GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

SEARCHES FOR EXOTIC BSM PHYSICS WITH ATLAS AND CMS : HIGHLIGHTS AND PROSPECTS

Swagata Mukherjee (RWTH Aachen University)

On behalf of the CMS and ATLAS collaborations

34th Rencontres de Blois, May14-19, 2023

Let's start with our archeologist friend..

...who has no clue where to dig..

...to find the hidden gem!

Archeologists excavating hidden gems

Our archeologist friend found the spot! But still does not know how deep down to go!

How deep to dig?

Particle physicists searching new physics	Archeologists excavating hidden gems 5
How much data we need? i.e, how small is the cross-section of the new particle?	How deep to dig?

Archeologists excavating hidden gems

WE ARE INDEED SEARCHING EVERYWHERE

We will hear more in

Other CMS/ATLAS plenaries

Status of searches in the long-lived particle and dark sectors	Marianna Liberatore
Gaston d'Orléans	11:00 - 11:30
Searches for supersymmetry and additional Higgses	Sarah Louise Williams
Gaston d'Orléans	11:30 - 12:00
Top quark rare or BSM interactions and the studies at new energy at CMS	Laurids Jeppe
Gaston d'Orléans	10:00 - 10:30

And parallels

Imma Riu
15:30 - 15:50
Devin Mahon
15:50 - 16:10
Volker Andreas Austrup
16:10 - 16:30
Soham Bhattacharya
16:30 - 16:50
Elise Maria Le Boulicaut
16:50 - 17:20

Exotic BSM search program of ATLAS/CMS is a broad and diverse topic. Only selected glimpses in this talk. More details in other plenary+parallel talks during this week.

PLETHORA OF NEW EXOTIC BSM RESULTS IN 2023

ATLAS results

Leptoquark pair production (3rd generation) Leptoquark single production (3rd generation) Clockwork gravity search Right-handed neutrino (resolved and boosted) Axion-Like Particles with AFP ttZ' to 4 tops <u>High-mass resonances in photon+MET</u>

Excited taus

Vector-Like taus

Vector-Like Quarks

Multi-charged particles

Low-mass Z' search in the 4mu channel

CMS results

Long-lived heavy neutral leptons

Dark matter particles decaying to WW

Search for inelastic dark matter in events with displaced muons

Search for GeV scale resonance decaying to a pair of muons

Search for W' bosons decaying to a top and a bottom quark

Clockwork gravity several Show averation of the several show a subscript of the several several show a subscript of the several severa Axion-Like Particles with AFP <u>ttZ' to 4 tops</u> <u>ttZ' to 4 tops</u> <u>Of these results</u> <u>Multi-charged particles</u> <u>Multi-charged particles</u> <u>Multi-charged particles</u> is is not an exhaustive lis

AXION LIKE PARTICLE (ALP)

https://arxiv.org/pdf/2304.10953.pdf

https://arxiv.org/pdf/2304.10953.pdf

AXION LIKE PARTICLE (ALP)

- Signal MC generated using SuperChic generator.
- ► Coupling f^{-1} set to 0.05 TeV⁻¹
- > Narrow-width approximation. $\Gamma = m_X^3 / 4\pi f^2$
- Most significant excess
 - ► at $m_X = 454 \text{ GeV}$
 - ► local significance = 2.51

WPRIME TO TOP & BOTTOM QUARK

- Reconstruct W and top from event kinematics
- ► Use those to reconstruct W' mass
 - 3 signal regions
 - ► Only **jet**_{W'} is b-tagged
 - Only jet_{top} is b-tagged
 - Both jet_w and jet_{top} are b-tagged
 - 1 control region
 - No b-tagged jet
 - Backgrounds: tī, single top, W+jets, QCD
 - Background estimation via mass sidebands in data

WPRIME TO TOP & BOTTOM QUARK

- CKM for quarks Regulate chirality fractions of W' (left-handed or right-handed) Interference with SM W-boson taken into account when α_L is non-zero
 - ► Different width (1, 10, 20, 30%) and chirality assumptions.
 - Small excess at 3.4-4.4 TeV in muon channel. Local: 2.6σ. Global: 2.0σ.

PERIODIC SIGNALS

14

Clockwork/Linear Dilaton (CW/LD) model Associated with quantum gravity Predicts narrowly-spaced spectrum of resonances in mass

Two important parameters

- k: mass parameter that
 determines the <u>onset of the</u>
 <u>KK graviton spectrum</u>
- *M*₅: 5D reduced Planck mass

Challenging signature due to low signal cross-sections scales inversely with (*M*₅)³

PERIODIC SIGNALS

Search uses continuous wavelet transform (CWT) to analyse mass spectra in frequency domain.

Output of the CWT is 2D image. Periodicity of signal can be revealed as a local "blob"

ATLAS-CONF-2023-010

Excludes values of M_5 in the range 11 TeV to 1 TeV for values of k in the range 100 GeV to 5 TeV.

INELASTIC DARK MATTER

- Inelastic dark matter model (iDM)
 - Predicts at least two inelastically coupled dark matter states accompanied by a dark photon
- iDM production cross sections can be large
 - up to a few femtobarns for high-mass and displaced signals.
- Dark photon decaying to nearly mass-degenerate dark matter states
- Mass splitting $m(\chi_2-\chi_1)$ small
- Heavier state χ_2 can be long-lived
- Soft & displaced muons in final state

CMS-EX0-20-010

INELASTIC DARK MATTER

CMS-EX0-20-010

PAIR PRODUCTION OF 3RD GENERATION LEPTOQUARK

Leptoquark (carrying both lepton and baryon number) Many degrees of freedom! Rich phenomenology.

- Mass, electrical charge, scalar/vector type, Yukawa couplings
- Can be produced in pairs, singly, off-shell, s/t-channel

18

 β parameter: Determines branching fraction of LQ into charge lepton or neutrino
 https://arxiv.org/pdf/2303.01294.pdf

Analysis performed in $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ channels

Parameterised neural network (**PNN**) used for signal extraction.

Parameterised in terms of generated LQ mass.

PNN consists of three hidden layers, each with 32 nodes.

	Obs. limit [GeV]
Scalar LQ	1490
Vector LQ (minimal-coupling)	1690
Vector LQ (Yang–Mills)	1960

GEV SCALE RESONANCE DECAYING TO MUONS

- Search for ultra low mass dimuon resonances
 - ► Mass range: 1.1-2.6 GeV and 4.2-7.9 GeV
- Data collected by dedicated scouting muon trigger.
 - Muons reconstructed at high-level trigger used in analysis.
- Muons required to pass a MVA discriminant
 - ► Two MVAs based on J/ ψ and Y(1S)
- Results interpreted in context of dark photon and pseudoscalar (2HDM+S)

EXO-21-005

20

SEARCH FOR ZPRIME IN 4 MUON CHANNEL

Search for low mass Z' predicted by $L\mu$ - $L\tau$ model

- ► Z' only couples to muons and taus.
- ► Not directly produced in pp (or ee) collision.
- ► Search ranges from 5 to 81 GeV

$$L_{Z'} = -\frac{1}{4}F_{\alpha\beta}F^{\alpha\beta} + \frac{1}{2}M_{Z'}^2 Z'^{\alpha} Z'_{\alpha} - g_{Z'}Z'_{\alpha}(\bar{\ell}_2\gamma^{\alpha}\ell_2 + \bar{\mu}\gamma^{\alpha}\mu - \bar{\ell}_3\gamma^{\alpha}\ell_3 - \bar{\tau}\gamma^{\alpha}\tau) \quad \bar{q}_{\alpha}$$

SEARCH FOR DARK MATTER IN WW EVENTS

- Dark Matter particle acquires mass through its interaction with dark Higgs (s)
- ► Dark Higgs(s) lighter than dark matter.
- \blacktriangleright sin θ = mixing angle between SM Higgs and dark Higgs.

137 fb⁻¹ (13 TeV) **CMS** *Preliminary* [∕ə9] °[∞] 350 400 Dark Higgs, $Z' \rightarrow DM + s$ (WW) Majorana DM, m = 200 GeV $\theta = 0.01, g_{g} = 0.25, g_{g} = 1$ 10 Expected 95% CL Observed 95% CL ±1 std. dev. ± 2 std. dev. 300 $\Omega_{c} h^{2} = 0.12$ 250 200 10⁻¹ 500 1000 1500 2000 2500

Search performed in 2 channels:

- ► di-leptonic: main variable is transverse mass of the trailing lepton and MET
- semi-leptonic: main variable is BDT score (BDT trained on 13 input variables)
- ► Backgrounds: WW, $Z \rightarrow \mu\mu$, W+jets, tW, tt
- \blacktriangleright Limits derived in (m_s vs. m_{Z'}) plane, for different m_x assumptions,

'σ/σ_{theory}

m_{z'} [GeV]

CMS-EX0-21-01

TO REITERATE, WE ARE SEARCHING EVERYWHERE!

WHAT IS THERE TO LOOK FORWARD TO?

NULL RESULT \neq DISAPPOINTMENT

NULL RESULT ≠ DISAPPOINTMENT

Before we began the hunt for new physics

Where to look?

Everywhere!

Now

We have better idea where to look. We can plan analysis/make triggers accordingly

NULL RESULT ≠ DISAPPOINTMENT

Before we began the hunt for new physics

Where to look?

Everywhere!

Now

We have better idea where to look. We can plan analysis/make triggers accordingly

NULL RESULT = INSIGHT

IMPROVEMENTS IN RUN3

Used long shutdown (2019-21) time to make needed improvements/adjustments in

- detector-hardware / electronics
- object reconstruction software
- calibration strategy

Improved triggers for Run3. Usage of **GPUs** allow us to run more complicated algorithms at trigger level.

Improvements in Data scouting (Trigger-level-analysis) and data-parking strategy.

More computing resource allocated to collect and process more data in Run3.

New triggers for long-lived particle searches.

Ability to trigger on **displaced muon** at hardware trigger.

Increased usage of ML in software-based triggers, object reconstruction, calibration and in physics analyses.

Utilise **timing capability** and **longitudinal depths** of different sub-detectors in trigger-level and analysis-level.

And many more ...

ALL SET & ALREADY STARTED TO EXPLORE RUN3 DATA

Search in **new final states** that were never searched before 13.6 TeV center-of-mass energy

More integrated luminosity expected compared to Run2

Use **innovative analysis techniques** that can boost the reach of an analysis significantly

Keep an eye on existing anomalies The hunt for exotic BSM is on!

LHC data is <u>valuable</u> and <u>finite</u>. Our main aim is to make the most of it.

AN EXCITING FUTURE AWAITS... STICK WITH US!

autobiography of an archeologist

QUESTIONS ?

EXTRA SLIDES

CWT calculates measure of similarity, between wavelet and signal at different scales and positions. The result is a two-dimensional representation that shows how the frequency content of the signal changes over time.

$$W(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} f(m) \psi^* \left(\frac{m-b}{a}\right) dm$$
wavelet (Morlet wavelet)
$$\psi(x) \equiv \frac{1}{\sqrt{B\pi}} e^{-x^2/B} \left(e^{i2\pi Cx} - e^{-\pi^2 BC^2}\right)$$

A 2D picture can be produced by taking the norm of the coefficient W(a, b) for all values of *a* and *b*.

CWT in this analysis defines how much of a certain frequency is present in the signal at a given invariant mass bin.

,

ALP

