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THE STANDARD MODEL OF PARTICLE PHYSICS

Higgs Boson 
discovery in 2012
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� = 24 ± 4 ± 5 fb (data)
NLO QCD + EW (theory) 139 JHEP 11 (2021) 118

� = 0.55 ± 0.14 + 0.15 � 0.13 pb (data)
Sherpa 2.2.2 (theory) 79.8 PLB 798 (2019) 134913

� = 0.82 ± 0.01 ± 0.08 pb (data)
NLO QCD (theory) 139 arXiv:2201.13045

� = 176 + 52 � 48 ± 24 fb (data)
HELAC-NLO (theory) 20.3 JHEP 11, 172 (2015)

� = 990 ± 50 ± 80 fb (data)
Madgraph5 + aMCNLO (theory) 139 Eur. Phys. J. C 81 (2021) 737

� = 369 + 86 � 79 ± 44 fb (data)
MCFM (theory) 20.3 JHEP 11, 172 (2015)

� = 870 ± 130 ± 140 fb (data)
Madgraph5 + aMCNLO (theory) 36.1 PRD 99, 072009 (2019)

� = 4.8 ± 0.8 + 1.6 � 1.3 pb (data)
NLO+NNL (theory) 20.3 LB 756, 228-246 (2016)

� = 6.7 ± 0.7 + 0.5 � 0.4 pb (data)
NNLO (theory) 4.6 JHEP 03, 128 (2013)

PLB 735 (2014) 311

� = 7.3 ± 0.4 + 0.4 � 0.3 pb (data)
NNLO (theory) 20.3 JHEP 01, 099 (2017)

� = 17.3 ± 0.6 ± 0.8 pb (data)
Matrix (NNLO) & Sherpa (NLO) (theory) 36.1 PRD 97 (2018) 032005

� = 19 + 1.4 � 1.3 ± 1 pb (data)
MATRIX (NNLO) (theory) 4.6 EPJC 72 (2012) 2173

� = 24.3 ± 0.6 ± 0.9 pb (data)
MATRIX (NNLO) (theory) 20.3 PRD 93, 092004 (2016)

� = 51 ± 0.8 ± 2.3 pb (data)
MATRIX (NNLO) (theory) 36.1 EPJC 79 (2019) 535

� = 51.9 ± 2 ± 4.4 pb (data)
NNLO (theory) 4.6 Phys. Rev. D 87 (2013) 112001

arXiv:1408.5243

� = 68.2 ± 1.2 ± 4.6 pb (data)
NNLO (theory) 20.3 PLB 763, 114 (2016)

� = 130.04 ± 1.7 ± 10.6 pb (data)
NNLO (theory) 36.1 EPJC 79 (2019) 884

� = 22.1 + 6.7 � 5.3 + 3.3 � 2.7 pb (data)
LHC-HXSWG YR4 (theory) 4.5 EPJC 76 (2016) 6

� = 27.7 ± 3 + 2.3 � 1.9 pb (data)
LHC-HXSWG YR4 (theory) 20.3 EPJC 76 (2016) 6

� = 55.5 ± 3.2 + 2.4 � 2.2 pb (data)
LHC-HXSWG YR4 (theory) 139 ATLAS-CONF-2022-002

� = 16.8 ± 2.9 ± 3.9 pb (data)
NLO+NLL (theory) 2.0 PLB 716, 142-159 (2012)

� = 23 ± 1.3 + 3.4 � 3.7 pb (data)
NLO+NLL (theory) 20.3 JHEP 01, 064 (2016)

� = 94 ± 10 + 28 � 23 pb (data)
NLO+NNLL (theory) 3.2 JHEP 01 (2018) 63

� = 68 ± 2 ± 8 pb (data)
NLO+NLL (theory) 4.6 PRD 90, 112006 (2014)

� = 89.6 ± 1.7 + 7.2 � 6.4 pb (data)
NLO+NLL (theory) 20.3 EPJC 77 (2017) 531

� = 247 ± 6 ± 46 pb (data)
NLO+NLL (theory) 3.2 JHEP 04 (2017) 086

� = 182.9 ± 3.1 ± 6.4 pb (data)
top++ NNLO+NNLL (theory) 4.6 EPJC 74 (2014) 3109

� = 242.9 ± 1.7 ± 8.6 pb (data)
top++ NNLO+NNLL (theory) 20.2 EPJC 74 (2014) 3109

� = 826.4 ± 3.6 ± 19.6 pb (data)
top++ NNLO+NNLL (theory) 36.1 EPJC 80 (2020) 528

� = 29.53 ± 0.03 ± 0.77 nb (data)
DYNNLO+CT14 NNLO (theory) 4.6 JHEP 02 (2017) 117

� = 34.24 ± 0.03 ± 0.92 nb (data)
DYNNLO+CT14 NNLO (theory) 20.2 JHEP 02 (2017) 117

� = 58.43 ± 0.03 ± 1.66 nb (data)
DYNNLO+CT14 NNLO (theory) 3.2 JHEP 02 (2017) 117

� = 98.71 ± 0.028 ± 2.191 nb (data)
DYNNLO + CT14NNLO (theory) 4.6 EPJC 77 (2017) 367

� = 112.69 ± 3.1 nb (data)
DYNNLO + CT14NNLO (theory) 20.2 EPJC 79 (2019) 760

� = 190.1 ± 0.2 ± 6.4 nb (data)
DYNNLO + CT14NNLO (theory) 0.081 PLB 759 (2016) 601

� = 95.35 ± 0.38 ± 1.3 mb (data)
COMPETE HPR1R2 (theory) 8⇥10�8 Nucl. Phys. B, 486-548 (2014)

� = 96.07 ± 0.18 ± 0.91 mb (data)
COMPETE HPR1R2 (theory) 50⇥10�8 PLB 761 (2016) 158
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Standard Model Total Production Cross Section Measurements

Particles Interactions↭

SM is now complete! 

๏ no free parameters  (  last) 

๏ fully predictive theory

MH

A REMARKABLE SUCCESS STORY… 
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Particles

THE STANDARD MODEL IS NOT ENOUGH

Interactions↭

Only 10 years old!
✴ some tensions 

(B decays, , …)gμ − 2

precision phenomenology: 

๏ “standard candles”  
  measured precisely 

        &  predicted reliably

๏ scrutinise the Higgs sector  
  first & only elementary scalar 

          sensitive to New Physics

↪

↪
↭

talks by S. Chang  
& A. Nogamova



NEW PHYSICS SEARCHES

Hiding in small & subtle effects?

๏ interaction weak

๏ wide resonance

๏ too heavy

๏ shape distortion

๏ …
4

8 Results

The dilepton invariant-mass distributions for the events that pass the full analysis selection are shown in
Figure 1. The event with highest reconstructed mass is a dielectron candidate with mee = 4.06 TeV, formed
of two electrons with ET = 2.01 TeV and ET = 1.92 TeV in the barrel region of the calorimeter. The event
with highest reconstructed mass in the dimuon channel has an invariant mass of mµµ = 2.75 TeV. Both
muon candidates are in the barrel section of the muon spectrometer and their transverse momenta are
pT = 1.82 TeV and pT = 1.04 TeV.

The fit to data3 is performed in bins of 1 GeV and uses the function in Eq. (1). In both channels, validation
tests using the extension of the functional form described in Section 6 did not yield any significant
improvement, so the function in Eq. (1) is used without modification.
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Figure 1: Distribution of the (a) dielectron and (b) dimuon invariant mass for events passing the full selection. Generic
zero-width signal shapes, scaled to 20 times the value of the corresponding expected upper limit at 95% CL on the
fiducial cross-section times branching ratio, with pole masses of mX =1.34, 2 and 3 TeV as well as background-only
fits are superimposed. The data points are plotted at the centre of each bin. The error bars indicate statistical
uncertainties only. The di�erences between the data and the fit results in units of standard deviations of the statistical
uncertainty are shown in the bottom panels.

The probability that the data are compatible with the background-only hypothesis is shown in Figure 2 as a
function of pole mass for zero-width signals. No significant excess is observed. The largest deviations from
the background-only hypothesis in the dielectron, dimuon and combined dilepton channels are observed at
masses of 774 GeV, 267 GeV and 264 GeV for zero-width signals with a local p0 of 2.9�, 2.4� and 2.3�
and a global significance of 0.1�, 0.3�, and zero, respectively.

Figure 3 shows the upper limits on the fiducial cross-section times branching ratio to two leptons of a single
flavour for generic resonances of various relative widths as a function of their mass. The observed limits
for pole masses ranging from 250 to 750 GeV are obtained with a spacing of 1 GeV. The granularity is
reduced above that mass, but remains below the experimental resolution of the ee channel. The observed
limit on the fiducial cross-section times branching ratio ranges from 3.6 (13.1) fb at 250 GeV to about
0.014 (0.018) fb at 6 TeV for the zero (10%) relative width signal in the combined dilepton channel. The

3 The resulting fit parameters for dielectron channel are: a = 178000±400, b = 1.5±1.0, p0 = �12.38±0.09, p1 = �4.295±0.014,
p2 = �0.9191±0.0027, p3 = �0.0845±0.0005; for dimuon channel are: a = 138700±400, b = 11.8±0.5, p0 = �7.38±0.12,
p1 = �4.132 ± 0.017, p2 = �1.0637 ± 0.0029, p3 = �0.1022 ± 0.0005.
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smooth SM 
background

new physics

Z′ → ℓ+ℓ−

excluded: ≳ 4.5 TeV
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“bump hunting” 
little theory needed 

๏ constrained system    self consistent?

๏ sensitivity   
  per-cent @ EW scale    probe 

⇝

δ𝒪 ∼ Q2/Λ2
NP

⇝ ⇒ ΛNP ∼ TeV
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control of SM 
backgrounds 

precision for 
“standard candles”

no striking 
signals so far

talks by R.G. Suarez 
& S. Mukherjee



HOW MUCH PRECISION?     ⇝ 𝒪(1%)
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today

more data!20 ×

  access to rare & complex processes 
  very high precision measurements

⇝
⇝
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Fig. 28: (left) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic
uncertainties) on the per-production-mode cross sections normalised to the SM predictions for ATLAS
(blue) and CMS (red). The filled coloured box corresponds to the statistical and experimental systematic
uncertainties, while the hatched grey area represent the additional contribution to the total uncertainty due
to theoretical systematic uncertainties. (right) Summary plot showing the total expected ±1� uncertain-
ties in S2 (with YR18 systematic uncertainties) on the per-production-mode cross sections normalised to
the SM predictions for the combination of ATLAS and CMS extrapolations. For each measurement, the
total uncertainty is indicated by a grey box while the statistical, experimental and theory uncertainties are
indicated by a blue, green and red line respectively. In addition, the numerical values are also reported.

bined ATLAS-CMS extrapolation range from 2 � 4%, with the exception of that on Bµµ at 8% and
on BZ� at 19%. The numerical values in both S1 and S2 for ATLAS and CMS are given in Table 37
where the the breakdown of the uncertainty into four components is provided. In projections of both
experiments, the S1 uncertainties are up to a factor of 1.5 larger than those in S2, reflecting the larger
systematic component. The systematic uncertainties generally dominate in both S1 and S2. In S2 the
signal theory uncertainty is the largest, or joint-largest, component for all parameters except BRµµ and
BZ� , which remain limited by statistics due to the small branching fractions.

The correlations range up to 40%, and are largest between modes where the sensitivity is domi-
nated by gluon-fusion production. This reflects the impact of the theory uncertainties affecting the SM
prediction of the gluon-fusion production rate.

2.7 Kappa interpretation of the combined Higgs boson measurement projections23

2.7.1 Interpretations and results for HL-LHC
In this section combination results are given for a parametrisation based on the coupling modifier, or
-framework [42]. A set of coupling modifiers, ~, is introduced to parametrise potential deviations from
the SM predictions of the Higgs boson couplings to SM bosons and fermions. For a given production
process or decay mode j, a coupling modifier j is defined such that,

2
j = �j/�SM

j or 2
j = �

j/�
j
SM. (6)

23 Contacts: R. Di Nardo, A. Gilbert, H. Yang, N. Berger, D. Du, M. Dührssen, A. Gilbert, R. Gugel, L. Ma B. Murray, P.
Milenovic
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HOW DO WE PREDICT THIS FROM THEORY?



• incoming protons

‣ quarks & gluons  

• short distance   “hard”

‣ high scales:  –

• long distance   “soft”

‣ low scales:  

102 103 GeV

𝒪(few GeV)

⇝
evolution towards a 
physical observable state

7
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Quantum chromodynamics,
familiarly called QCD, is

the modern theory of the
strong interaction.1 Historic-
ally its roots are in nuclear
physics and the description of
ordinary matter—understand-
ing what protons and neu-
trons are and how they inter-
act. Nowadays QCD is used to
describe most of what goes on at high-energy accelerators.

Twenty or even fifteen years ago, this activity was
commonly called “testing QCD.” Such is the success of the
theory, that we now speak instead of “calculating QCD
backgrounds” for the investigation of more speculative
phenomena. For example, discovery of the heavy W and Z
bosons that mediate the weak interaction, or of the top
quark, would have been a much more difficult and uncer-
tain affair if one did not have a precise, reliable under-
standing of the more common processes governed by
QCD. With regard to things still to be found, search
strategies for the Higgs particle and for manifestations of
supersymmetry depend on detailed understanding of pro-
duction mechanisms and backgrounds calculated by
means of QCD.

Quantum chromodynamics is a precise and beautiful
theory. One reflection of this elegance is that the essence
of QCD can be portrayed, without severe distortion, in the
few simple pictures at the bottom of the box on the next
page. But first, for comparison, let me remind you that the
essence of quantum electrodynamics (QED), which is a
generation older than QCD, can be portrayed by the sin-
gle picture at the top of the box, which represents the
interaction vertex at which a photon responds to the pres-
ence or motion of electric charge.2 This is not just a
metaphor. Quite definite and precise algorithms for calcu-
lating physical processes are attached to the Feynman
graphs of QED, constructed by connecting just such inter-
action vertices.

In the same pictorial language, QCD appears as an
expanded version of QED. Whereas in QED there is just
one kind of charge, QCD has three different kinds of
charge, labeled by “color.” Avoiding chauvinism, we might
choose red, green, and blue. But, of course, the color
charges of QCD have nothing to do with physical colors.
Rather, they have properties analogous to electric charge.
In particular, the color charges are conserved in all phys-
ical processes, and there are photon-like massless parti-
cles, called color gluons, that respond in appropriate ways

to the presence or motion of
color charge, very similar to
the way photons respond to
electric charge.

Quarks and gluons
One class of particles that
carry color charge are the
quarks. We know of six differ-
ent kinds, or “flavors,” of

quarks—denoted u, d, s, c, b, and t, for:  up, down,
strange, charmed, bottom, and top. Of these, only u and d
quarks play a significant role in the structure of ordinary
matter. The other, much heavier quarks are all unstable.
A quark of any one of the six flavors can also carry a unit
of any of the three color charges. Although the different
quark flavors all have different masses, the theory is per-
fectly symmetrical with respect to the three colors. This
color symmetry is described by the Lie group SU(3). 

Quarks are spin-1/2 point particles, very much like
electrons. But instead of electric charge, they carry color
charge. To be more precise, quarks carry fractional elec-
tric charge (+ 2e/3 for the u, c, and t quarks, and – e/3 for
the d, s, and b quarks) in addition to their color charge.

For all their similarities, however, there are a few
crucial differences between QCD and QED. First of all,
the response of gluons to color charge, as measured by the
QCD coupling constant, is much more vigorous than the
response of photons to electric charge. Second, as shown
in the box, in addition to just responding to color charge,
gluons can also change one color charge into another. All
possible changes of this kind are allowed, and yet color
charge is conserved. So the gluons themselves must be
able to carry unbalanced color charges. For example, if
absorption of a gluon changes a blue quark into a red
quark, then the gluon itself must have carried one unit of
red charge and minus one unit of blue charge.

All this would seem to require 3 × 3 = 9 different
color gluons. But one particular combination of gluons—
the color-SU(3) singlet—which responds equally to all
charges, is different from the rest. We must remove it if
we are to have a perfectly color-symmetric theory. Then
we are left with only 8 physical gluon states (forming a
color-SU(3) octet). Fortunately, this conclusion is vindicat-
ed by experiment!

The third difference between QCD and QED, which is
the most profound, follows from the second. Because glu-
ons respond to the presence and motion of color charge
and they carry unbalanced color charge, it follows that
gluons, quite unlike photons, respond directly to one
another. Photons, of course, are electrically neutral.
Therefore the laser sword fights you’ve seen in Star Wars
wouldn’t work. But it’s a movie about the future, so maybe
they’re using color gluon lasers.

We can display QCD even more compactly, in terms of

FRANKWILCZEK is the J. Robert Oppenheimer Professor of Physics at
the Institute for Advanced Study in Princeton, New Jersey. Next month
he moves to Cambridge, Massachusetts, to take up the Herman Feshbach
Chair of Physics at the Massachusetts Institute of Technology.

QCD MADE SIMPLE
Quantum chromodynamics is

conceptually simple. Its realization
in nature, however, is usually
very complex. But not always.

Frank Wilczek

“
”
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๏ Focus:   

  high momentum transfer 
    &  clean signatures

๏ perturbation theory:

๏   &   

1% target         

                         

αs ∼ 0.1 αew ∼ 0.01

↔ 𝒪(αs2, αew)

⇝ 𝒪(αs3, αs αew)

σ = σ0 × (1 + αx + α2
x + α3

x + …)
fixed order:          LO        NLO     NNLO     N3LO …
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Quantum chromodynamics,
familiarly called QCD, is

the modern theory of the
strong interaction.1 Historic-
ally its roots are in nuclear
physics and the description of
ordinary matter—understand-
ing what protons and neu-
trons are and how they inter-
act. Nowadays QCD is used to
describe most of what goes on at high-energy accelerators.

Twenty or even fifteen years ago, this activity was
commonly called “testing QCD.” Such is the success of the
theory, that we now speak instead of “calculating QCD
backgrounds” for the investigation of more speculative
phenomena. For example, discovery of the heavy W and Z
bosons that mediate the weak interaction, or of the top
quark, would have been a much more difficult and uncer-
tain affair if one did not have a precise, reliable under-
standing of the more common processes governed by
QCD. With regard to things still to be found, search
strategies for the Higgs particle and for manifestations of
supersymmetry depend on detailed understanding of pro-
duction mechanisms and backgrounds calculated by
means of QCD.

Quantum chromodynamics is a precise and beautiful
theory. One reflection of this elegance is that the essence
of QCD can be portrayed, without severe distortion, in the
few simple pictures at the bottom of the box on the next
page. But first, for comparison, let me remind you that the
essence of quantum electrodynamics (QED), which is a
generation older than QCD, can be portrayed by the sin-
gle picture at the top of the box, which represents the
interaction vertex at which a photon responds to the pres-
ence or motion of electric charge.2 This is not just a
metaphor. Quite definite and precise algorithms for calcu-
lating physical processes are attached to the Feynman
graphs of QED, constructed by connecting just such inter-
action vertices.

In the same pictorial language, QCD appears as an
expanded version of QED. Whereas in QED there is just
one kind of charge, QCD has three different kinds of
charge, labeled by “color.” Avoiding chauvinism, we might
choose red, green, and blue. But, of course, the color
charges of QCD have nothing to do with physical colors.
Rather, they have properties analogous to electric charge.
In particular, the color charges are conserved in all phys-
ical processes, and there are photon-like massless parti-
cles, called color gluons, that respond in appropriate ways

to the presence or motion of
color charge, very similar to
the way photons respond to
electric charge.

Quarks and gluons
One class of particles that
carry color charge are the
quarks. We know of six differ-
ent kinds, or “flavors,” of

quarks—denoted u, d, s, c, b, and t, for:  up, down,
strange, charmed, bottom, and top. Of these, only u and d
quarks play a significant role in the structure of ordinary
matter. The other, much heavier quarks are all unstable.
A quark of any one of the six flavors can also carry a unit
of any of the three color charges. Although the different
quark flavors all have different masses, the theory is per-
fectly symmetrical with respect to the three colors. This
color symmetry is described by the Lie group SU(3). 

Quarks are spin-1/2 point particles, very much like
electrons. But instead of electric charge, they carry color
charge. To be more precise, quarks carry fractional elec-
tric charge (+ 2e/3 for the u, c, and t quarks, and – e/3 for
the d, s, and b quarks) in addition to their color charge.

For all their similarities, however, there are a few
crucial differences between QCD and QED. First of all,
the response of gluons to color charge, as measured by the
QCD coupling constant, is much more vigorous than the
response of photons to electric charge. Second, as shown
in the box, in addition to just responding to color charge,
gluons can also change one color charge into another. All
possible changes of this kind are allowed, and yet color
charge is conserved. So the gluons themselves must be
able to carry unbalanced color charges. For example, if
absorption of a gluon changes a blue quark into a red
quark, then the gluon itself must have carried one unit of
red charge and minus one unit of blue charge.

All this would seem to require 3 × 3 = 9 different
color gluons. But one particular combination of gluons—
the color-SU(3) singlet—which responds equally to all
charges, is different from the rest. We must remove it if
we are to have a perfectly color-symmetric theory. Then
we are left with only 8 physical gluon states (forming a
color-SU(3) octet). Fortunately, this conclusion is vindicat-
ed by experiment!

The third difference between QCD and QED, which is
the most profound, follows from the second. Because glu-
ons respond to the presence and motion of color charge
and they carry unbalanced color charge, it follows that
gluons, quite unlike photons, respond directly to one
another. Photons, of course, are electrically neutral.
Therefore the laser sword fights you’ve seen in Star Wars
wouldn’t work. But it’s a movie about the future, so maybe
they’re using color gluon lasers.

We can display QCD even more compactly, in terms of

FRANKWILCZEK is the J. Robert Oppenheimer Professor of Physics at
the Institute for Advanced Study in Princeton, New Jersey. Next month
he moves to Cambridge, Massachusetts, to take up the Herman Feshbach
Chair of Physics at the Massachusetts Institute of Technology.

QCD MADE SIMPLE
Quantum chromodynamics is

conceptually simple. Its realization
in nature, however, is usually
very complex. But not always.

Frank Wilczek

“
” ๏ asymptotic freedom

๏ factorization

1

2{
35 9. Quantum Chromodynamics

more than three jets in the final state. A selection of results from inclusive jet [429, 443, 600–605],
dijet [451], and multi-jet measurements [385, 387, 388, 429, 606–610] is presented in Fig. 9.3, where
the uncertainty in most cases is dominated by the impact of missing higher orders estimated through
scale variations. From the CMS Collaboration we quote for the inclusive jet production at

Ô
s = 7

and 8 TeV, and for dijet production at TeV the values that have been derived in a simultaneous
fit with the PDFs and marked with “*” in the figure. The last point of the inclusive jet sub-field
from Ref. [605] is derived from a simultaneous fit to six datasets from di�erent experiments and
partially includes data used already for the other data points, e.g. the CMS result at 7 TeV.

The multi-jet –s determinations are based on 3-jet cross sections (m3j), 3- to 2-jet cross-section
ratios (R32), dijet angular decorrelations (RdR, RdPhi), and transverse energy-energy-correlations
and their asymmetry (TEEC, ATEEC). The H1 result is extracted from a fit to inclusive 1-, 2-,
and 3-jet cross sections (nj) simultaneously.

All NLO results are within their large uncertainties in agreement with the world average and
the associated analyses provide valuable new values for the scale dependence of –s at energy scales
now extending up to almost 2.0 TeV as shown in Fig. 9.4.

αs(MZ2) = 0.1179 ± 0.0009

August 2021
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Figure 9.4: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).
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๏ Focus:   

  high momentum transfer 
    &  clean signatures

๏ perturbation theory:

๏   &   

1% target         

                         

αs ∼ 0.1 αew ∼ 0.01

↔ 𝒪(αs2, αew)

⇝ 𝒪(αs3, αs αew)

σ = σ0 × (1 + αx + α2
x + α3

x + …)
fixed order:          LO        NLO     NNLO     N3LO …

talk by L. Buonocore 
( ?)ℓ ∈ p
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PERTURBATION THEORY @ LEADING ORDER
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PERTURBATION THEORY @ NEXT-TO-LEADING ORDER
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MAIN CHALLENGES @ NNLO
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cross section  ~       phase space   
                                       &  scattering amplitude 

σ ∼ ∫ dΦ ℳ
2

’s∞ ’s∞ ’s∞

Finite

1

2

๏ amplitudes & multi-loop integrals

‣ rapid growth in complexity with number of scales    
  kinematic invariants &  particle masses  (int./ext.) 

๏ infrared subtractions    realistic setup  (arbitrary cuts, observables, …) 

‣ extract IR singularities in  without performing the integration 
  more difficult with more coloured legs  (simpler if massive) 

↭

↔

dΦ
↭

1

2

complexity often quantified by  
the multiplicity (“#legs”):  2 → n



WHAT CAN WE DO TODAY? — THE NNLO TIMELINE

Tremendous progress in the past  years! 
   under good control;   steady progress

∼ 10
↪ 2 → 2 2 → 3

14

Z+b-jet
VH

nested soft-coll.

γγγ2jets

Z@𝒪(αsα)

WH

WH( )mb ≠ 0

2020 2021
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+jetγγ

3jets

W+c-jet
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bb̄

Hjj(VBF)

Hjj(VBF)

2022

W@𝒪(αsα)

 (+frag)γ + X
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[adapted from slide by M. Grazzini]



NNLO REACHING MATURITY
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Figure 3: Rapidity and transverse momentum distributions of the most energetic jet at the 8 TeV

LHC. The insets show ratios of di↵erential cross sections at di↵erent orders in perturbation theory

for the factorization and the renormalization scales set to the mass of the Higgs boson.

The latter includes the transverse momentum and the rapidity distributions as well as the

distribution of the photon decay angle in the Collins-Soper reference frame. We can compute

all these kinematic distributions through NNLO in perturbative QCD, using exactly the same

setup that the ATLAS collaboration employs in the actual measurement.

We begin with the discussion of the rapidity and the transverse momentum distributions

of the Higgs boson in events with at least one jet, see Fig. 2. The pattern of radiative

corrections is similar to the fiducial cross section case that we just discussed. In the two

plots in Fig. 2 the relative magnitude of radiative corrections is illustrated in lower panes,

where ratios of NLO to LO and NNLO to NLO distributions at µ = mH are displayed. We

will refer to such ratios as K-factors. We note that similar to the case of the inclusive Higgs

boson production pp ! H, the NNLO enhancement of the Higgs boson rapidity distribution

in pp ! H + j process is independent of the rapidity. On the contrary, the K-factors

for transverse momenta distributions have a more interesting shape. Indeed, we observe

the instability of d�/dp?,H at the value of the Higgs boson transverse momentum equal to

the value of the jet transverse momentum cut. This is the manifestation of the so called

Sudakov-shoulder e↵ect [27]. Just above p?,H ⇠ 30 GeV, the NNLO corrections are small

but they increase to about 30% at around p?,H ⇠ 75 GeV and then start to decrease again.

Next, we consider kinematic distributions of the QCD radiation that accompanies the

Higgs boson production. The rapidity and the transverse momentum distributions of the

hardest jet are shown in Fig. 3. Similar to the QCD corrections to the Higgs boson rapidity
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FIG. 1: NNLO QCD predictions for the fiducial (top) and
inclusive selections (bottom) of the normalized ��`` distri-
bution versus ATLAS data [20]. Uncertainty bands are from
7-point scale variation.

III. RESULTS

In this work we calculate two di↵erential distributions,
namely, the two leptons’ angular di↵erence in the trans-
verse plane ��`` and their rapidity di↵erence |�⌘``|.

We have two selection criteria for each distribution.
The first one, called inclusive, does not assume any se-
lection cuts. The second one, called fiducial, is based on
the ATLAS selection cuts [20]: an electron and a muon
of opposite electric charge with pT > 27(25) GeV for the
harder (softer) lepton and |⌘| < 2.5. In addition, we re-
quire at least two jets (at least one of which is a b-flavored
jet) with pT > 25 GeV and |⌘| < 2.5. All jets are defined
with the anti-kT algorithm [64] with R = 0.4.

The normalized fiducial and inclusive ��`` and |�⌘``|
distributions are shown in fig. 1 and fig. 3, respectively.
Each curve is normalized with respect to the correspond-
ing visible cross-section, i.e. the integral under it equals
unity. The ��`` distribution is compared with the pub-
lished ATLAS data [20]; the |�⌘``| one is not since the
corresponding data has not been published yet.

A number of observations can be made from fig. 1.
The most interesting feature is the di↵erent behavior of
the NNLO/NLO ��`` K-factor between the fiducial and
inclusive cases. With respect to the inclusive case, in
the fiducial case the K-factor is much larger, the NNLO
distribution is in good agreement with data and the scale
uncertainty is much larger. Notably, the NNLO inclusive
prediction does not agree well with data.

Since both the fiducial and inclusive data originate

from the same measurement it is not a priori clear why
the NNLO calculation would agree with only one of them.
In our view the most plausible explanation for this dis-
crepancy lies in the extrapolation of the fiducial measure-
ment to the full phase space.

Such a conclusion should not come as a complete sur-
prise since the extrapolation to full phase space is per-
formed with event generators that have accuracy di↵erent
than the one in the present work. In fact an early indica-
tion about the importance of higher order corrections in
top quark production came from the long standing top
quark pT discrepancy, namely, that NLO-accurate event
generators do not model well the LHC top quark pT dis-
tribution while the NNLO QCD correction significantly
improves the agreement with data.

A. Anatomy of higher order corrections to ��``

In the following we o↵er a detailed analysis quantifying
a number of possible contributions to this observable. We
show that they are too small to a↵ect the behavior of this
observable in the SM.
Is the NNLO correction large? NLO analyses [20] in-

dicate that higher order e↵ects are likely not going to
bridge the 3.2� discrepancy with the ATLAS ��`` data.
Yet we see that the NNLO QCD prediction agrees well
with data in the fiducial region. From this one cannot
directly conclude that the NNLO correction is unusually
large. The reason is that our NNLO prediction uses scales
di↵erent than the ones in most event generators.

For our preferred choice of scales we find that the fidu-
cial NNLO/NLO K-factor is no larger than 5%. This
is perfectly reasonable NNLO correction which, more-
over, is consistent with the NLO scale uncertainty band.
The NLO/LO K-factor is larger by a factor of about 3.
In the inclusive case one observes smaller K-factors and
less scale variation which is reasonable to expect since
the observable is more inclusive. We note that in both
cases the smallness of the LO uncertainty band is due to a
cancellation between the normalization factor and is not
representative of the true uncertainty in the di↵erential
distribution.

We conclude that the behavior of ��`` is consistent
with good perturbative convergence. The NNLO cor-
rection plays an important role: in the fiducial case it
reduces the scale uncertainty by more than a factor of
two and modifies the slope of the theory prediction in a
direction that improves the agreement with data.
Choice of scales. All calculations in this work are per-

formed with three scales: the one in eq. (3) as well as
µF,R = mt and µF,R = mt/2. As can be seen in fig. 2
the result with scale mt/2 behaves similarly to the one
in eq. (3) and is even closer to data. On the other hand,
the calculation with scale mt has larger NNLO/NLO K-
factor and the agreement with data in the fiducial case
is not as good as for the other two scales.

To understand this behavior we recall that the scale
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BEYOND “STANDARD”  CALCULATIONS2 → 2

๏ adding flavour  (also: ) 

‣ Z+b-jet

‣ W+c-jet

‣ Z+c-jet

๏ adding masses 

‣  ( )

‣

๏ identified particles / fragmentation 

‣ hadron fragmentation

‣ isolated photons

๏ beyond approximations 

‣ non-factorizable corrections 

‣ Higgs beyond HTL ( ) 

๏ NNLO ♡ PS    , , , , 

Wbb̄

pp → WH H → bb̄

pp → bb̄

mt → ∞

↭ H V HV VV tt̄
16
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114 A. Banfi et al.: Infrared-safe definition of jet flavour

configuration consists of quark jets; but for jet production
at hadron colliders, the Born configuration involves two in-
coming and two outgoing jets and many flavour channels
are possible: qq→ qq, qq̄→ gg, gg→ gg, etc. The ability
to assign flavours to the jets is especially useful when com-
bining fixed-order predictions with all-order calculations
(be it for parton showers as in [7] or for analytical resum-
mations [8–10]). This is because all-order calculations are
carried out for a fixed Born configuration, with a single
flavour channel at a time, while fixed-order calculations im-
plicitly sum over all flavour channels and can at best be
split up a posteriori to match onto the individual flavour
channels of the all-order calculation.

As a concrete example, consider the calculation of
higher-order corrections to the process qq̄→ qq̄, Fig. 1a.
An all-order calculation treats the addition of any num-
ber of soft/collinear gluons and extra qq̄ pairs implicitly,
leaving the underlying 2→ 2 flavours unchanged. When
trying to supplement this with results of a fixed-order
calculation one encounters the problem that higher-order
contributions cannot be uniquely assigned to any given
2→ 2 flavour channel – the O (αs) corrections to qq̄→ qq̄
include e.g. a qq̄→ qq̄→ qq̄g piece, but a fixed-order calcu-
lation gives only the squared sum of all qq̄→ qq̄g diagrams,
among them qq̄→ qq̄→ qq̄g and qq̄→ gg→ qq̄g, illustrated
in Fig. 1b and c respectively. There can exist no unambigu-
ous procedure for separating the qq̄→ qq̄g contribution
into its different underlying channels, both because the dif-
ferent channels are not individually gauge invariant and
because they interfere when squaring the amplitude.

One therefore needs a prescription to assign qq̄→ qq̄g
either to the qq̄→ qq̄ or the qq̄→ gg underlying Born 2→ 2
process (or else to declare it irreducibly 2→ 3-like), it only
being in the qq̄→ qq̄ case that one needs to put it together
with the qq̄→ qq̄ all-order calculation. This reclassification
of a 2→ 3 event as a 2→ 2 event is similar conceptually
to what is done in a normal jet algorithm, except that not
only should the momenta of the resulting 2→ 2 config-
uration be infrared and collinear safe, but so should the
flavours. Accordingly we call it a jet-flavour algorithm.

An obvious approach to defining jet flavours at the per-
turbative level would be to start with an existing jet algo-
rithm, such as the kt-clustering [11–13] or cone [14] algo-
rithm, that defines jets such that each particle belongs to at
most one jet. One can then determine the net flavour con-
tent of each of the jets, as the total number of quarks minus
antiquarks for each quark flavour. Jets with no net flavour
are identified as gluon jets, those with (minus) one unit of
net flavour are (anti) quark jets, while those with more than

Fig. 1. a Specific qq̄→ qq̄ flavour channel for a 2→ 2 parton
scattering process; b higher-order diagram that can be seen as
a correction to a; c higher-order diagram that can be seen as
a correction to the process qq̄→ gg, but with the same final-
state partons as b

one unit of flavour (or both a flavour and a different anti-
flavour) cannot be identified with a single QCD parton.

Applied to the kt or cone algorithms, this procedure
yields a jet flavour that is infrared (IR) safe at (rela-
tive) order αs discussed in our example above. However at
(relative) order α2

s a large-angle soft gluon can split into
a widely separated soft qq̄ pair and the q and q̄ may end up
being clustered into different jets, “polluting” the flavour
of those jets; see Fig. 2. Because this happens for arbi-
trarily soft gluons branching to quarks, the resulting jet
flavours are infrared unsafe from order α2

s onwards. We are
not aware of this problem having been discussed previously
in the literature, though there do exist statements that are
suggestive of IR safety issues when discussing flavour [15].

In Sect. 2 we shall discuss IR flavour unsafety with re-
spect to the kt (or “Durham”) algorithm in e+e− [11].
There we shall recall that the kt closeness measure is spe-
cifically related to the divergences of QCD matrix elements
when producing soft and collinear gluons. However there
are no divergences for the production of soft quarks and, as
we shall see, it is the use for quarks of a distance measure
designed for gluons that leads to the infrared unsafety of
jet flavour in the kt algorithm. By taking into account the
absence of a soft-quark divergence when designing the jet-
clustering distance measure, one can eliminate the infrared
divergence of the jet flavour.

The essence of the modification to the kt distance is
that instead of the min(E2

i , E
2
j ) factor that appears usu-

ally, one needs to use max(E2
i , E

2
j ) when the softer of i, j

is a quark. In Sect. 3 we will examine how this can be
extended to processes with incoming hadrons. There the
added difficulty is the need for a particle-beam distance
measure. Traditionally this involves only one dimensionful
scale, related to the squared transverse momentum k2

ti of
the particle. There is a sense in which this can be under-
stood as min(k2

ti, k
2
tB), where k2

tB is some transverse scale
associated with the beam that is larger than all k2

ti and
so could up to now be ignored. In order to obtain a sensi-
ble jet-flavour algorithm we shall however need to consider
also max(k2

ti, k
2
tB) and therefore in Sect. 3 we shall investi-

gate how to construct sensible “beam scales”.
As well as explaining how to build jet algorithms that

provide an infrared-safe jet flavour, we shall also examine
how they fare in practice. In e+e− it will be possible to
carry out tests both with an NLO code (which explicitly
reveals the IR unsafety of flavour in traditional jet algo-

Fig. 2. A large-angle soft gluon splitting to a large-angle soft
qq̄ pair (k3, k4) with the q and q̄ then clustered into different
jets (k1, k2)
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Table 2: Fiducial cross sections and relative NLO EW corrections at order O
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↵s↵

3
�

for pp !

W+jc, pp ! W�jc, and their ratios at the LHC at
p

s = 13 TeV. No QCD corrections are
included in these predictions. The digit in parenthesis indicates the Monte Carlo statistical
error. The full CKM matrix and the NNLO NNPDF3.1 set with ↵s = 0.118 are used.
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Figure 2: Differential distributions in the transverse momentum (left) and the absolute rapidity
(right) of the charged lepton for the process pp ! W+jc at

p
s = 13 TeV. The upper panel shows

the LO, NLO, and NNLO QCD absolute predictions without EW corrections. The middle panel
represents the NLO EW corrections normalised to the LO predictions. The lower panel displays
the LO and NNLO QCD predictions and data relative to the NLO QCD prediction.

the corrections are almost exactly the same. This implies that the corrections essentially do not
contribute at the level of the ratio (tenth of a per mille), therefore reinforcing the statement
made above that this ratio is very stable under perturbative corrections in the Standard Model.

In Fig. 2, differential distributions in the transverse momentum and the absolute rapidity of
the charged lepton are shown for the plus signature. We refrain from showing results for the
minus signature as they are qualitatively very similar. As observed at the level of the cross
section and in Ref. [11], the QCD corrections are characterised by large NLO K-factors and
moderate NNLO ones. As usual, these corrections are accompanied by a significant reduction
of the theoretical uncertainty estimated via scale variation. This observation holds for both
observables as well as for the transverse momentum and rapidity of the charm jet (not shown).

On the other hand, the EW corrections have a rather different behaviour for the two ob-
servables. For the transverse momentum, the corrections become negative and large when going
towards higher energy. At low transverse momentum, the corrections are at the level of few per
cent, as for the fiducial cross section, while they reach almost 10% above 200 GeV. This be-
haviour is typical for EW corrections which are driven by Sudakov logarithms in the high-energy
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the LO, NLO, and NNLO QCD absolute predictions without EW corrections. The middle panel
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made above that this ratio is very stable under perturbative corrections in the Standard Model.
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minus signature as they are qualitatively very similar. As observed at the level of the cross
section and in Ref. [11], the QCD corrections are characterised by large NLO K-factors and
moderate NNLO ones. As usual, these corrections are accompanied by a significant reduction
of the theoretical uncertainty estimated via scale variation. This observation holds for both
observables as well as for the transverse momentum and rapidity of the charm jet (not shown).

On the other hand, the EW corrections have a rather different behaviour for the two ob-
servables. For the transverse momentum, the corrections become negative and large when going
towards higher energy. At low transverse momentum, the corrections are at the level of few per
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Figure 5: Ratio of differential distributions in the transverse momentum of the charged lepton
(left) and the rapidity of the charged lepton (right) for the process pp ! W+jc at

p
s = 13 TeV.

The top panels show a comparison of 7-points scale variation against PDF error. The lower
panels show the PDF error for the NNPDF3.1 set compared to the central predictions of the
NNPDF3.0, NNPDF4.0, and CT18 sets.

are shown for the three different scales. For this observable, the smallest corrections are obtained
for µ0/2. On the other hand, for the transverse momentum of the hardest c-jet (not shown), the
smallest corrections are obtained for µ0. In general, at the level of the fiducial cross section, the
smallest cross section is obtained with 2µ0. Note that for the plots with the 3 different scales,
the 3-points scale variation prescription is used.

In Fig. 5, the transverse momentum and the rapidity distributions of the charged lepton are
shown. In the upper plots, the 7-points scale variation is compared to the PDF uncertainty.
As at the level of the cross section (see Table 1) and at 7 TeV [11], NNLO scale variation is
smaller than the PDF uncertainty. This implies that NNLO predictions are crucial for the
precise determination of strange and anti-strange PDFs. In particular, NLO QCD predictions
are insufficient for constraining PDFs given that the NLO scale uncertainty is about twice the
PDF uncertainty (see Table 1). In the lower plots, the predictions are provided at NNLO QCD
for different sets. In addition to the nominal one (NNPDF3.1), we also show predictions for the
NNPDF3.0, NNPDF4.0, and CT18 sets. It is worth emphasising that there are large variations
between the different sets. While the predictions with NNPDF4.0 are within the PDF uncertainty
of NNPDF3.1, this is not the case for CT18 across the whole phase space. Interestingly, the
predictions obtained with the NNPDF3.0 set are always outside of the PDF uncertainty band of
the NNPDF3.1 set.

For completeness, we also provide in Table 4 the central values for the four different PDF sets.
As at the differential level, we can observe that the spread is of the order of 10%. In particular,
among all the theoretical effects that we study in details in the present work, the PDF is the
largest source of uncertainty. This therefore strongly motivates the effort for improving the
determination of strange PDFs using state-of-the-art theory predictions presented in this work.
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the 3-points scale variation prescription is used.
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As at the level of the cross section (see Table 1) and at 7 TeV [11], NNLO scale variation is
smaller than the PDF uncertainty. This implies that NNLO predictions are crucial for the
precise determination of strange and anti-strange PDFs. In particular, NLO QCD predictions
are insufficient for constraining PDFs given that the NLO scale uncertainty is about twice the
PDF uncertainty (see Table 1). In the lower plots, the predictions are provided at NNLO QCD
for different sets. In addition to the nominal one (NNPDF3.1), we also show predictions for the
NNPDF3.0, NNPDF4.0, and CT18 sets. It is worth emphasising that there are large variations
between the different sets. While the predictions with NNPDF4.0 are within the PDF uncertainty
of NNPDF3.1, this is not the case for CT18 across the whole phase space. Interestingly, the
predictions obtained with the NNPDF3.0 set are always outside of the PDF uncertainty band of
the NNPDF3.1 set.

For completeness, we also provide in Table 4 the central values for the four different PDF sets.
As at the differential level, we can observe that the spread is of the order of 10%. In particular,
among all the theoretical effects that we study in details in the present work, the PDF is the
largest source of uncertainty. This therefore strongly motivates the effort for improving the
determination of strange PDFs using state-of-the-art theory predictions presented in this work.
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of NNPDF3.1, this is not the case for CT18 across the whole phase space. Interestingly, the
predictions obtained with the NNPDF3.0 set are always outside of the PDF uncertainty band of
the NNPDF3.1 set.

For completeness, we also provide in Table 4 the central values for the four different PDF sets.
As at the differential level, we can observe that the spread is of the order of 10%. In particular,
among all the theoretical effects that we study in details in the present work, the PDF is the
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Figure 5: Measured R
c
j distribution (gray bands) for three intervals of forward Z rapidity,

compared to NLO SM predictions [29] without IC [42], with the charm PDF shape allowed to
vary (hence, permitting IC) [39,76], and with IC as predicted by BHPS with a mean momentum
fraction of 1% [38]. The predictions are o↵set in each interval to improve visibility.

Table 3: Numerical results for the R
c
j measurements, where the first uncertainty is statistical

and the second is systematic.

y(Z) R
c
j (%)

2.00–2.75 6.84± 0.54± 0.51
2.75–3.50 4.05± 0.32± 0.31
3.50–4.50 4.80± 0.50± 0.39

2.00–4.50 4.98± 0.25± 0.35

enhancement. Indeed, Fig. 5 shows that, after including the IC PDF shape predicted
by BHPS with a mean momentum fraction of 1%, the theory predictions are consistent
with the data. Incorporating these novel forward R

c
j results into a global analysis should

strongly constrain the large-x charm PDF, both in size and in shape. While the large
enhancement in the forward-most y(Z) interval is suggestive of valence-like IC, no definitive
statements can be made until the R

c
j results are included in a global PDF analysis.

In conclusion, events containing a Z boson and a charm jet are studied for the first
time in the forward region of pp collisions. The data sample used corresponds to an
integrated luminosity of 6 fb�1 collected at a center-of-mass energy of 13TeV with the
LHCb detector. The ratio R

c
j is measured in intervals of y(Z) and compared to NLO

SM calculations. The observed spectrum exhibits a sizable enhancement at forward Z
rapidities, consistent with the e↵ect expected if the proton wave function contains the
|uudcc̄i component predicted by BHPS. However, conclusions about whether the proton
contains valence-like intrinsic charm can only be drawn after incorporating these results
into global PDF analyses.
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•NNLO 10–20% 
•outside of NLO 
•affects shape 
(flavour-dressing) 

Attention:  different c-jet definitions! 
additional IR safety issues in EXP:  
‣ tag if at least one -hadron  ( )  

‣ ( -hadron)         ( ) 
c g ↛ cc̄

pT c > 5 GeV c ↛ cg
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Figure 11. (Left): the normalized m(B`�) distribution for fixed scale (3.2). Shown are the 15 point
scale variation bands for LO, NLO and NNLO as well as the NPFF r.m.s. uncertainty band. (Right):
the NNLO prediction for 3 di↵erent values of mt.

parameters are the ones from the linear fit to the central scale values. We have checked that

fits to absolute or normalized distributions produce the same peak position, as expected.

We next consider the m(B`�) distribution. We have checked that the m(B`+) distri-

bution is equivalent to it within the MC error of the calculation. The prediction for the

normalized m(B`�) distribution can be found in fig. 11. We only show the predictions for

final states with a B-hadron although predictions for a J/ or a muon can be provided. We

observe the much improved perturbative description at higher orders. We also note that 1

GeV shift in mt has almost identical e↵ect on the normalized distribution as the inclusion of

the NNLO correction relative to the NLO one. This demonstrates the tight interplay between

the inclusion of higher order corrections to the so-called indirect top quark mass observables

and the ultimate precision of the extracted mt.

A feature of the observable m(B`�) is that it combines (B, `) pairs that may originate

from either the same top quark or from two di↵erent top quarks. For the purpose of mt

determination, one would like to predominantly have pairs that originate from the same

top quark. One way to achieve this is to consider the modified observable m(B`)min where

the B and ` are paired not based on lepton’s charge but on the requirement that their

invariant mass is minimized. In fig. 12 (left) we show the predicted mt dependence for the

first moment of the normalized m(B`)min distribution. Note that this moment is sensitive to

the selection requirements listed in the beginning of this section. We have verified that for

di↵erent selection requirements, for example the ones listed in sec. 3.1, the behavior of this

observable can change significantly.

We find the NNLO correction shifts the dependence relative to NLO, but much less than

the NLO one does relative to LO. The perturbative uncertainty also decreases at higher orders

which means that the inclusion of the NNLO correction will have an important impact on this

observable. We also note that at NNLO the slope of the mt dependence very slightly decreases

which means a slight decrease with higher orders to the mt sensitivity of this observable. This
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Figure 8. As in fig. 7 but for m(F `
�) (left column) and m(F `)min (right column).

that this observable is very precisely and reliably predicted at NNLO in QCD.

We next turn our attention to m(F `), shown in fig. 8, which is another kinematic variable

studied in the context of mt in sec. 3.2. Specifically we show m(F `
�) and m(F `)min, the

latter being defined by the requirement that ` is chosen in such a way that its invariant mass

with F is minimized. We observe a pattern of higher order corrections roughly in line with

E(F ) discussed above. The most prominent feature is the non-overlap of NLO and NNLO

uncertainty bands for m(B`) below, roughly, 50 GeV. This feature is likely driven by the

selection cuts since, as can be seen in fig. 11, once more inclusive selection cuts are applied
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Figure 6: Ratios of the theoretical predictions for the TEEC functions at LO and NNLO to the NLO calculations,
together with the ratios of the data to NLO predictions. The hatched band, where visible, shows the statistical
uncertainty in the NNLO prediction. The predictions use the MMHT2014 PDF, where the value of the strong
coupling constant is set to Us (</ ) = 0.1180. The uncertainty bands correspond to the scale uncertainties for each
perturbative order.
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1
σ

dΣ
d cos ϕ

=
1
σ ∫ ∑

i,j

dσ
kT,i kT,j

∑k kT,k
δ(cos ϕ − cos ϕij)

j
2 values. The values of Us(</ ) determined from fits to the TEEC functions, both in the inclusive and

exclusive �T2 bins, are presented in Table 4, while the values obtained from fits to the ATEEC functions are
presented in Table 5. The average & values and the reduced j

2 values at the minimum are also shown. The
values displayed in Tables 4 and 5 are obtained using the MMHT 2014 PDF in the theoretical predictions.

Table 2: Values of UB (</ ) obtained from fits to the TEEC distributions to the NNLO theoretical predictions obtained
using di�erent PDF sets. The uncertainty referred to as ` represents the theoretical scale uncertainty. The uncertainty
referred to as NP is related to the non-pQCD corrections. The uncertainty referred to as (mod.) is related to the
MC model used in the unfolding. The value of the j

2 function at its minimum, as well as the number of degrees of
freedom is also indicated.

PDF UB (</ ) value j
2
/#dof

MMHT 2014 0.1175 ± 0.0001 (stat.) ± 0.0006 (sys.)+0.0032
�0.0011 (`) ± 0.0011 (PDF) ± 0.0002 (NP) ± 0.0005 (mod.) 318 / 251

CT14 0.1196 ± 0.0001 (stat.) ± 0.0006 (sys.)+0.0035
�0.0010 (`) ± 0.0016 (PDF) ± 0.0002 (NP) ± 0.0006 (mod.) 262 / 251

NNPDF 3.0 0.1191 ± 0.0001 (stat.) ± 0.0006 (sys.)+0.0040
�0.0011 (`) ± 0.0020 (PDF) ± 0.0003 (NP) ± 0.0007(mod.) 300 / 251

Table 3: Values of UB (</ ) obtained from fits to the ATEEC distributions to the NNLO theoretical predictions
obtained using di�erent PDF sets. The uncertainty referred to as ` represents the theoretical scale uncertainty. The
uncertainty referred to as NP is related to the non-pQCD corrections. The uncertainty referred to as (mod.) is related
to the MC model used in the unfolding. The value of the j

2 function at its minimum, as well as the number of
degrees of freedom is also indicated.

PDF UB (</ ) value j
2
/#dof

MMHT 2014 0.1185 ± 0.0005 (stat.) ± 0.0008 (sys.)+0.0022
�0.0002 (`) ± 0.0011 (PDF) ± 0.0004 (NP) ± 0.0001 (mod.) 110 / 117

CT14 0.1200 ± 0.0006 (stat.) ± 0.0009 (sys.)+0.0027
�0.0001 (`) ± 0.0016 (PDF) ± 0.0005 (NP) ± 0.0001 (mod.) 110 / 117

NNPDF 3.0 0.1199 ± 0.0006 ± (stat.)0.0009 (sys.)+0.0027
�0.0002 (`) ± 0.0017 (PDF) ± 0.0005 (NP) ± 0.0001(mod.) 108 / 117

The final values of UB obtained from global fits to the TEEC and ATEEC distributions using the MMHT
2014 PDF are

Us(</ ) = 0.1175 ± 0.0006 (exp.)+0.0034
�0.0017 (theo.) and

Us(</ ) = 0.1185 ± 0.0009 (exp.)+0.0025
�0.0012 (theo.).

The central values of UB determined from both observables are correlated with a Pearson correlation
coe�cient d = 0.86 ± 0.02 (exp.), and are found to be compatible within the quoted uncertainties. While
the value determined from the fit to the TEEC distributions has a better experimental precision, mainly due
to its smaller statistical uncertainty, the value determined from the fit to the ATEEC distributions exhibits a
better theoretical precision.

The fitted values of Us(</ ) for each bin, together with the values of the nuisance parameters, are used
to evaluate the agreement between the data and the fitted predictions. Figure 8 shows the ratio of the
TEEC data to the fitted theoretical distributions for both the inclusive and exclusive bins, together with the
theoretical and experimental uncertainties. Similarly, Figure 9 shows the ratios of data to theory for the
ATEEC distributions. An excellent agreement is observed for both the TEEC and ATEEC measurements
in all regions of phase space.
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Figure 6: Ratios of the theoretical predictions for the TEEC functions at LO and NNLO to the NLO calculations,
together with the ratios of the data to NLO predictions. The hatched band, where visible, shows the statistical
uncertainty in the NNLO prediction. The predictions use the MMHT2014 PDF, where the value of the strong
coupling constant is set to Us (</ ) = 0.1180. The uncertainty bands correspond to the scale uncertainties for each
perturbative order.
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direct-enriched phase space suffer further from reduced statistics due to the additional cuts.

Azimuthal separation between the jets and photon |��
��jet| and |��

j1�j2 |. These are
the last two observables that we discuss in detail. We first focus on the inclusive phase space,
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the last two observables that we discuss in detail. We first focus on the inclusive phase space,
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Figure 3: Distribution of �Rbb̄ and ��bb̄ for inclusive pp ! W
+
(! `

+
⌫)bb̄ production.

The second panel shows the ratio of all setups to the flavoured-kT algorithm. The coloured
bands define scale uncertainty for two calculations: flavour-kT, and flavoured anti-kT with
a = 0.1. The last two panels show the K-factors at NNLO and NLO, correspondingly. The
vertical bars define the statistical uncertainty. All calculations were performed simultane-
ously using the same Monte-Carlo seed.

in Ref. [18]. Since uncertainties on these factors do not originate from fixed order predic-
tions, we separate them from the estimate of missing higher orders. After being added in
quadrature to the uncorrelated theoretical uncertainties, they contribute to the full the-
oretical uncertainty, shown by dotted error bars in Figure 2. We checked that our NLO
results are compatible with the NLO predictions shown in Figure 3 of Ref. [18]. The NNLO
QCD corrections appear to be significant, and their inclusion in the theoretical predic-
tion improves substantially the agreement with the experimental data. Moreover, we find
consistent agreement for all the considered values of a.

3.2 Differential distributions

In this section we present results for a number of differential distributions, focusing on the
inclusive W+

(! `
+
⌫)bb̄ production. We selected distributions which showcase the difference

between the flavour kT and anti-kT algorithms or exhibit a particularly strong dependence
on the a-parameter.

We start by showing the distributions for the distance between the b-flavoured jets
�Rb b̄ and their azimuthal angular separation ��b b̄ in Figure 3. These distributions are of
particular interest, as they explicitly enter the definition of the jet algorithms. One can
clearly see that the region of small angular separation is the origin of the increased cross
section and scale uncertainty of the anti-kT setups in comparison to the kT setup. The
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Figure 7: �Rbb̄ differential distributions for inclusive pp ! W
+
(! `

+
⌫)bb̄ production ob-

tained using the flavour-kT (left) and flavour anti-kT (right) jet algorithms. The individual
plot structure is the same as in Figure 6.

5 Conclusions

We considered the production and leptonic decay of a W-boson in association with a bottom-
quark pair at the LHC, at NNLO QCD accuracy. Such a final state requires the use of a
flavour sensitive jet algorithm to define an IR-safe fixed order prediction beyond NLO QCD.
We computed cross sections and differential distributions using the flavoured modification of
the anti-kT jet algorithm proposed in Ref. [33]. We compared its output for three different
values of the tuneable parameter a against predictions by the flavour-kT jet algorithm [28],
where we observed a 50% difference for the integrated cross section, coming from the small
bb̄-distance region. The scale band is increased accordingly, and can be understood as a
consequence of sensitivity to gluon to b-quark pair splittings.

We compared our theoretical predictions for the exclusive cross section, where we re-
quire exactly two b-jets and no other jets in the final state, obtained with the flavoured
anti-kT jet algorithm, against the measurement by the CMS collaboration [18]. We found
good agreement for all values of the considered values for the a-parameter. The NNLO
QCD corrections are significant, and their inclusion substantially improves the agreement
with the data.

We showed differential observables that are particularly sensitive to the choice of the
jet algorithm. The dominant differences between the flavoured kT and anti-kT algorithm
can be attributed to the region of small angular separation between the bb̄-pair. This region
shows also an enhanced sensitivity to the a parameter of the flavoured anti-kT algorithm.
The determination of an optimal value for a for this process is left for future work.

Finally, we studied the genuine impact of the full NNLO QCD corrections by comparing
the NNLO calculation against an improved NLO prediction, that is obtained by merging the
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[Abreu et al. ’22]

ΔRbb̄

σNLO+
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W+  —- MASSES AS REGULATORSbb̄

๏ use massive bottom quarks (4FS) 

๏ 2-loop amplitude   
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[Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini '22]
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αs log(Q2/m2
𝔣 )

α2
s log(Q2/m2

𝔣 )

114 A. Banfi et al.: Infrared-safe definition of jet flavour

configuration consists of quark jets; but for jet production
at hadron colliders, the Born configuration involves two in-
coming and two outgoing jets and many flavour channels
are possible: qq→ qq, qq̄→ gg, gg→ gg, etc. The ability
to assign flavours to the jets is especially useful when com-
bining fixed-order predictions with all-order calculations
(be it for parton showers as in [7] or for analytical resum-
mations [8–10]). This is because all-order calculations are
carried out for a fixed Born configuration, with a single
flavour channel at a time, while fixed-order calculations im-
plicitly sum over all flavour channels and can at best be
split up a posteriori to match onto the individual flavour
channels of the all-order calculation.

As a concrete example, consider the calculation of
higher-order corrections to the process qq̄→ qq̄, Fig. 1a.
An all-order calculation treats the addition of any num-
ber of soft/collinear gluons and extra qq̄ pairs implicitly,
leaving the underlying 2→ 2 flavours unchanged. When
trying to supplement this with results of a fixed-order
calculation one encounters the problem that higher-order
contributions cannot be uniquely assigned to any given
2→ 2 flavour channel – the O (αs) corrections to qq̄→ qq̄
include e.g. a qq̄→ qq̄→ qq̄g piece, but a fixed-order calcu-
lation gives only the squared sum of all qq̄→ qq̄g diagrams,
among them qq̄→ qq̄→ qq̄g and qq̄→ gg→ qq̄g, illustrated
in Fig. 1b and c respectively. There can exist no unambigu-
ous procedure for separating the qq̄→ qq̄g contribution
into its different underlying channels, both because the dif-
ferent channels are not individually gauge invariant and
because they interfere when squaring the amplitude.

One therefore needs a prescription to assign qq̄→ qq̄g
either to the qq̄→ qq̄ or the qq̄→ gg underlying Born 2→ 2
process (or else to declare it irreducibly 2→ 3-like), it only
being in the qq̄→ qq̄ case that one needs to put it together
with the qq̄→ qq̄ all-order calculation. This reclassification
of a 2→ 3 event as a 2→ 2 event is similar conceptually
to what is done in a normal jet algorithm, except that not
only should the momenta of the resulting 2→ 2 config-
uration be infrared and collinear safe, but so should the
flavours. Accordingly we call it a jet-flavour algorithm.

An obvious approach to defining jet flavours at the per-
turbative level would be to start with an existing jet algo-
rithm, such as the kt-clustering [11–13] or cone [14] algo-
rithm, that defines jets such that each particle belongs to at
most one jet. One can then determine the net flavour con-
tent of each of the jets, as the total number of quarks minus
antiquarks for each quark flavour. Jets with no net flavour
are identified as gluon jets, those with (minus) one unit of
net flavour are (anti) quark jets, while those with more than

Fig. 1. a Specific qq̄→ qq̄ flavour channel for a 2→ 2 parton
scattering process; b higher-order diagram that can be seen as
a correction to a; c higher-order diagram that can be seen as
a correction to the process qq̄→ gg, but with the same final-
state partons as b

one unit of flavour (or both a flavour and a different anti-
flavour) cannot be identified with a single QCD parton.

Applied to the kt or cone algorithms, this procedure
yields a jet flavour that is infrared (IR) safe at (rela-
tive) order αs discussed in our example above. However at
(relative) order α2

s a large-angle soft gluon can split into
a widely separated soft qq̄ pair and the q and q̄ may end up
being clustered into different jets, “polluting” the flavour
of those jets; see Fig. 2. Because this happens for arbi-
trarily soft gluons branching to quarks, the resulting jet
flavours are infrared unsafe from order α2

s onwards. We are
not aware of this problem having been discussed previously
in the literature, though there do exist statements that are
suggestive of IR safety issues when discussing flavour [15].

In Sect. 2 we shall discuss IR flavour unsafety with re-
spect to the kt (or “Durham”) algorithm in e+e− [11].
There we shall recall that the kt closeness measure is spe-
cifically related to the divergences of QCD matrix elements
when producing soft and collinear gluons. However there
are no divergences for the production of soft quarks and, as
we shall see, it is the use for quarks of a distance measure
designed for gluons that leads to the infrared unsafety of
jet flavour in the kt algorithm. By taking into account the
absence of a soft-quark divergence when designing the jet-
clustering distance measure, one can eliminate the infrared
divergence of the jet flavour.

The essence of the modification to the kt distance is
that instead of the min(E2

i , E
2
j ) factor that appears usu-

ally, one needs to use max(E2
i , E

2
j ) when the softer of i, j

is a quark. In Sect. 3 we will examine how this can be
extended to processes with incoming hadrons. There the
added difficulty is the need for a particle-beam distance
measure. Traditionally this involves only one dimensionful
scale, related to the squared transverse momentum k2

ti of
the particle. There is a sense in which this can be under-
stood as min(k2

ti, k
2
tB), where k2

tB is some transverse scale
associated with the beam that is larger than all k2

ti and
so could up to now be ignored. In order to obtain a sensi-
ble jet-flavour algorithm we shall however need to consider
also max(k2

ti, k
2
tB) and therefore in Sect. 3 we shall investi-

gate how to construct sensible “beam scales”.
As well as explaining how to build jet algorithms that

provide an infrared-safe jet flavour, we shall also examine
how they fare in practice. In e+e− it will be possible to
carry out tests both with an NLO code (which explicitly
reveals the IR unsafety of flavour in traditional jet algo-

Fig. 2. A large-angle soft gluon splitting to a large-angle soft
qq̄ pair (k3, k4) with the q and q̄ then clustered into different
jets (k1, k2)
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6

order �
4FS [fb] �

5FS
a=0.05 [fb] �

5FS
a=0.1 [fb] �

5FS
a=0.2 [fb]

LO 210.42(2)+21.4%
�16.2% 262.52(10)+21.4%

�16.1% 262.47(10)+21.4%
�16.1% 261.71(10)+21.4%

�16.1%

NLO 468.01(5)+17.8%
�13.8% 500.9(8)+16.1%

�12.8% 497.8(8)+16.0%
�12.7% 486.3(8)+15.5%

�12.5%

NNLO 636.4(1.6)+11.9%
�10.5% 690(7)+10.9%

�9.7% 677(7)+10.4%
�9.4% 647(7)+9.5%

�9.4%

Table II. Cross sections for Wbb̄ production in the 4FS using anti-kt algorithm and in the 5FS using flavour anti-kt algorithm
with di↵erent values of the parameter a (see text for details). The 5FS results are taken from Ref. [26].
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Figure 2. Rapidity and azimuthal angle separation �Rbb be-
tween the two leading b jets in the 4FS (blue) and in the 5FS
with a = 0.1 (green) calculations. For reference, the 5FS re-
sult with a = 0.2 is also shown (orange). The 5FS results are
taken from Ref. [26].

fb. We estimate therefore that the size of the mass cor-
rections at NLO is as large as the impact of the change
of scheme. We notice that the inclusion of higher-order
corrections should also reduce di↵erences among the 4FS
and 5FS as the two schemes are formally equivalent in
all-order QCD. Since the 4FS computation is sensitive
to the value of the b-quark mass, we conservatively vary
its value down to 4.2GeV. We find that the NNLO cross
section is rather stable upon such variation, showing a
marginal ⇠ 2% increase. In comparison, the NNLO re-
sult in the 5FS features a more pronounced dependence
on the values of a, where we observe that the predictions
for a = 0.2 and a = 0.05 di↵er by almost 7%.

Finally, in Fig. 2 we compare the 4FS results against
those obtained in the 5FS with a = 0.1 for the separa-
tion �Rbb in the rapidity and azimuthal angle between
the two leading b jets. This distribution was shown in
Ref. [26] to clearly discriminate the flavour anti-kt clus-
tering algorithm from the flavour-kt algorithm, as the
latter features an enhanced suppression at small values
of �Rbb. We observe an overall good agreement between

the results of the two computations across the whole
range of the plot. The ratio between the two results
is largely flat for �Rbb & 1. For smaller values of �Rbb,
the 5FS result tends to slightly overshoot the 4FS result
and gets up to 25% larger. On the other hand, the 5FS
result with a = 0.2 seems to be in better agreement with
our result, both at large and at small values of �Rbb.

In conclusion, we observe an overall good agreement
between the two computations at NNLO, with the 4FS
result being ⇠ 10% smaller than the 5FS result and with
scale uncertainties largely overlapping. We find that the
4FS is largely independent of the value of the b-quark
mass and tends to be in better agreement with 5FS re-
sults obtained with a flavour anti-kT algorithm if the
tuneable a parameter is & 0.1. The agreement improves
if a change of scheme is applied to the 4FS computation
to use the same PDFs and strong coupling as in the 5FS
computation.
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Figure 1: LO, NLO and NNLO cross sections with their perturbative uncertainties as functions of the centre-of-mass energy,
computed as discussed in the text. The experimental results from ATLAS [3] and CMS [4] at

p
s = 13TeV are also shown for

comparison. The lower panel illustrates the impact of NNLO corrections with respect to the NLO result. The inner NNLO band
denotes the uncertainty from the soft approximation combined with the systematic uncertainty from the subtraction procedure.

computations of two-loop amplitudes for processes in which a Higgs boson is produced in asso-

ciation to heavy quarks. Since the quantitative impact of the genuine two-loop contribution in

our computation is relatively small, our approximation allows us to control the NNLO tt̄H cross

section to better than 1%. The NNLO corrections are moderate, and range from about +4%

at
p
s = 13TeV to +2% at

p
s = 100TeV, while QCD perturbative uncertainties are reduced

to the few-percent level. When combined with NLO EW corrections, our calculation allows us

to obtain the most advanced perturbative prediction to date for the tt̄H cross section.
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4

III. THE TOTAL FIDUCIAL CROSS SECTION

If (and only if) the singular distributional structure of
d�(0)

/dqT is known, the qT spectrum can be integrated
to obtain the total cross section. This is the basis of qT
subtractions [44],

� = �
sub(qo↵

T
)+

Z
dqT


d�

dqT
�

d�sub

dqT
✓(qT  q

o↵

T
)

�
. (14)

Here, d�sub = d�(0)[1+O(qT /mH)] contains the singular
terms, with �

sub(qo↵
T

) its distributional integral over qT 

q
o↵

T
, while the term in brackets is numerically integrable.

Taking �
sub

⌘ �
sing, we get

� = �
sing(qo↵

T
) +

Z
q
off
T

0

dqT
d�nons

dqT
+

Z

q
off
T

dqT
d�

dqT
, (15)

which is exactly the integral of Eq. (13). The subtrac-
tions here are di↵erential in qT , where qo↵T ⇠ 10�100GeV
determines the range over which they act and exactly
cancels between all terms.

To integrate d�nons
/dqT in Eq. (15) down to qT = 0,

we parametrize the fixed-order coe�cients in Eq. (12) by
their leading behavior,

qT
d�nons

FO

dqT

����
↵n

s

=
q
2

T

m
2

H

2n�1X

k=0

ak ln
k q

2

T

m
2

H

+ · · · , (16)

and perform a fit to this parameterization, which we then
integrate analytically. To obtain reliable, unbiased fit re-
sults, we must account for the uncertainties in the pa-
rameterization from yet higher-power corrections. We
do so by including additional higher-power coe�cients
as nuisance parameters. In the fiducial case, we include
all O(q3

T
/m

3

H
) coe�cients. The fit procedure is an ex-

tension of the one described in Refs. [103, 104]. It has
been validated extensively, and more details will be given
elsewhere. As a benchmark, we correctly reproduce the
↵s (↵2

s
) coe�cients of the total inclusive cross section to

better than 10�5 (10�4) relative precision.
At N3LO, we use existing NNLOjet results [41, 42] to

get nonsingular data for 0.74GeV (4GeV)  qT  q
o↵

T

for inclusive log bins (for inclusive and fiducial linear
bins). While these data are not yet precise enough to-
wards small qT to give a stable fit on their own, we ex-
ploit that in the inclusive case, the known ↵

3
s
coe�cient

of the total inclusive cross section [25, 105] provides a
su�ciently strong additional constraint to obtain a reli-
able fit. In the fiducial case, we exploit that the inclusive
and fiducial ak arise from the same Y -dependent coef-
ficient functions integrated either inclusively or against
A(0, Y ;⇥). At NLO and NNLO, their ratios are between
0.4 to 0.55. At N3LO, we thus perform a simultaneous
fit to inclusive and fiducial data, using this range as a
1� constraint on the ratio of fiducial and inclusive ak.

FIG. 2. Fiducial and nonsingular power corrections integrated
up to qT  q

cut
T . The yellow band shows �nons from the fit.
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FIG. 3. Total fiducial gg ! H ! �� cross section at fixed or-
der and including resummation, where �resum ⌘ �qT ��' �
�match, compared to preliminary ATLAS measurements [26].

This yields a stable fit, with an acceptable ⇠ 0.1 pb un-
certainty for the fiducial nonsingular integral (�nons).

The often-used qT slicing approach amounts to taking
q
o↵

T
! q

cut

T
⇠ 1GeV and simply dropping the power cor-

rections below q
cut

T
. The nonsingular and fiducial power

corrections are shown in Fig. 2. The latter are huge at
↵
3
s
, and even at ↵

2
s
only become really negligible below

q
cut

T
<
⇠ 10�2 GeV. This is why it is critical for us to

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

ten times larger than at ↵
2
s
, and at q

cut

T
= 1 � 5GeV

still contribute 5 � 10% of the total ↵3
s
coe�cient. To-

gether with the current precision of the nonsingular data,
this makes the above di↵erential subtraction procedure
essential to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power
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DRELL YAN — A STANDARD CANDLE

๏ clean signature  ( , )   
  &  large cross section:  
       (~ 1000   &  ~ 4000 ) / sec * 

๏ detector calibration, BSM searches, 
luminosity monitor, PDFs,  …

๏ precision measurements:    
   ,    

ℓ± Emiss
T

Z W±

↪ sin2(θw) MW

p

p

qb

q̄a

V

`1

¯̀
2

* ℒ = 2 × 1034 cm−2 s−1

4

Fixed order �pp!�⇤(fb)

LO 339.62+34.06
�37.48

NLO 391.25+10.84
�16.62

NNLO 390.09+3.06
�4.11

N3LO 382.08+2.64
�3.09 [14]

N3LO only qcutT = 0.63 GeV qcutT ! 0 fit [14]

qg �15.32(32) �15.34(54) �15.29

qq̄ + qQ̄ +5.06(12) +5.05(12) +4.97

gg +2.17(6) +2.19(6) +2.12

qq + qQ +0.09(13) +0.09(17) +0.17

Total �7.98(36) �8.01(58) �8.03

TABLE I: Inclusive cross sections with up to N3LO
QCD corrections to Drell-Yan production through
a virtual photon. N3LO results are from the qT -
subtraction method and from the analytic calculation
in [14]. Cross sections at central scale of Q = 100 GeV
are presented together with 7-point scale variation.
Numerical integration errors from qT -subtraction are

indicated in brackets.

NNLOJET and SCET predictions involve logarithms up
to ln6(Q/q

cut
T ), which become explicit in the SCET cal-

culation. The NNLOJET calculation produces the same
large logarithms but with opposite sign, as well as power
suppressed logarithms (qcutT )m lnn(Q/q

cut
T ), where m � 2

and n  6. The physical N3LO total cross section con-
tribution must not depend on the unphysical cuto↵ q

cut
T ;

therefore it is important to choose a su�ciently small qcutT
to suppress such power corrections.

Figure 2 demonstrates the dependence on q
cut
T of the

SCET+NNLOJET predictions is negligible for values be-
low 1 GeV. In fact, for all partonic channels except qg,
the cross section predictions become flat and therefore
reliable already at qcutT ⇠ 5 GeV. It is only the qg chan-
nel that requires a much smaller q

cut
T , indicating more

sizeable power corrections than in other channels.

Also shown in Fig. 2 in dashed lines are the inclusive
predictions from [14], decomposed into di↵erent partonic
channels. We observe an excellent agreement at small-qT
region with a detailed comparison given in Table I. We
present total cross sections at small qcutT value (0.63 GeV)
and results from fitting the next-to-leading power sup-
pressed logarithms with q

cut
T extrapolated to zero. This

agreement provides a fully independent confirmation of
the analytic calculation [14], and lends strong support to
the correctness for our qT -subtraction-based calculation.
We observe large cancellations between qg channel (blue)
and qq̄ channel (orange). While the inclusive N3LO cor-
rection is about �8 fb, the qg channel alone can be as
large as �15.3 fb. Similar cancellations between qg and
qq̄ channel can already be observed at NLO and NNLO.
The numerical smallness of the NNLO corrections (and
of its associated scale uncertainty) is due to these cancel-

FIG. 3: Di-lepton rapidity distribution from LO to
N3LO. The colored bands represent theory uncer-
tainties from scale variations. The bottom panel is
the ratio of the N3LO prediction to NNLO, with dif-

ferent cuto↵ q
cut
T .

lations, which may potentially lead to an underestimate
of theory uncertainties at NNLO.
In Fig. 3, we show for the first time the N3LO pre-

dictions for the Drell-Yan di-lepton rapidity distribution,
which constitutes the main new result of this Letter. Pre-
dictions of increasing perturbative orders up to N3LO
are displayed. We estimate the theory uncertainty band
on our predictions by independently varying µR and µF

around 100 GeV with factors of 1/2 and 2 while elimi-
nating the two extreme combinations (7-point scale vari-
ation). With large QCD corrections from LO to NLO,
the NNLO corrections are only modest and come with
scale uncertainties that are significantly reduced [5, 7, 8].
However, as has been observed for the total cross sec-
tion, the smallness of NNLO corrections is due to cancel-
lations between the qg and qq̄ channels. Indeed, Fig. 3
shows clearly that the N3LO correction is large compared
with NNLO, and that the NNLO scale uncertainty band
fails to overlap with N3LO over the full rapidity range.
It should however be noted that the uncertainties from
PDFs, especially from the missing N3LO e↵ects in their
evolution, can be at the percent level [14], which high-
lights the necessity for a consistent PDF evolution and
extraction at N3LO in the future.
In the bottom panel of Fig. 3, we show the ratio of

the N3LO rapidity distribution to the previously known
NNLO result [7, 8]. As can be seen, the corrections are
about �2% of the NNLO results, and are flat over a
large rapidity range. There is minimal overlap between
the scale uncertainty bands only at large y�⇤ . To test the
numerical stability at N3LO, three values of qcutT are ex-
amined in the bottom panel. We observe the qcutT depen-

|yγ* |

yW+ yW−

๏ almost universal  
NNLO  N3LO 
corrections!

๏  &  probe  
different parton content

→

NC CC±

[Chen, Gehrmann, Glover, AH, Yang, Zhu ‘21,‘22]



W PRODUCTION — ABSOLUTE SPECTRUM 

๏ remain largely flat around peak;  larger corrections at low 

๏ fiducial cuts impact pattern of radiative corrections

๏ larger N3LO corrections ( [inc.]  vs.  [fid.])
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FIG. 2: W boson charge asymmetry distribution from
LO to N3LO at the LHC. The colored bands rep-
resent theory uncertainties from 31 scale variations.
The bottom panel is the ratio with respect to NNLO.

from the 7-point scale variation and the error bars indi-
cate the numerical integration error. Our state-of-the-art
predictions at N3LO accuracy amount to a contribution
of about �2.5% with respect to NNLO with relatively
flat corrections for all rapidities. While the NLO and
NNLO scale variation bands overlap, the N3LO predic-
tion is found to be non-overlapping with the previous
order within the respective scale uncertainties. This fea-
ture at N3LO has already been observed for the total
cross sections for neutral current [57, 58] and charged-
current [13] Drell-Yan production and for the neutral-
current Drell-Yan rapidity distribution [33] and fiducial
cross sections [59]. The relative size of scale variation
remains comparable at NNLO and N3LO at about ±1%
for central rapidity and slightly increasing at large ra-
pidity. We use three di↵erent qcutT values (1, 1.5 and
2GeV) to confirm the qcutT -independence of the results
within integration errors. A strong check on our results
is provided by the rapidity-integrated charged current
Drell-Yan cross section at N3LO, where our results for
qcutT = 1.5 GeV agree with [13] within our numerical in-
tegration error of 1.5 per-mille.

The W boson charge asymmetry AW at hadron collid-
ers reveals details of the proton structure. It has been
measured at the Tevatron [60, 61] and the LHC [7, 9, 62]
and is defined as

AW(|yW|) =
d�/d|yW+ |� d�/d|yW� |

d�/d|yW+ |+ d�/d|yW� |
. (2)

In Fig. 2, we display the predictions of AW(|yW|) at
13TeV center of mass energy with up to N3LO correc-
tions. We independently vary the scale choices between
the numerator and the denominator of Eq. (2) while re-

FIG. 3: Normalised W± transverse mass distribution
from LO to N3LO accuracy at the Tevatron without
(upper) and with (lower) CDFII fiducial cuts. The
colored bands represent theory uncertainties from 7-
point scale variation. The bottom panel is the ratio
with respect to NNLO, with di↵erent cuto↵ qcutT .

quiring 1/2  µ/µ0
 2 for any pair of scales, leading to

31 combinations. Their envelope is used to estimate the
theoretical uncertainty. We observe positive N3LO cor-
rections of about 2% relative to the NNLO predictions.
The N3LO contribution is not flat in rapidity. In con-
trast to the individual rapidity distributions, the charge
asymmetry converges well from NLO to N3LO with scale
variation uncertainty reduced to about ±1.5% at N3LO.
Finally, we consider the transverse mass distribution

in charged-current Drell-Yan production. The transverse
mass is constructed as

mW
±

T =
q

2E`±
T E⌫

T (1� cos��), (3)

with E`±(⌫)
T denoting the transverse energies of the final

3
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theoretical uncertainty. We observe positive N3LO cor-
rections of about 2% relative to the NNLO predictions.
The N3LO contribution is not flat in rapidity. In con-
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asymmetry converges well from NLO to N3LO with scale
variation uncertainty reduced to about ±1.5% at N3LO.
Finally, we consider the transverse mass distribution

in charged-current Drell-Yan production. The transverse
mass is constructed as
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Figure 3: The systematic uncertainties for the electron channel measurement (left) and muon channel measurement
(right) for the normalized ?

✓✓

T (upper row) and normalized q
⇤

[
(lower row). The statistical uncertainties are a

combination of the uncertainties due to limited data and MC sample sizes. The ?
✓✓

T distribution is split into linear
and logarithmic scales at 30 GeV. Some uncertainties are larger than 2% for ?✓✓T > 200 GeV and hence cannot be
displayed. The corresponding uncertainties are also summarized in Table 4.

The normalized di�erential cross-sections 1/ffid ⇥ dffid/d?
✓✓

T and 1/ffid ⇥ dffid/dq
⇤

[
measured in the

two decay channels as well as their combination are illustrated in Figure 4. When building the j
2 for

combination procedure, the measurement uncertainties are separated into those from bin-to-bin uncorrelated
sources and those from bin-to-bin correlated sources, the latter largely reduced due to the normalization
by the fiducial cross-section. The normalized di�erential measurements are combined at Born level
following the B��� prescription. The resulting j

2
/#dof = 47/44 for the combination for ?

✓✓

T and the
j

2
/#dof = 32/36 for q⇤

[
indicate good agreement between the two channels.3 The combined precision is

between 0.1% and 0.5% for ?✓✓T < 100 GeV, rising to 10% towards the high end of the spectrum, where the
overall precision is limited by the data and MC sample size. The combined results for both distributions are
presented in Table 4 including statistical and bin-to-bin uncorrelated and correlated systematic uncertainties.
The measurement results are reported at Born level and factors :dr, the binwise ratio of dressed and born
level results, are given to transfer to the dressed particle level.

3 The j
2
/#dof is still good when taking into account only bins with ?

✓✓

T > 50 GeV.

11

[ATLAS arXiv:1912.02844]
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T
precision TH tests  

  non-perturbative QCD  quark masses   
       resummation  fixed-order  EW Sudakovs  …  

  crucial ingredient in many  
      precision measurements
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↪



N3LO + RESUMMATION
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๏ more robust & reduced 
uncertainties

DYTURBO [Camarda, Cieri, Ferrera '22]
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Figure 1: The qT spectrum of Z/�
⇤
bosons with lepton selection cuts at the LHC (

p
s = 13 TeV)

at various perturbative orders. Resummed component (see Eq. (3)) of the hadronic cross-section

with scale variation bands as defined in the text.

with input parameters GF = 1.1663787 ⇥ 10�5 GeV�2, mZ = 91.1876 GeV, �Z = 2.4952 GeV,
mW = 80.379 GeV. Our calculation implements the leptonic decays Z/�⇤ ! l

+
l
� and we include

the e↵ects of the Z/�⇤ interference and of the finite width �Z of the Z boson with the corresponding
spin correlations and the full dependence on the kinematical variables of final state leptons. This
allows us to take into account the typical kinematical cuts on final state leptons that are considered
in the experimental analysis. The resummed calculation at fixed lepton momenta requires a qT -
recoil procedure. We implement the general procedure described in Ref. [64] which is equivalent
to compute the Born level distribution d�

(0) of Eq. (4) in the Collins–Soper rest frame [113].

We have applied the resummation formalism to the production of l+l� pairs from Z/�
⇤ decay

at the LHC (
p
s = 13TeV) with the following fiducial cuts: the leptons are required to have

transverse momentum pT > 25GeV, pseudo-rapidity |⌘| < 2.5 while the lepton pair system, is
required to have invariant mass 66 < M < 116GeV and transverse momentum qT < 100 GeV �.

In Fig. 1 we show the resummed component (see Eq. (9)) of the transverse-momentum distri-
bution in the small-qT region. In order to estimate the size of yet uncalculated higher-order terms
and the ensuing perturbative uncertainties we present the dependence of the resummed component
on the auxiliary scales µF , µR and Q. The scale dependence band is obtained through indepen-
dent variations of µF , µR and Q in the range M/2  {µF , µR, 2Q}  2M with the constraints
0.5  {µF/µR, Q/µR, Q/µF}  2 ∗∗. The lower panel shows the ratio of the distribution with

�
In order to match with the NNLO numerical results at large-qT we follow the kinematical selection cuts applied

in Ref. [67].
∗∗
In order to estimate the Q scale dependence of the resummed component we set the logarithmic expansion

parameter to be L = ln(Q2b2/b20) which is equivalent to L̃ in the small-qT region.

5

CUTE-MCFM
๏ good agreement with data

[Neumann, Campbell '22]

4 CONCLUSIONS & OUTLOOK.
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Figure 4.: Differential transverse-momentum resumma-
tion improved predictions for the �⇤ distri-
bution at order ↵s, ↵2

s and ↵3
s.

state-of-the-art precision, to implement modification of
cuts and input parameters, and also to re-use parts and
to validate other calculations [42].

Previously it was found that fiducial cross-section un-
certainties at the level of ↵3

s are similar to those at
↵2
s, about 1% using RadISH resummation [15]. With

resummation, this uncertainty is dominated by the un-
certainties around the Sudakov peak at small qT , i.e.
mostly within the pure resummation region. We find
more conservative uncertainties of about 2.5% using
CuTe-MCFM resummation.

Although the theoretical precision of the calculation
discussed in this paper is now at an impressive level,
there are two important aspects that require further
work. Statistical PDF uncertainties have reached the
level of one percent [73, 77] and systematic effects can
no longer be neglected. Since these uncertainties are
at the same level as perturbative truncation uncertain-
ties, a careful study of PDF effects at this order will be

Figure 5.: Differential transverse-momentum resumma-
tion improved predictions for the lepton trans-
verse momentum distribution at order ↵s, ↵2

s

and ↵3
s.

an important future direction. Indeed, while finalizing
this manuscript, approximate N3LO PDFs have been
introduced by the MSHT group [78]. They take into
account approximations for the four loop splitting func-
tions through known information on small and large x
and available Mellin moments. Such theory approxi-
mations of missing higher-order effects are included in
their Hessian procedure as nuisance parameters.3

In addition, in order to better match with data at very
small qT , it is possible to include a parametrization of
non-perturbative effects, see e.g. refs. [79, 80]. This
can then inform the modeling of the related process of
W -boson production and thus have implications for the
extraction of the W -boson mass. Extending W -boson
production in CuTe-MCFM to ↵3

s accuracy will thus be
a valuable extension that allows for very precise W/Z

3A preliminary study of the potential impact of this PDF set on
the results shown in this paper is presented in appendix A.
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๏ some shape distortion 
  impact on  for CC ?↭ MW

±

[Chen, Gehrmann, Glover, AH, Monni, Rottoli, Re, Torrielli '22]
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V + dσNNLO
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improved convergence    uncertainties:  few % ↭

talk by A. Autieri 
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CONCLUSIONS & OUTLOOK

๏ perturbative calculations crucial to scrutinise the Standard Model  
  exploit the full potential of the LHC / future colliders  &  uncover subtle hints for New Physics

๏ NNLO in good shape  (reduced uncertainties & improved TH-data comparison)  

‣   largely done,  steady progress for     methods reaching maturity

‣ loop amplitudes becoming a bottleneck again    approximations in the interim 

‣ identified objects    photon isolation,  flavour tagging,  hadron fragmentation, …

๏ N3LO computation of inclusive  processes mature

‣ differential predictions for ”colour neutral” appearing 
  ,    within reach

๏ percent-level phenomenology:  everything becomes relevant   
  PDFs,  parametric,  QCD EW,  non-perturbative,  …

↭

2 → 2 2 → 3 ↭

↭

↭

2 → 1

pp →
↭ pp → γγ pp → VH

↭ ×
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Large Progress in Multi-Scale NNLO Calculations
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See talks by [Bayu, Giuseppe, Jakub, Rene, Ryan].

Collection of 2 ! 3 calculations facilitated by appropriate techniques.

Ben Page CERN

P-adic Numbers and Partial Fractions Ansätze for Amplitudes 2/16

TWO-LOOP  TIMELINE2 → 3
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๏ purely resummed  
spectrum 

  PDF uncertainties

pZ
T

↭

๏ N3LO evolution 
  4-loop splitting functions

๏ aN3LO PDFs  (MSHT) 

↭

ggH:           VBF:   δσN3LO ↘ δσN3LO ↗

syst. differences between PDFs 

PDF(NNLO  N3LO)   (?)→ δσN3LO ↗

N3LO PARTON DISTRIBUTION FUNCTIONS
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iii. ÷¥¥÷÷÷:
̂y

yH

yγ2 = − 2.37

yγ2 = + 2.37

yγ1 = − 2.37

yγ1 = + 2.37

Born acceptance

̂y ∼ 1
2 |Δy(γ1, γ2) | ≤ cosh−1 ( MH

2pmin
T ) ≈ 0.9

0.6
0.7
0.8
0.9

1
1.1
1.2

0 0.5 1 1.5 2

NNLOJET + RapidiX √s‾ = 13 TeV

Ra
ti

o
to

NN
LO

|yH|

0

10

20

30

40

50

NNLOJET + RapidiX √s‾ = 13 TeV

dσ
/d

|y
H |

[f
b]

LO
NLO
NNLO

N3LO
NNLO × KN3LO
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๏ linear fiducial power corrections!

4

III. THE TOTAL FIDUCIAL CROSS SECTION

If (and only if) the singular distributional structure of
d�(0)

/dqT is known, the qT spectrum can be integrated
to obtain the total cross section. This is the basis of qT
subtractions [44],

� = �
sub(qo↵

T
)+

Z
dqT


d�

dqT
�

d�sub

dqT
✓(qT  q

o↵

T
)

�
. (14)

Here, d�sub = d�(0)[1+O(qT /mH)] contains the singular
terms, with �

sub(qo↵
T

) its distributional integral over qT 

q
o↵

T
, while the term in brackets is numerically integrable.

Taking �
sub

⌘ �
sing, we get

� = �
sing(qo↵

T
) +

Z
q
off
T

0

dqT
d�nons

dqT
+

Z

q
off
T

dqT
d�

dqT
, (15)

which is exactly the integral of Eq. (13). The subtrac-
tions here are di↵erential in qT , where qo↵T ⇠ 10�100GeV
determines the range over which they act and exactly
cancels between all terms.

To integrate d�nons
/dqT in Eq. (15) down to qT = 0,

we parametrize the fixed-order coe�cients in Eq. (12) by
their leading behavior,

qT
d�nons

FO

dqT

����
↵n

s

=
q
2

T

m
2

H

2n�1X

k=0

ak ln
k q

2

T

m
2

H

+ · · · , (16)

and perform a fit to this parameterization, which we then
integrate analytically. To obtain reliable, unbiased fit re-
sults, we must account for the uncertainties in the pa-
rameterization from yet higher-power corrections. We
do so by including additional higher-power coe�cients
as nuisance parameters. In the fiducial case, we include
all O(q3

T
/m

3

H
) coe�cients. The fit procedure is an ex-

tension of the one described in Refs. [103, 104]. It has
been validated extensively, and more details will be given
elsewhere. As a benchmark, we correctly reproduce the
↵s (↵2

s
) coe�cients of the total inclusive cross section to

better than 10�5 (10�4) relative precision.
At N3LO, we use existing NNLOjet results [41, 42] to

get nonsingular data for 0.74GeV (4GeV)  qT  q
o↵

T

for inclusive log bins (for inclusive and fiducial linear
bins). While these data are not yet precise enough to-
wards small qT to give a stable fit on their own, we ex-
ploit that in the inclusive case, the known ↵

3
s
coe�cient

of the total inclusive cross section [25, 105] provides a
su�ciently strong additional constraint to obtain a reli-
able fit. In the fiducial case, we exploit that the inclusive
and fiducial ak arise from the same Y -dependent coef-
ficient functions integrated either inclusively or against
A(0, Y ;⇥). At NLO and NNLO, their ratios are between
0.4 to 0.55. At N3LO, we thus perform a simultaneous
fit to inclusive and fiducial data, using this range as a
1� constraint on the ratio of fiducial and inclusive ak.

FIG. 2. Fiducial and nonsingular power corrections integrated
up to qT  q

cut
T . The yellow band shows �nons from the fit.
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28

30

FIG. 3. Total fiducial gg ! H ! �� cross section at fixed or-
der and including resummation, where �resum ⌘ �qT ��' �
�match, compared to preliminary ATLAS measurements [26].

This yields a stable fit, with an acceptable ⇠ 0.1 pb un-
certainty for the fiducial nonsingular integral (�nons).

The often-used qT slicing approach amounts to taking
q
o↵

T
! q

cut

T
⇠ 1GeV and simply dropping the power cor-

rections below q
cut

T
. The nonsingular and fiducial power

corrections are shown in Fig. 2. The latter are huge at
↵
3
s
, and even at ↵

2
s
only become really negligible below

q
cut

T
<
⇠ 10�2 GeV. This is why it is critical for us to

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

ten times larger than at ↵
2
s
, and at q

cut

T
= 1 � 5GeV

still contribute 5 � 10% of the total ↵3
s
coe�cient. To-

gether with the current precision of the nonsingular data,
this makes the above di↵erential subtraction procedure
essential to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power

[Billis, Dehnadi, Ebert, Michel, Tackmann '21] 

  can be cured  
     by resummation 

  hard  should not  
     need resummation

⊕

⊖ σfid.
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Linear ptH dependence of H acceptance, f(ptH) → impact on perturbative series

3

resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses di↵erent transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 ! 1 processes, both inclusively [5–8]

and di↵erential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections di↵erential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H ! �� decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H ! �� decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h

mh

+O

 
p
2
t,h

m2
h

!
. (1.1)

In section 2, concentrating on the H ! �� case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h ! 0 results in a perturbative series for the

fiducial cross section that diverges (�1)n↵n
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of ↵s, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is di↵erent, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (⇤/mh), where ⇤ ⌘ ⇤qcd ⇠ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H ! ��
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See e.g. Frixione & Ridolfi ‘97 
Ebert & Tackmann ’19 

idem + Michel & Stewart ‘20 
Alekhin et al ‘20

Growth

“with cuts” / “no cuts”

[from slides by Salam, Les Houches ’21] 

๏ Linear  dependence 
‣ factorial growth for fixed-order 

‣ sensitivity to very low 

pH
T

pH
T

f(pH
T ) = f0 + f1 ⋅ pH

T + 𝒪((pH
T )2)

σasym − f0 σinc.

σ0 f0
≃ 0.18αs

− 0.15α2
s

+ 0.31α3
s

+ …

≃ 0.12 @ N3LL

ACCEPTANCE   f(pH
T )

[Frixione, Ridolfi ’97;  Ebert, Tackmann ’19 + Michel, Stewart ‘21;  Alekhin et al. ’21]

[Salam, Slade '21]
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Linear ptH dependence of H acceptance, f(ptH) → impact on perturbative series

3

resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses di↵erent transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 ! 1 processes, both inclusively [5–8]

and di↵erential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections di↵erential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H ! �� decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H ! �� decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h

mh

+O

 
p
2
t,h

m2
h

!
. (1.1)

In section 2, concentrating on the H ! �� case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h ! 0 results in a perturbative series for the

fiducial cross section that diverges (�1)n↵n
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of ↵s, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is di↵erent, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (⇤/mh), where ⇤ ⌘ ⇤qcd ⇠ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H ! ��

– 2 –
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Using product cuts dampens the factorial divergence
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[from slides by Salam, Les Houches ’21] 

๏ Quadratic  dependence 
‣ suppress factorial growth 

‣ fixed order    resummation

pH
T

≃

f(pH
T ) = f0 + f1 ⋅ pH

T + f2 ⋅ (pH
T )2 + 𝒪((pH

T )3)

σprod − f0 σinc.

σ0 f0
≃ 0.005αs

+ 0.002α2
s

− 0.001α3
s

+ …

≃ 0.006 @ N3LL

ACCEPTANCE   f(pH
T )

[Salam, Slade '21]
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GOING DIFFERENTIAL @ N3LO — qT SUBTRACTION

✓     fiducial cuts, 
arbitrary distributions, …

✗ computationally 
expensive  

dσ ⇝

𝒪(105-106) h
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N3LO ⊗ dσV

LO + [dσV+jet
NNLO − dσV,CT

N3LO]
qT>qcut

T

+ 𝒪 ((qcut
T /Q)n)

[Catani, Grazzini ’07]

V+jet @ NNLO resummationqT

 as small as possible         as large as possibleqcut
T ↭ qcut

T
  suppress power corrections↪   numerical stability & efficiency↪

๏ expand to fixed order 

๏  ingredients: 

‣ hard function  

‣ soft function  

‣ beam function 

𝒪(α3
s )

Hqq̄

S(b⊥)

Bq(b⊥) qcut
T

p

p
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q
Z/�
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`+

recoil

pZT 6= 0

[Gehrmann, Glover, Huber, Ikizlerli, Studerus '10]

[Li, Zhu '16]

[Luo, Yang, Zhu, Zhu '19]  
[Ebert, Mistlberger, Vita '20]
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VALIDATION

๏ fully independent calculation of the 
inclusive cross section

๏      analytic result 

๏ “fake” plateau:   
  12% error on N3LO!  

๏ converges to correct result for 

๏ fit & extrapolate?   
  marginal gains for 

         potentially uncontrolled systematics

- - - - ↭

qcut
T ∈ [2, 5] GeV

↪ δ

qcut
T ≲ 1 GeV

⇝
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3

and the beam functions [70–72], using the rapidity reg-
ulator proposed in [73]. These newly available results
provide the key ingredients for applying qT -subtraction
to processes with colorless final states at N3LO. The
perturbative beam functions are expressed in terms of
harmonic polylogarithms [74] up to weight 5, which can
be evaluated numerically with standard tools [75].

The resolved contribution above the q
cut
T for N3LO

Drell-Yan production contains the same ingredients of
the NNLO calculation with one extra jet. Fully di↵eren-
tial NNLO contributions for Drell-Yan-plus-jet produc-
tion have been computed in [76–78]. The application to
N3LO qT -subtraction further requires stable fixed-order
predictions at small qT [79–81], enabling the cancella-
tion of the q

cut
T between resolved and unresolved contri-

butions to su�cient accuracy. In this Letter, we em-
ploy the antenna subtraction method [82–85] to compute
Drell-Yan production above q

cut
T up to NNLO in pertur-

bation theory, implemented in the parton-level event gen-
erator NNLOJET [76, 79]. To achieve stable and reliable
fixed order predictions down to the qT ⇠ 0.4 GeV re-
gion, NNLOJET has been developing dedicated optimiza-
tions of its phase space generation based on the work
in [68]. This ensures su�cient coverage in the multiply
unresolved regions required for the qT -subtraction.

RESULTS

Applying the qT -subtraction method described above,
we compute Drell-Yan lepton pair production to N3LO
accuracy. For the phenomenological analysis, we restrict
ourselves to the production of a di-lepton pair through a
virtual photon only. We take ECM = 13 TeV as center
of mass collision energy and fix the invariant mass of
the di-lepton pair at Q = 100 GeV. Central scales for
renormalization (µR) and factorization (µF ) are taken at
Q, allowing us to compare with the N3LO total cross
section results from [14]. We use the central member of
PDF4LHC15_nnlo PDFs [86] throughout the calculation.

To establish the cancellation of qcutT -dependent terms
between resolved and unresolved contributions, Fig. 1
displays the qT distribution of virtual photon obtained
with NNLOJET (used for the resolved contribution) and
obtained by expanding the leading-power factorised pre-
diction at small qT using Eq. (2) up to O(↵3

s). The high-
est logarithms at this order are 1/qT ln5(Q/qT ). The
singular qT distribution is expected to match between
NNLOJET and SCET, which is a prerequisite for the
qT -subtraction method. This requirement is fulfilled by
the nonsingular contribution (NNLOJET minus SCET)
demonstrated in the bottom panel of Fig. 1. Remarkably,
the agreement starts for qT at about 2 GeV and extends
down to 0.32 GeV for each perturbative order. Numerical
uncertainties from phase space integrations are displayed
as error bars. We emphasize that the observed agreement

FIG. 1: Perturbative contributions to transverse mo-
mentum distribution of the virtual photon up to ↵

3
s.

The upper panel displays the qT -distribution obtained
from NNLOJET and from expanding SCET to each
order. The bottom panel contains the nonsingular re-

mainder (NNLOJET minus SCET).

FIG. 2: Inclusive N3LO QCD corrections to total
cross section for Drell-Yan production through a vir-

tual photon.

is highly nontrivial, providing very strong support to the
correctness of the NNLOJET and SCET predictions.

In Fig. 2, we display the N3LO QCD corrections to
the total cross section for Drell-Yan production through
a virtual photon, using the qT -subtraction procedure, de-
composed into di↵erent partonic channels. The cross
section is shown as a function of the unphysical cut-
o↵ parameter q

cut
T , which separates resolved and un-

resolved contributions. Integrated over qT , both the

qq̄
gg
qq

qg

Σ
𝒪 ((qcut

T /Q)2)

3

and the beam functions [70–72], using the rapidity reg-
ulator proposed in [73]. These newly available results
provide the key ingredients for applying qT -subtraction
to processes with colorless final states at N3LO. The
perturbative beam functions are expressed in terms of
harmonic polylogarithms [74] up to weight 5, which can
be evaluated numerically with standard tools [75].

The resolved contribution above the q
cut
T for N3LO

Drell-Yan production contains the same ingredients of
the NNLO calculation with one extra jet. Fully di↵eren-
tial NNLO contributions for Drell-Yan-plus-jet produc-
tion have been computed in [76–78]. The application to
N3LO qT -subtraction further requires stable fixed-order
predictions at small qT [79–81], enabling the cancella-
tion of the q

cut
T between resolved and unresolved contri-

butions to su�cient accuracy. In this Letter, we em-
ploy the antenna subtraction method [82–85] to compute
Drell-Yan production above q

cut
T up to NNLO in pertur-

bation theory, implemented in the parton-level event gen-
erator NNLOJET [76, 79]. To achieve stable and reliable
fixed order predictions down to the qT ⇠ 0.4 GeV re-
gion, NNLOJET has been developing dedicated optimiza-
tions of its phase space generation based on the work
in [68]. This ensures su�cient coverage in the multiply
unresolved regions required for the qT -subtraction.

RESULTS

Applying the qT -subtraction method described above,
we compute Drell-Yan lepton pair production to N3LO
accuracy. For the phenomenological analysis, we restrict
ourselves to the production of a di-lepton pair through a
virtual photon only. We take ECM = 13 TeV as center
of mass collision energy and fix the invariant mass of
the di-lepton pair at Q = 100 GeV. Central scales for
renormalization (µR) and factorization (µF ) are taken at
Q, allowing us to compare with the N3LO total cross
section results from [14]. We use the central member of
PDF4LHC15_nnlo PDFs [86] throughout the calculation.

To establish the cancellation of qcutT -dependent terms
between resolved and unresolved contributions, Fig. 1
displays the qT distribution of virtual photon obtained
with NNLOJET (used for the resolved contribution) and
obtained by expanding the leading-power factorised pre-
diction at small qT using Eq. (2) up to O(↵3

s). The high-
est logarithms at this order are 1/qT ln5(Q/qT ). The
singular qT distribution is expected to match between
NNLOJET and SCET, which is a prerequisite for the
qT -subtraction method. This requirement is fulfilled by
the nonsingular contribution (NNLOJET minus SCET)
demonstrated in the bottom panel of Fig. 1. Remarkably,
the agreement starts for qT at about 2 GeV and extends
down to 0.32 GeV for each perturbative order. Numerical
uncertainties from phase space integrations are displayed
as error bars. We emphasize that the observed agreement
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FIG. 2. Dependence of the extracted NkLO fiducial cross
sections shown in Tab. I on the pcut

T infrared parameter, both
for the symmetric (2a) and product (2b) cuts. In the latter
case, the NLO correction has been rescaled by a factor 1/4.
The dashed vertical line indicates our default value pcut

T =
0.81GeV. The blue band is obtained by combining linearly
the statistical and slicing errors.

0.04%, which indicates that the predictions with product
cuts can be computed accurately with fixed-order per-
turbation theory. Nevertheless, we still observe a more
reliable estimate of the theoretical uncertainties when re-
summation is included.

In order to study the stability of our predictions
against variations of the infrared parameter pcutT , in Fig. 2
we show the dependence of the NkLO correction (i.e. the
O(↵k

s ) term in the expansion of the fiducial cross sec-
tion) on pcutT down to pcutT ' 0.4GeV. In the case of
symmetric cuts (2a), we observe that the inclusion of the
linear power corrections is essential to reach a plateau at
small pcutT , achieving the necessary independence of the
result on the slicing parameter. We thus obtain an excel-
lent control over the estimate of the slicing error quoted
in Tab. I. Fig. 2 also clearly shows that the omission of
such linear corrections leads to an incorrect result for the
fiducial cross section computed with the qT -subtraction
method, unless d�NNLO

DY+jet
can be computed precisely down

to pcutT ⌧ 1GeV. Conversely, in the case of the prod-
uct cuts (2b), we observe a much milder dependence of
the NkLO correction on pcutT , and the further inclusion

FIG. 3. Lepton transverse momentum distribution up to
N3LO+N3LL order in the fiducial phase space (2a). The la-
bels indicate the order in the fiducial cross section.

of power corrections does not lead to any visible di↵er-
ence, consistent with the fact that such corrections are
quadratic in most of the phase space [100]. As an addi-
tional sanity check, we have repeated the test of Fig. 2 for
each individual flavour channel contributing to the N3LO
Drell–Yan cross section. The results are collected in the
supplementary material [103], together with a discussion
on alternative approaches to qT subtraction employing a
fitting procedure, and a comparison to the literature.

Finally, the computation presented in this letter al-
lows us to obtain, for the first time, N3LO+N3LL predic-
tions for the kinematical distributions of the final-state
leptons. A particularly relevant distribution is the lep-
tonic transverse momentum, which plays a central role
in the precise extraction of the W -boson mass at the
LHC [2, 6]. Fig. 3 shows the di↵erential distribution of
the negatively charged lepton at three di↵erent orders,
for our default value pcutT = 0.81GeV. Unlike for the
fiducial cross section, the inclusion of p``T resummation in
this observable is crucial to cure local (integrable) diver-
gences in the spectrum due to the presence of a Sudakov
shoulder [119] at p`

�

T ⇠ m``/2. The figure shows an ex-
cellent convergence of the perturbative prediction, with
residual uncertainties at N3LO+N3LL of the order of a
few percent to the right of the shoulder, which grow at
most up to the O(5%) level for p`

�

T . m``/2.

Conclusions.— In this letter, we have presented
state-of-the-art predictions for the fiducial cross section
and di↵erential distributions in the Drell–Yan process at
the LHC, through both N3LO and N3LO+N3LL in QCD.
These new predictions are obtained through the combi-
nation of an accurate NNLO calculation for the produc-
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each individual flavour channel contributing to the N3LO
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on alternative approaches to qT subtraction employing a
fitting procedure, and a comparison to the literature.
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tonic transverse momentum, which plays a central role
in the precise extraction of the W -boson mass at the
LHC [2, 6]. Fig. 3 shows the di↵erential distribution of
the negatively charged lepton at three di↵erent orders,
for our default value pcutT = 0.81GeV. Unlike for the
fiducial cross section, the inclusion of p``T resummation in
this observable is crucial to cure local (integrable) diver-
gences in the spectrum due to the presence of a Sudakov
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cellent convergence of the perturbative prediction, with
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Conclusions.— In this letter, we have presented
state-of-the-art predictions for the fiducial cross section
and di↵erential distributions in the Drell–Yan process at
the LHC, through both N3LO and N3LO+N3LL in QCD.
These new predictions are obtained through the combi-
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0.04%, which indicates that the predictions with product
cuts can be computed accurately with fixed-order per-
turbation theory. Nevertheless, we still observe a more
reliable estimate of the theoretical uncertainties when re-
summation is included.

In order to study the stability of our predictions
against variations of the infrared parameter pcutT , in Fig. 2
we show the dependence of the NkLO correction (i.e. the
O(↵k

s ) term in the expansion of the fiducial cross sec-
tion) on pcutT down to pcutT ' 0.4GeV. In the case of
symmetric cuts (2a), we observe that the inclusion of the
linear power corrections is essential to reach a plateau at
small pcutT , achieving the necessary independence of the
result on the slicing parameter. We thus obtain an excel-
lent control over the estimate of the slicing error quoted
in Tab. I. Fig. 2 also clearly shows that the omission of
such linear corrections leads to an incorrect result for the
fiducial cross section computed with the qT -subtraction
method, unless d�NNLO

DY+jet
can be computed precisely down

to pcutT ⌧ 1GeV. Conversely, in the case of the prod-
uct cuts (2b), we observe a much milder dependence of
the NkLO correction on pcutT , and the further inclusion

FIG. 3. Lepton transverse momentum distribution up to
N3LO+N3LL order in the fiducial phase space (2a). The la-
bels indicate the order in the fiducial cross section.

of power corrections does not lead to any visible di↵er-
ence, consistent with the fact that such corrections are
quadratic in most of the phase space [100]. As an addi-
tional sanity check, we have repeated the test of Fig. 2 for
each individual flavour channel contributing to the N3LO
Drell–Yan cross section. The results are collected in the
supplementary material [103], together with a discussion
on alternative approaches to qT subtraction employing a
fitting procedure, and a comparison to the literature.

Finally, the computation presented in this letter al-
lows us to obtain, for the first time, N3LO+N3LL predic-
tions for the kinematical distributions of the final-state
leptons. A particularly relevant distribution is the lep-
tonic transverse momentum, which plays a central role
in the precise extraction of the W -boson mass at the
LHC [2, 6]. Fig. 3 shows the di↵erential distribution of
the negatively charged lepton at three di↵erent orders,
for our default value pcutT = 0.81GeV. Unlike for the
fiducial cross section, the inclusion of p``T resummation in
this observable is crucial to cure local (integrable) diver-
gences in the spectrum due to the presence of a Sudakov
shoulder [119] at p`
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T ⇠ m``/2. The figure shows an ex-
cellent convergence of the perturbative prediction, with
residual uncertainties at N3LO+N3LL of the order of a
few percent to the right of the shoulder, which grow at
most up to the O(5%) level for p`
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T . m``/2.
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state-of-the-art predictions for the fiducial cross section
and di↵erential distributions in the Drell–Yan process at
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quadratic in most of the phase space [100]. As an addi-
tional sanity check, we have repeated the test of Fig. 2 for
each individual flavour channel contributing to the N3LO
Drell–Yan cross section. The results are collected in the
supplementary material [103], together with a discussion
on alternative approaches to qT subtraction employing a
fitting procedure, and a comparison to the literature.
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tonic transverse momentum, which plays a central role
in the precise extraction of the W -boson mass at the
LHC [2, 6]. Fig. 3 shows the di↵erential distribution of
the negatively charged lepton at three di↵erent orders,
for our default value pcutT = 0.81GeV. Unlike for the
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and di↵erential distributions in the Drell–Yan process at
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