idel,^{1,2} André de Gouvêa,³ and Boris Kavser PNHE, IN2P3/CNRS, Paris, France I. INTRODUCTION known matter fields of the Sta utrinos ν_e, ν_μ, ν_τ via Yukawa interactions. After electroweak symmetry breaking, all neutra

Long-lived ALPs

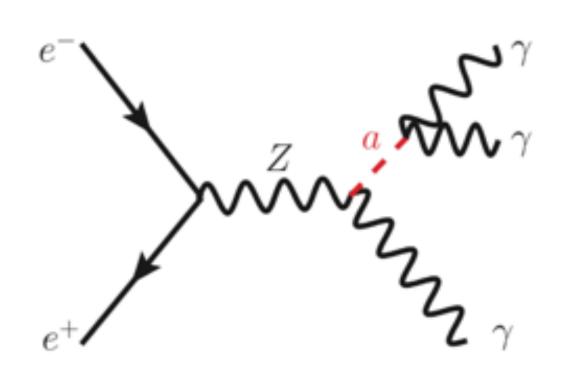
- Commonly produced with a photon or a Z decaying into photons
- displaced from the production vertex \rightarrow LLP

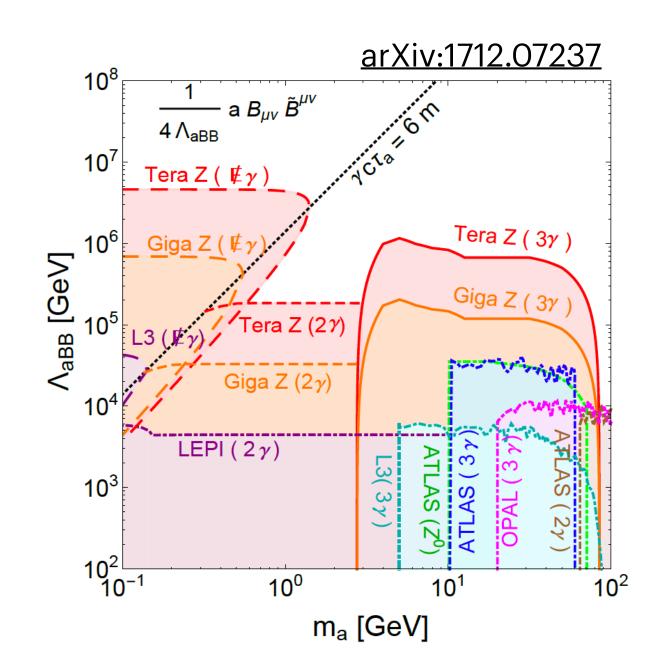


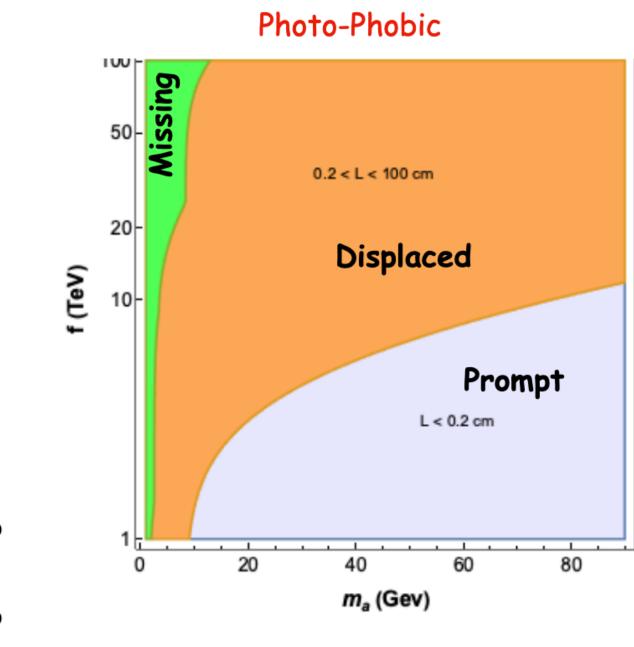
For small couplings and light ALPs, the ALP decay vertex can be considerably

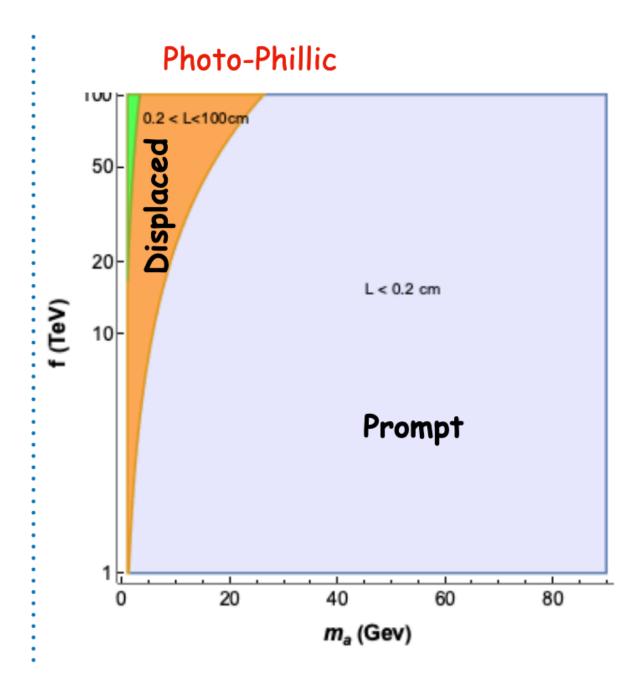
66

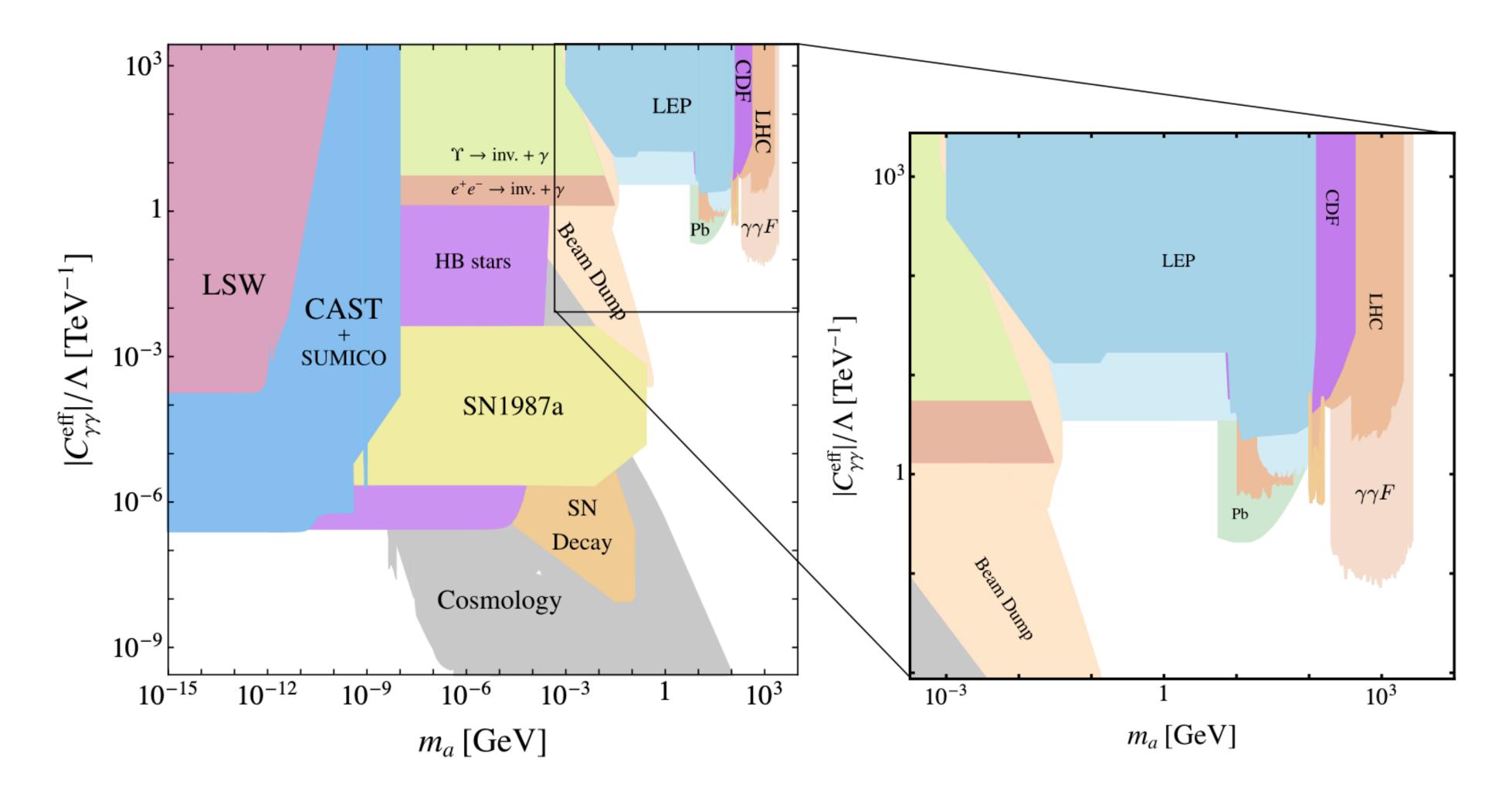
Exclusion limits for ALPs coupled to photons. All curves correspond to 90% CLexclusion limits, except for LHeC/FCC-eh (95% CL exclusion limits), FCC-ee (observation offour signal events) and FCC-hh (observation of 100 signal events). From the <u>Briefing Book</u>




FCC-ee: ALPs


- Specially sensitive final states at the FCC-ee :
 - γ + MET for very light a
 - $\gamma \gamma$ for light a
 - $\gamma \gamma \gamma \gamma$ for heavier a
 - Orders of magnitude of parameter space accessible
- Recent paper <u>A. lyer</u> (June 2021)
 - light (composite) axion-like particles
 - <u>arXiv:2104.11064</u>


γ_LL



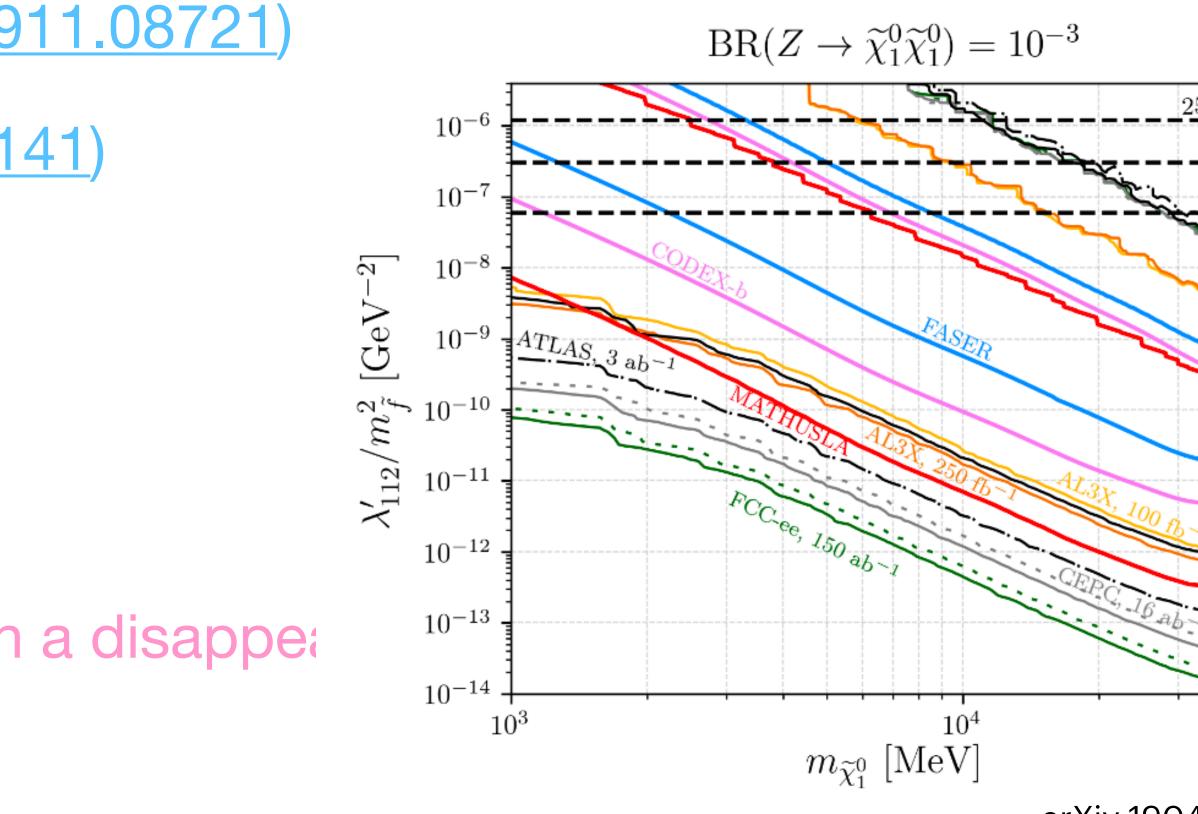
Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023

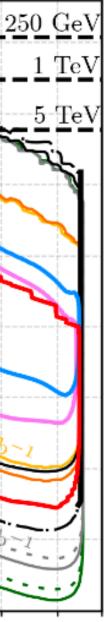
Summary plot of constraints on the parameter space spanned by the ALP mass and ALP-photon coupling with enlarged display of the constraints from collider searches from <u>arXiv:1808.10323</u>

More LLPs at FCC-ee

- Finding valid motivations for LLP at the FCC is certainly not a problem
 - Higgs portal, dark glueball (arXiv:1911.08721)
 - Neutral naturalness (arXiv:1506.06141)
 - Folded SUSY (<u>arXiv:1911.08721</u>)
- FCC-ee
- Neutralinos (arXiv:1904.10661)
- Dark photon (arXiv:1909.02312)

FCC-he


• Wino and higgsino dark matter with a disappea C (2019) 79:469)

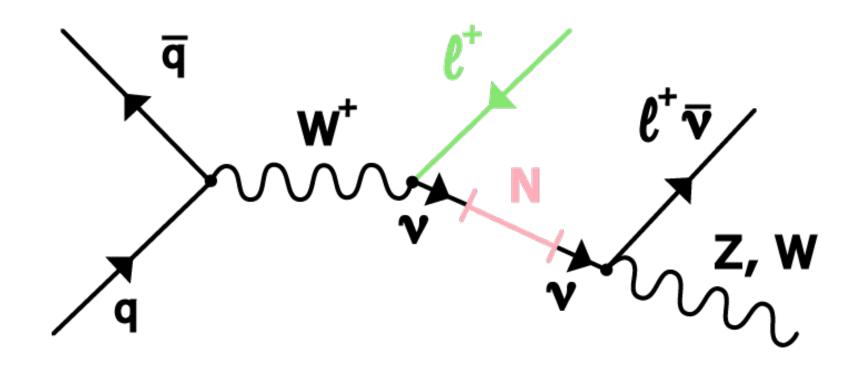

FCC-hh

UPPSALA

UNIVERSITET

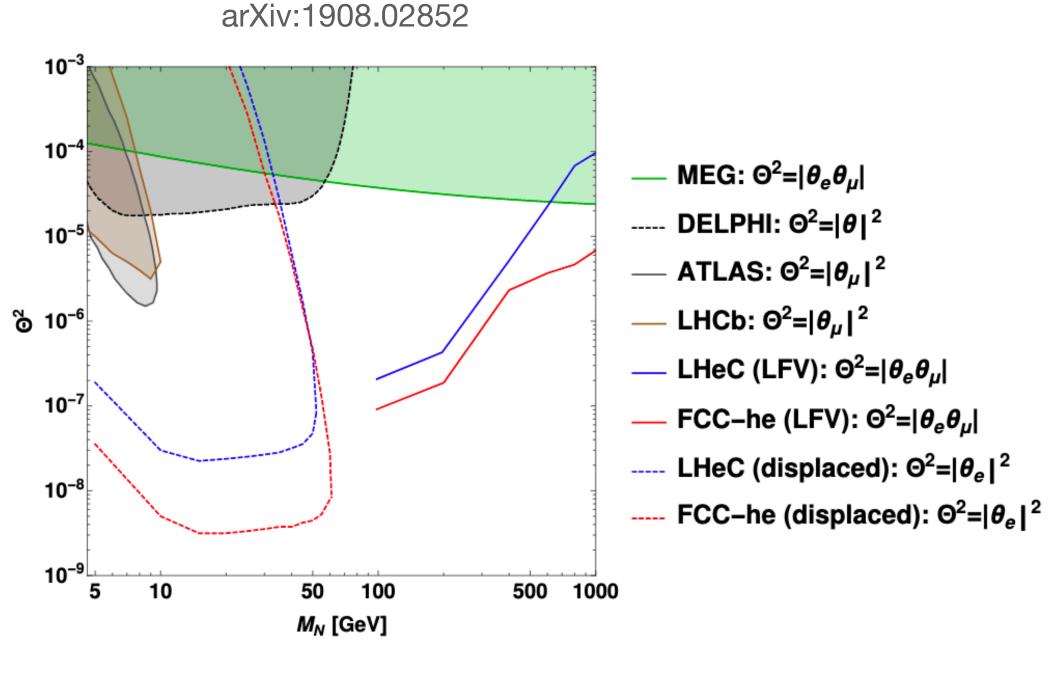
LLP subgroup

- FCC has a subgroup dedicated to LLP searches, under the BSM physics group (https://indico.cern.ch/category/5664/), subscribe to the mailing list (FCC-PED-PhysicsGroup-BSM@cern.ch) to participate
- Simulations under way with Madgraph5 v3.2.0 + Pythia8 + Delphes
- Many master theses and projects: <u>Sissel Bay Nielsen</u> (HNL), <u>Rohini Sengupta</u> (HNL), Lovisa Rygaard (HNLs) + (ALPs), Tanishq Sharma (HNL), Magdalena Vande Voorde (Exotic Higgs), Dimitri Moulin (HNL)
- Lot of work done for snowmass, stay tuned for the upcoming FCC week:
 - https://arxiv.org/abs/2203.06520
 - https://arxiv.org/abs/2203.05502

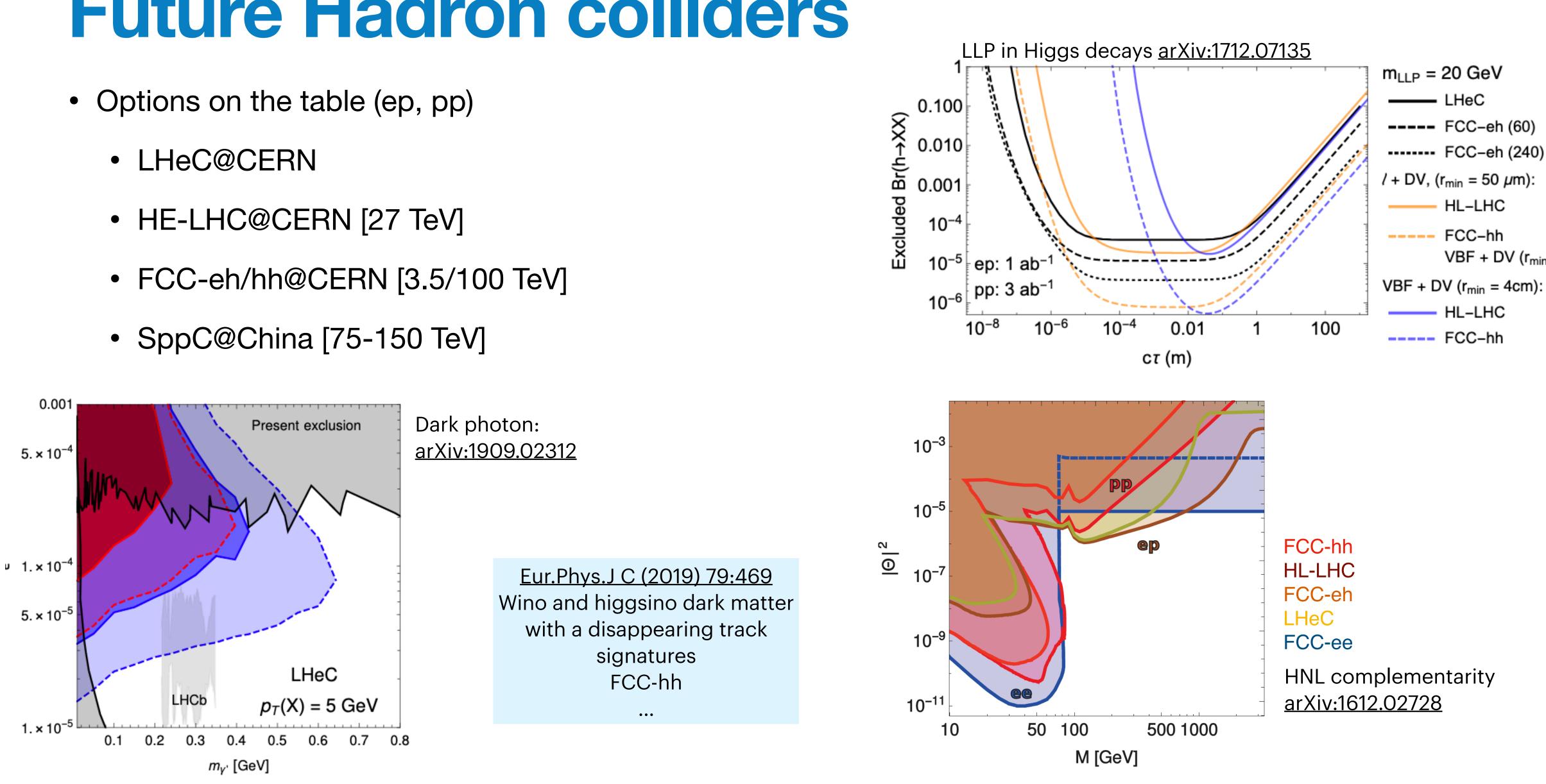


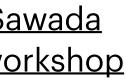
FCC-hh

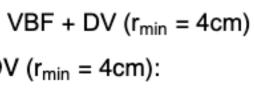
- The high luminosity and large centre of mass energy at the FCC-hh will help probe additional parameter space
 - High mass, but mixing angles of interest to neutrino mass models not accesible
- At the 100 TeV pp, 10^{13} W bosons \rightarrow HNL produced in W decays
 - Discovery signatures: three leptons, displaced vertex
 - More complex environment than FCC-ee: pile-up/backgrounds/lifetime/trigger
- Allows for both in flavour and charge characterisation of the produced neutrino •
 - Study of flavour-sensitive mixing angles
 - Test of the fermion violating nature of the intermediate (Majorana) particle.
- If we find hints for HNL at FCC-ee, the FCC-hh will help understanding more about them



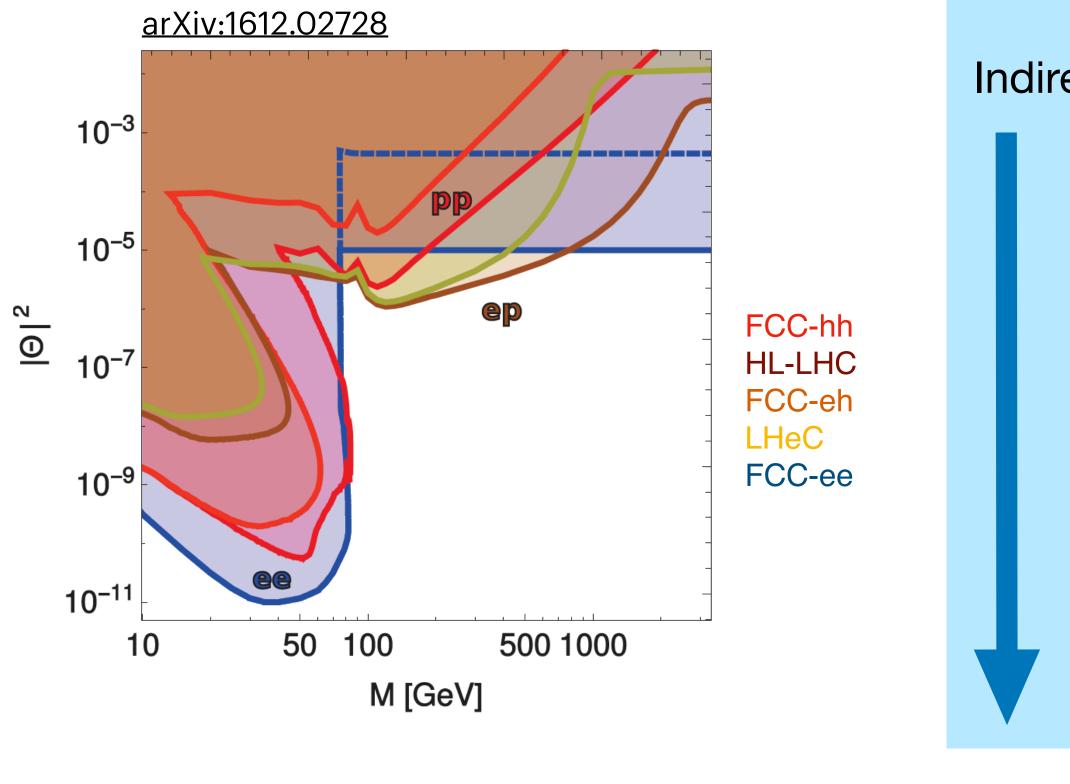
FCC-eh


- The FCC-eh will also extend the mass reach of the FCC-hh for HNL
- The FCC-eh will offer additional sensitivity for LFV
 - Also in displaced signatures (long-lived)




Future Hadron colliders

Ref: <u>Ryu Sawada</u> RGS FCC workshop



Complementarity

potential to discover and pin down these particles

• The complementarity of the three different stages of the FCC provides unique

FCC-ee

Indirect constrains from precision SM measurements (not discussed) Direct search: single HNL production in Z decays Sensitive to 10⁻¹¹ for M below the W mass

FCC-hh

Direct search: single HNL production in W/Z decays Lepton Number Violation, Lepton Flavor Violation can test heavy neutrinos with masses up to ~2 TeV

FCC-eh

Can extend the reach of the FCC-hh up to ~2.7 TeV Best reach above W mass Sensitive to LFV and Lepton-Number-violation signatures

Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023

75

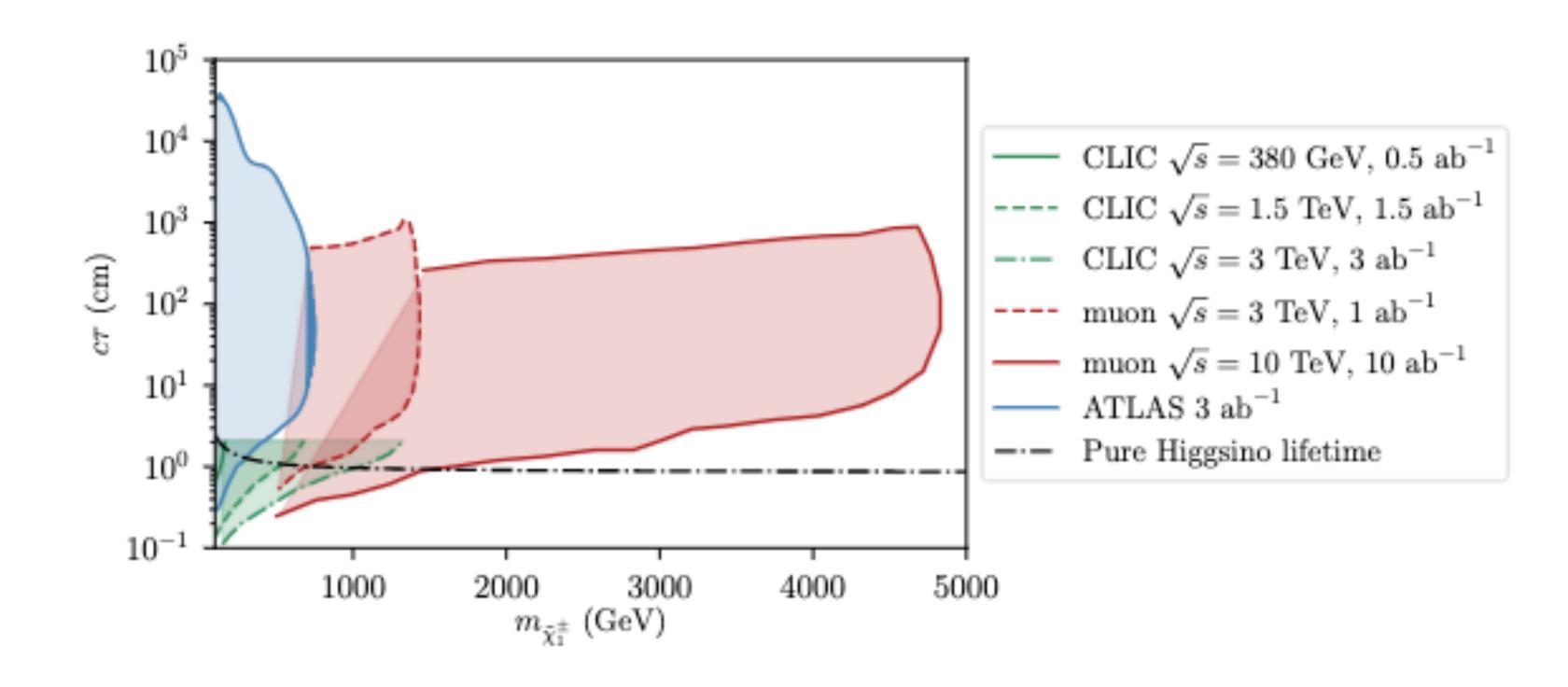
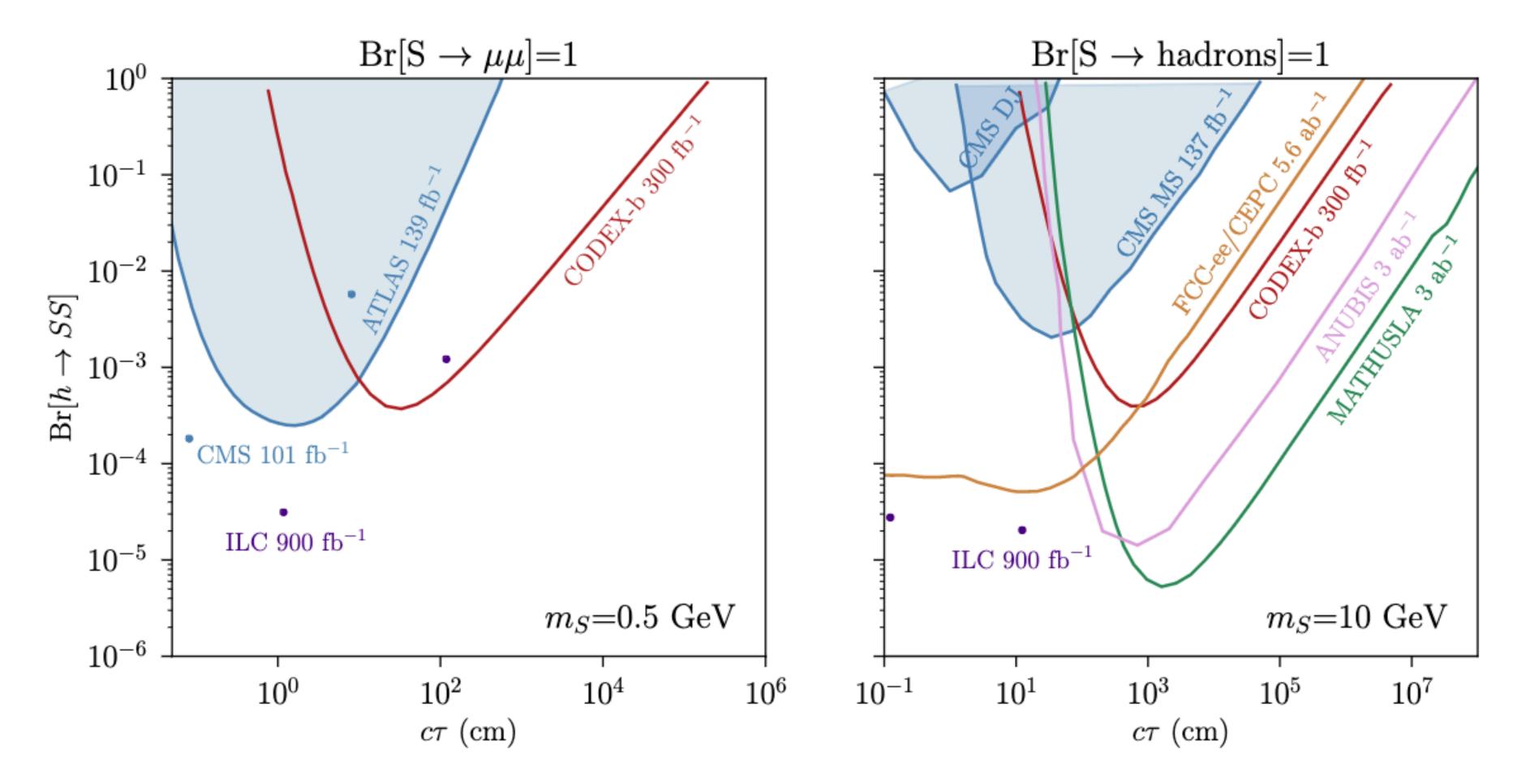
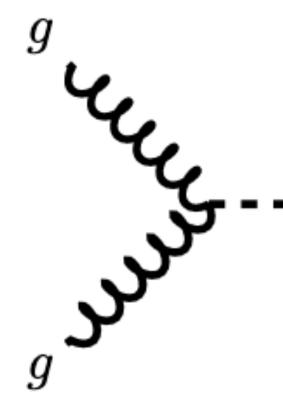
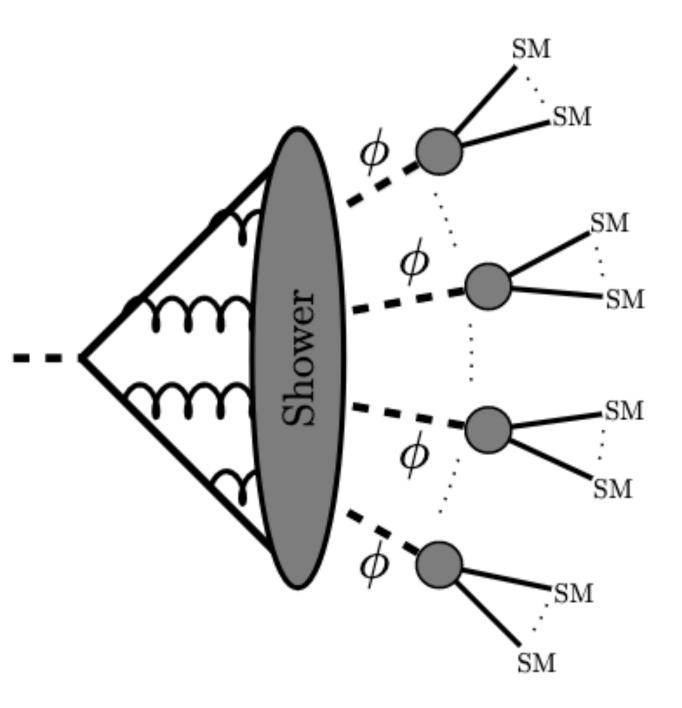



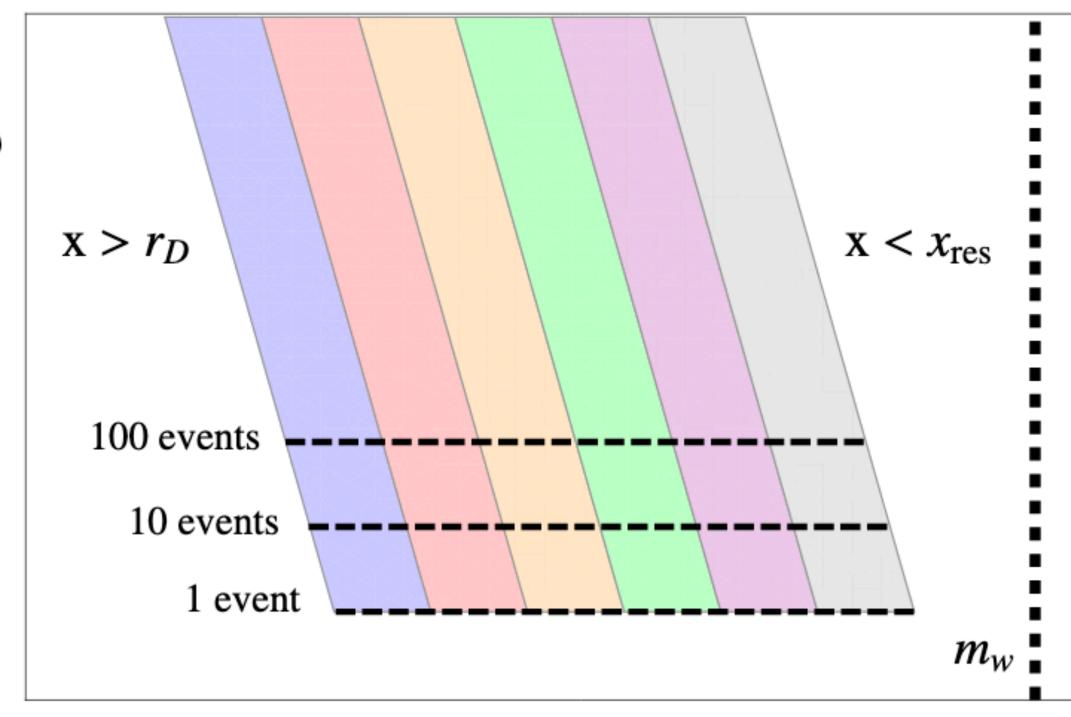
Figure 22: Projected reach of disappearing track signatures in the chargino mass– $c\tau$ plane at 95% CL exclusion from CLIC (green curves) [403], a muon collider [404], and ATLAS at the HL-LHC (blue curve) [236].



Light LLPs, exotic Higgs decays

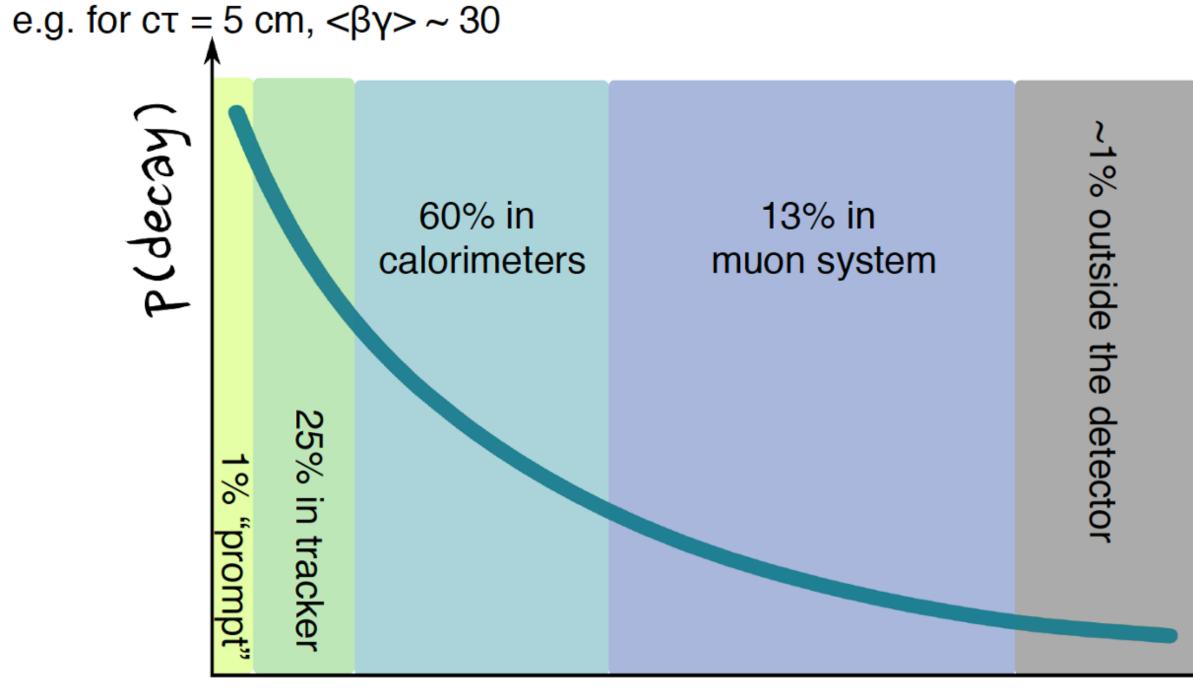

Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023

Dark showers



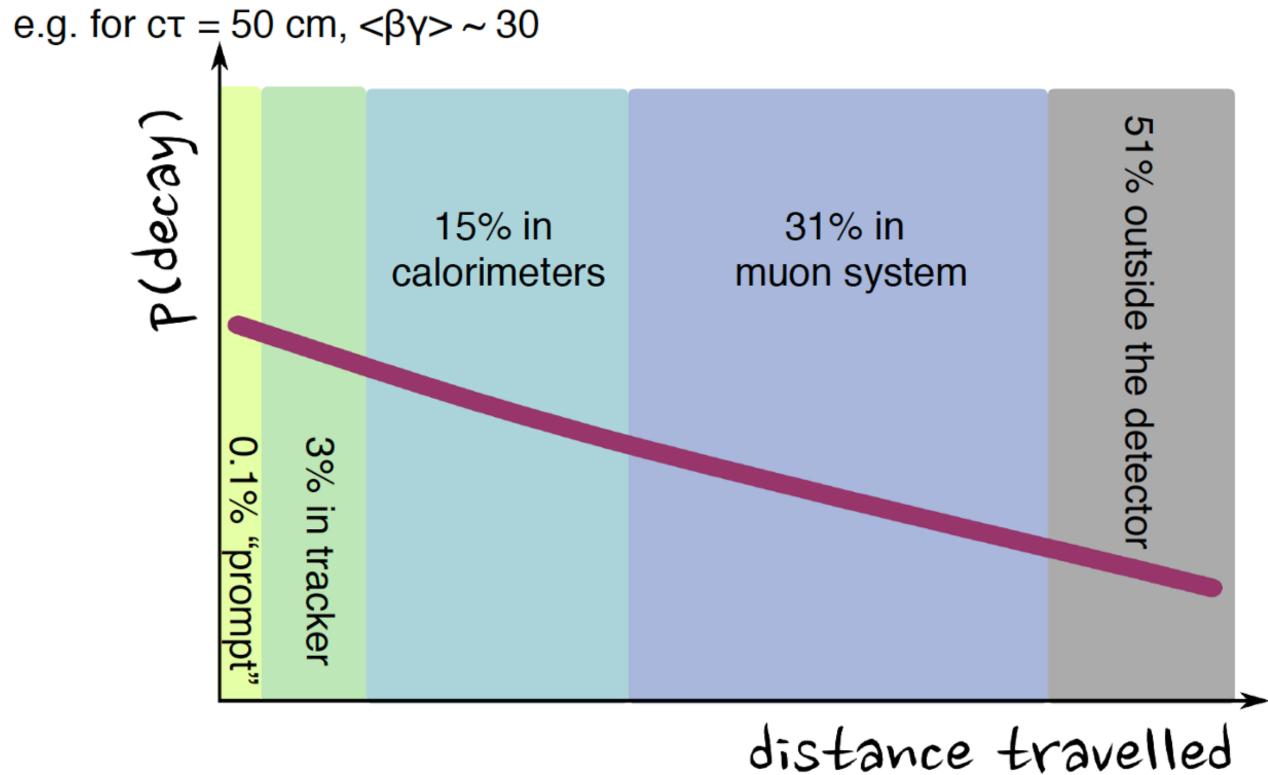
arXiv:1604.02420

heavy neutrino mass

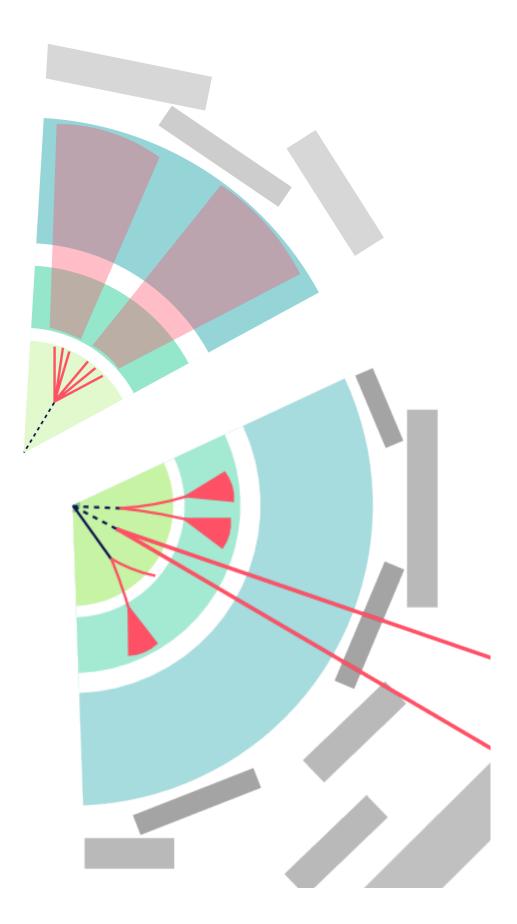

μ system

- HCAL
- ECAL
- Tracker
- Vertex detector
- Inner region

Sensitivity of different detector components to HNL as a function of the mixing parameter and mass



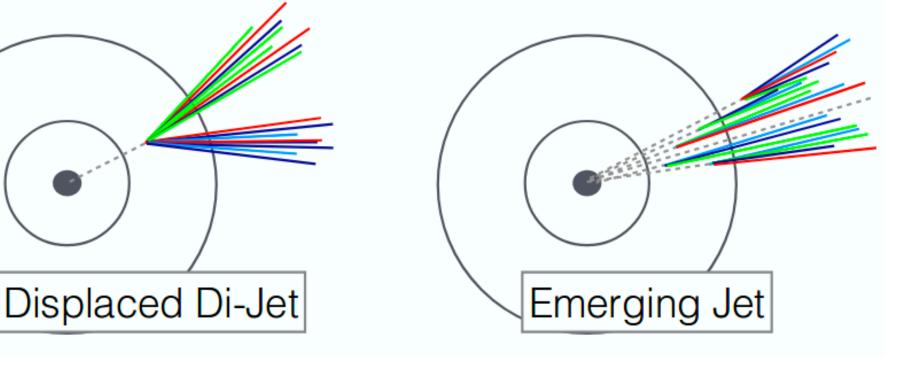
distance travelled


Rebeca Gonzalez Suarez (Uppsala University) - BLOIS 2023

Figures by Heather Russell

Displaced/Delayed stuff

- Displaced vertices and tracks (Tracker, Calo)
- Delayed/displaced jets (Tracker, Calo)
- Stopped particle decay (Timing!)



Emerging/weird

- Non-pointing photons (Calo)
- Colimated objects (Tracker, Calo)
- Emerging jets (Tracker, Calo)

- Anomalous dE/dx track
- Fractionally charged, Multicharged particles..
- Short (disappearing, kinked) tracks

