

Status of LLP and dark sector searches with the ATLAS and CMS experiments

Marianna Liberatore – 16 May 2023

Rencontres de Blois 2023

On behalf of the ATLAS and collaborations

- LLPs → Beyond the Standard Model (BSM) particles with long lifetime
 - Decay products far away from collision point
 - Plenty of SM "LLPs" (kaons, b-hadrons, muon, neutron, pions...) mechanisms understood
 - Suppressed decays via small coupling, heavy virtual particles mediating the decay or small phase space
 - Should also occur in BSM extensions
 - Non-conventional signatures

Dark Matter → part of larger hidden/dark sector

Vector portal \rightarrow Dark photon, dark Z' **Scalar portal** \rightarrow Dark Higgs, scalar ϕ **Pseudo scalar portal** \rightarrow Axion-like particle (ALP) **Neutrino portal** \rightarrow sterile neutrinos

Mediators between SM-DM candidates or candidates themselves

Dark Matter → part of larger hidden/dark sector

Vector portal \rightarrow Dark photon, dark Z' Scalar portal \rightarrow Dark Higgs, scalar ϕ Pseudo scalar portal \rightarrow Axion-like particle (ALP)

Neutrino portal → sterile neutrinos

• Mediators between SM-DM candidates or candidates themselves

Inelastic Dark Matter with displaced muons

- First search for inelastic DM at a hadron collider!
 - ≥ 2 DM states (χ_1, χ_2) + dark photon A'
 - $\Delta \equiv m_1 m_2 \text{ small} \rightarrow \chi_2 \text{ LLP}$
 - I displaced muon pair, large MET,
 21 boosted jet (initial state radiation)

Inelastic Dark Matter with displaced muons

- First search for inelastic DM at a hadron collider!
 - ≥ 2 DM states (χ_1, χ_2) + dark photon A'
 - $\Delta \equiv m_1 m_2 \text{ small} \rightarrow \chi_2 \text{ LLP}$
 - I displaced muon pair, large MET,
 21 boosted jet (initial state radiation)

- sum of all event momenta at initial state in xy plane = 0
- Detected as missing transverse momentum ($p_{\rm T}^{\rm miss}/E_{\rm T}^{\rm miss}/{\rm MET}$)

Muon reconstruction

Dedicated displaced standalone muon reconstruction • F

 10^{3}

Inelastic Dark Matter with displaced muons /

• Upper limits set on $\sigma(pp \to A' \to \chi_2 \chi_1) \mathscr{B}(\chi_2 \to \chi_1 \mu^+ \mu^-)$ as function of m_1 and **interaction strength** $y \equiv \epsilon^2 \alpha_D (m_1/m_{A'})^4$ @ 95% Confidence Level (CL)

• $e^2 \rightarrow$ kinematic mixing SM/dark photons and $a_D \rightarrow$ coupling strength to dark sector

Micro-displaced muons

- Search for smuons µ̃ with "intermediate" lifetime O(1-10) ps in Gauge-mediated SUSY breaking model (GMSB)
 - Signature with 2 non-prompt muons
 → 0.6<|d₀|<3 mm
- Main backgrounds → semileptonic Bhadron decays bb→µ+µ-
 - ACBD method $\rightarrow (d_0^+, d_0^-, m_{\mu^+\mu^-})$

Micro-displaced muons

- Search for smuons µ̃ with "intermediate" lifetime O(1-10) ps in Gauge-mediated SUSY breaking model (GMSB)
 - Signature with 2 non-prompt muons
 → 0.6<|d₀|<3 mm
- Main backgrounds → semileptonic Bhadron decays bb→µ+µ-
 - ACBD method $\rightarrow (d_0^+, d_0^-, m_{\mu+\mu-})$

A signal region, **B**, **C**, **D** control regions \rightarrow statistically independent $N_A = N_B \times N_C / N_D$

 $L = 139 \text{ fb}^{-1}$

p

p

Micro-displaced muons

- No excess found → limit sets on µ̃ mass up to 100(520)GeV for lifetimes down to 1(10)ps @ 95% CL
 - Fills gap between displaced and prompt lepton searches
 - First reinterpretation of prompt lepton searches in long-lived regime in ATLAS

LLPs to muon pairs

- Search for long-lived exotic particles decaying to muon pair
 - Higgs to dark photons Z_D (hidden Abelian Higgs Model)
 - Scalar *φ* to LL exotic heavy neutral scalar bosons X (simplified model)

Muon reconstruction

3 categories of muon pair events → standalone, tracker+MS, hybrid

L_{xy}, d₀/ σ (d₀) and $\Delta \Phi(\vec{p}_T \mu \mu, \vec{L}_{xy}) \rightarrow$ discriminating variables against non-prompt/fake displaced muons

• Se

LLPs to muon pairs

- Search in $\mathbf{m}_{\mu\mu}$ bins \rightarrow no excess found
 - Limits set on $B(H \rightarrow Z_D Z_D)$ as function of m_{ZD} and $c\tau_{ZD}$ and $\sigma(\phi \rightarrow XX)B(X \rightarrow \mu\mu)$ as function of $c\tau$

Best limits to date for 20 GeV < mzp < ½mH and mφ>mH

Displaced diphoton/dielectron vertex

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

104

0.2

- GMSB model: $\tilde{\chi}\tilde{\chi} \rightarrow LLP \tilde{\chi}_1^0 \rightarrow H(\gamma\gamma)$ or Z(ee)
 - Only calorimeter information

ШШ

10¹

ATLAS

 \sqrt{s} = 13 TeV, 139 fb⁻¹

- Displaced and delayed diphoton vertex → use pointing for reconstruction in (R-z) plane
- Main background \rightarrow real photons misreconstructed as displaced/fake photons

 $\tilde{\chi}_{1}^{0}(135 \text{ GeV}, 2 \text{ ns}) \rightarrow H\tilde{G}$

Fit background timing $t_{avg} = (t_{\gamma 1} + t_{\gamma 2})/2$ distribution in each category to data

Data, CR Template

 $\tilde{\chi}_{1}^{0}(135 \text{ GeV}, 2 \text{ ns}) \rightarrow H\tilde{G}$

t_{ava} [ns]

pointing $\rightarrow \rho = \sqrt{(V_R^2 + V_z^2)}$

H/Z

Displaced diphoton/dielectron vertex

- Good agreement between background prediction and data
- Limits as function of $m(\tilde{\chi}^0_1)$ and $\tau(\tilde{\chi}^0_1)$ for various BR to **H** and **Z**

LLPs out of time trackless jets

- GMSB model → neutralino to HZ, HH, ZZ and large MET
- Combine trackless and delayed (TD) jet information into Deep Neural Network → TDtagged
- 3×background jet rejection while 80% signal efficiency
- Background estimation → extrapolate tagger's misidentification probability to signal regions

LLPs out of time trackless jets

- No excess → limits in GMSB EWK model
 - Best results to date in mass range constrained by m_H up to 1.8 TeV

Multi-charged particles

- LL highly ionizing heavy fermions with |q|=ze (2 $\leq z \leq 7$)
 - Predicted in many theories
 - Drell-Yan or Photon Fusion
- Muon-like track going through whole detector
 - dE/dx → MCP high ionization signature in subdetectors

See also CMS on **Fractionally charged particles <u>EXO-19-006</u>** and ATLAS previous **dE/dx search** <u>arXiv:2205.06013</u>

Multi-charged particles

- LL **highly ionizing** heavy fermions with $|q|=ze(2 \le z \le 7)$
 - Predicted in many theories
 - Drell-Yan or Photon Fusion
- Muon-like track going through whole detector
 - dE/dx → MCP high ionization signature in sub-detectors
- Main backgrounds \rightarrow detector occupancy effects, δ -rays
 - ABCD method in [S(MDT dE/dx), S(TRT dE/dx)] plane

See also CMS on **Fractionally charged particles <u>EXO-19-006</u>** and ATLAS previous **dE/dx search** <u>arXiv:2205.06013</u>

17

Multi-charged particles

No excess → limits set on production cross section for MCP masses **up to 500 GeV** and **1060-1600 GeV**

See also CMS on **Fractionally charged particles <u>EXO-19-006</u>** and ATLAS previous **dE/dx search** <u>**arXiv:2205.06013**</u>

- Stau to **tau**(\rightarrow hadronic) τ_h + high **MET**
 - Purely left-handed, degenerate (L+R) + LLP interpretation → first search on displaced т!
- 31 SRs = 29 for prompt $\tilde{\tau}$ and 2 for displaced $\tilde{\tau}$
 - Main discriminants $\rightarrow \Sigma m_T = m_T(1) + m_T(2), m_{T2}, p_T^{\tau_h}$

Sleptons to TT + MET

 Good agreement with SM → strongest limits on LH and degenerate production scenarios so far + limits on LLP ĩ mass

Search for dark photons in rare Z boson decays

Events/GeV

Data/Pred.

10 - ATLAS Preliminary

Signals (mA', mhp)

] (12, 40) Ge] (25, 40) GeV

(35, 40) GeV

10

15

20

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

- Dark Abelian Higgs model
 - $m_Z < m_{h_d} < m_{A'}$
- 22 on-shell $A' \rightarrow \ell^+ \ell^- (e/\mu)$
- Main backgrounds $qq \rightarrow 4\ell$ and fakes
- Discriminant variable $\rightarrow m_{4\ell}$
 - SR: veto Z boson, CR: select Z boson candidates
- Additional contamination from quarkonia Υ
 - \rightarrow veto on dilepton mass
- Simultaneous fit on average invariant mass $\bar{m}_{\ell\ell} = (m_{\ell_1\ell_2} + m_{\ell_3\ell_4})/2$

20

LAS ATLAS-CONF-2023-016 $\int L = 139 \text{ fb}^{-1}$

See also ATLAS search for Dark Photons in ZH Decay <u>HDBS-2019-13</u>

Significantly wider ranges than previous experiments!

See also ATLAS search for Dark Photons in ZH Decay HDBS-2019-13

Stealth SUSY

- Minimal SUSY model (MSSM) + light hidden/**stealth sector** \rightarrow singlet boson *S*/singlino \tilde{S}
 - gravitino $\tilde{G} \cong LSP \rightarrow DM$ candidate
- Events with **2 photons**, **≥4 jets** and **low MET**
- Scan over the (neutralino, gluino/squark) mass 2D plane

• Main backgrounds \rightarrow multijets+diphotons events $\rightarrow S_T = \sum |p_T^i|$ (*i*=jets, photons, MET...), N_{jets}

SUS-19-001 $\int L = 138 \text{ fb}^{-1}$

S_T invariance shape

- Events w
- Scan ove
- . Main bac
- Distribution invariant for high N_{jets} → normalisation factor from S_T
 distribution @ low N_{jets} + corrections via MC simulations

Stealth SUSY

Limits set on gluino(squark) mass at 95% CL → ~70% improvement in exclusion contour + most stringent limits to date

Active Learning reinterpretation

- Mono-H(bb̄) reinterpretation \rightarrow **dark Higgs** model s + Z' + χ
 - ≥2 b-jets + MET
- Active Learning approach → Gaussian Process fits the upper limit on the signal strength + uncertainty
 - Iterative approach → RECAST protocol to compute exclusion limits with full accuracy
 - Computationally inexpensive
 - m_s , $m_{Z'}$, m_{χ} , g_{χ} free parameters
- Exclusion contour across whole new physics parameter space under investigation

ATL-PHYS-PUB-2022-045 $\int L = 139 \text{ fb}^{-1}$

 $H \rightarrow LLPs$

EXPERIMENT

Dark photons, dark Higgs

Current status @ ATLAS and CMS

C

Thank you!

Marianna Liberatore ATLAS group @ Irfu CEA Saclay marianna.liberatore@cern.ch

Backup

ATLAS and CMS detectors

Looking for DM in all directions

Production @ colliders

Indirect detection

Scalar/pseudoscalar mediator

Missing transverse momentum

 Events with only non-interactive particles in final state → cannot be detected

Missing transverse momentum

- Events with only non-interactive particles in final state → cannot be detected
- Rely on *visible* objects from **initial state radiation** or associated production to detect *invisible* particles

Missing transverse momentum

- Events with only non-interactive particles in final state → cannot be detected
- Rely on *visible* objects from **initial state radiation** or associated production to detect *invisible* particles
- sum of all event momenta in transverse plane = 0

SM

SM

• Generic searches • More sensitive to specific models • Few model assumptions • More reliant on model assumptions Simplified models Complete theories (e.g. SUSY) Effective field theories q qpSM WSM $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^0$ \mathbf{SM} X $\tilde{\chi}_1^0$ $\tilde{\chi}_2^0$ mediator Mediator Zp21 Λ X SM

Theoretical framework

Simpler models

More complex/complete models

Heavy neutral leptons to jets and leptons

Limits on Dirac (Majorana) **HNL production xsec** as function of m_N and $|V_{IN}|^2$ + limits on $|V_{IN}|^2 \rightarrow$ best limits for $|V_{\mu N}|^2 > 5(4) \times 10^{-7}$ for $m_N = 10$ GeV @ 95% CL

EXO-21-013 $\int L = 138 \text{ fb}^{-1}$

• **Dirac** or **Majorana HNL** coupling to $e/\mu/\tau$ for 2 < m_N < 20 GeV

- I prompt + I displaced leptons (e/μ) + ≥I displaced jet j*, τ → e/μ only
- SRs with opposite- or same-sign leptons (OS,SS), *Boosted* or *resolved* j*, Prompt-like (1), displaced (2), very displaced l₂ (3)
- Main background $\rightarrow Z/\gamma^*+jets \rightarrow CR$ with $m_{\rm H}>80$ GeV
 - ABCD method in (Pq,I(j*),mIIj*) plane

Non-pointing and delayed photons

- SM Higgs production (*ZH*, *WH*, *ttH*) with exotic decay → lepton trigger from *W*, *Z*, *t*
- Higgs to Long-Lived Next to Lightest SUSY particle (NLSP) → delayed and non-pointing photons + LSP as MET
- Main backgrounds \rightarrow prompt photons (modelled with $Z \rightarrow ee\gamma$) and fake photons (modelled with MET<30GeV)

arXiv:2209.01029

Categorize events with **pointing** $\rightarrow |\Delta Z_{\gamma}|$

 $\begin{array}{c} \mathbf{ATLAS} \\ \mathbf{Fale} = \text{chanced template} \\ \mathbf{Fale} = \text{$

Fit background **timing** distribution in each category to data

 $\int L = 139 \text{ fb}^{-1}$

Prompt low-mass dimuon resonances

- Search for narrow resonance to dimuon in mass range $m_{\mu\mu} \in [1.1-2.6]$ GeV and [4.2-7.9] GeV (veto Y and J/ ψ)
 - divided in *inclusive* and *boosted* selection
 - Since 2015 CMS collects events with ≥2 muons via loose-selection, high-rate trigger, → DiMuon Scouting stream
 - Data driven BDT \rightarrow trained on $\Upsilon,$ J/ $\!\psi$
- Background modelled on Bernstein polynomials + D→KK(Kπ) misreconstructed as dimuon → estimated by fit in control region
- No excess except in high-p_T region @ 2.41
 GeV with 3.2σ (compatible with LHCb result @ 2.42 GeV with 3.1σ JHEP 10 (2020) 156)
- Model independent limits on σ×B×Acc for inclusive and high-p_T dimuon selection
- Exploited to constrain **dark photon** and 2HDM+S scenarios

 $sin(\theta_H)$

10

m_a [GeV

Displaced jets

- Search for LLPs in EWK and Strong R-parity violating (RPV) models → lifetime up to O(10) ns
- Events with massive multitrack displaced
 vertex and multiple jets
 - Large-radius vs standard tracking
- Trackless jet SR and high-p_T jet SR
- Backgrounds → hadronic interactions, merged vertices, accidental crossing
- Inclusive data-driven technique + alternative DD estimation for each bkg source

Displaced jets

- No event in the trackless jet
 SR, l event observed in the
 high-p_T SR,
- Limits set on $m(\tilde{\chi}_1^0)$ up to **1.58 TeV for \tau=0.1 ns** and **visible xsec** for strong(EWK) model up to **0.03(0.02)fb**
- Sensitivity to EWK RPV SUSY models demonstrated for the first time

Dark matter searches with top quarks

tW+MET in **2HDM+a** model

- With 0/1/2 leptons in the final state
- Combining searches and signals → 2HDM+a ↔ simplified model reinterpretation
- Main backgrounds $\rightarrow t\bar{t}$, W/Z+jets, $t\bar{t}Z$
- Discriminant variable depending on signature:
 *m*_T, BDT, *m*_{T2}
- Limits on $\sigma/\sigma_{\text{theory}}$ as function of free parameters

Analysis	Best fit $\mathcal{B}_{H \to \mathrm{inv}}$	Observed upper limit	Expected upper limit
ttOL	$0.48^{+0.27}_{-0.27}$	0.95	$0.52^{+0.23}_{-0.16}$
tt1L	$-0.04^{+0.35}_{-0.29}$	0.74	$0.80^{+0.40}_{-0.26}$
tt2L	$-0.08^{+0.20}_{-0.19}$	0.36	$0.40\substack{+0.18\\-0.12}$
$t\bar{t}H$ comb.	$0.08^{+0.15}_{-0.15}$	0.38	$0.30_{-0.09}^{+0.13}$
H→inv. interpretation			

tt+MET in **Simplified model**

See also ATLAS HIGG-2021-05 and CMS HIG-21-007

for latest $H \rightarrow inv$ combination results

 $\int L = 139 \text{ fb}^{-1}$

42

Dark matter searches in W+W-+MET

- spin-1 vector mediator Z' to Dark Higgs s \rightarrow $WW \rightarrow \ell v (\ell v \text{ or } qq) + \text{MET}(m_s, m_{Z'}, m_{\chi} \text{ free}$ parameters)
- Discriminant variables
 - **Dilepton**: $m_{\mathrm{T}}^{p^{\ell \min}, p_{\mathrm{T}}^{\mathrm{miss}}}$

EXO-21-012

- Semilepton: BDT based on 13 variables with best signal/background separation power
 - SR binning optimized for 2016 and 2017-2018 data-taking
- Dominating backgrounds → W+W- and Drell-Yan for dilepton, W+jets for semilepton, tW and tt for both → dedicated CRs

 $I_L = 137 \text{ fb}^{-1}$

See also ATLAS results in arXiv:2211.07175

Dark matter searches in W+W-+MET

- Limits set on DM production cross section
 - Wider DM mass range 100 → 300
 GeV + limits on m_{Z'} +most
 stringent limits @m_{DM}=200 GeV
 on m_s and m_{Z'}

ALPs in the ATLAS Forward Spectrometer

- Diphoton resonance search in light-bylight scattering in *pp* collisions → 150 < *m*_{γγ}
 < 1600 GeV
- Main discriminant \rightarrow **Fractional energy loss** $\xi_{AFP} = (1 - E_{scattered}/E_{beam})_{calibrated}$ of forward proton matching with $\xi_{\gamma\gamma}$ inferred from photon pair + in both **A** and **C** sides

46

ALPs in the ATLAS Forward Spectrometer

• Upper limits on **ALP coupling constant** in **[0.04-0.09] TeV-1** range @ 95% CL for $\mathscr{B}(a \rightarrow \gamma \gamma) = 100\%$

