NEUTRINOLESS DOUBLE BETA DECAY : PRESENT AND FUTURE

Ben Jones

University of Texas at Arlington

Rencontres De Blois 2023

SM as a low energy effective theory:

$$L = L_{SM} + \frac{1}{E_{new}}L_1 + \frac{1}{E_{new}^2}L_2 + \dots$$

SM is a low energy effective theory:

$$L = L_{SM} + \frac{1}{E_{new}}L_1 + \frac{1}{E_{new}^2}L_2 + \dots$$

 The only dimension-5 operator one can add obeying SM gauge symmetry:

$$\frac{L_1}{E_{new}} = y_{ij} \frac{\nu^i H \nu^j H}{E_{new}}$$

Weinberg 1979.

- This term does ~one observable thing it makes neutrinos
 Majorana particles, with mass suppressed by new physics scale.
- And it makes the theory non-renormalizible implying there must be something else at high scale too (see also: Seasaw)

Majorana Neutrinos in a Nutshell

Behaves like matter

Behaves like antimatter

Robust observation of Majorana neutrinos would tell us 5 things about nature before breakfast:

1) Lepton number conservation is violated.

2) Massive fermions exist that are neither matter or antimatter but something else (Majorana fermions)

3) The SM with the Majorana term is non-renormalizible \rightarrow SM is definitely a low energy effective theory.

4) There are other mass generating mechanisms in nature beyond the Higgs mechanism (though the Higgs may be involved, nonetheless).

5) Majorana neutrinos are a prediction of the theory of Leptogenesis that may generate observed matter/anti-matter asymmetry of the Universe (given leptonic CPV – see also: HyperK / DUNE)

Double beta decay

A known standard model process and an important calibration tool

$$T_{\frac{1}{2}} = 10^{19} - 10^{21} \mathrm{yr}$$

Final state:
$$e^-e^-\bar{\nu}_e\bar{\nu}_e$$

Observation would prove that the neutrino is a Majorana fermion

$$T_{\frac{1}{2}} = \left[G \times |M|^2 \times m_{\beta\beta}^2\right]^{-1}$$

Final state: e^-e^-

The "minimal" mechanism:

 $= (U_{e1})^2 m_1 + (U_{e2})^2 m_2 + (U_{e3})^2 m_3$

Non-minimal mechanisms:

With a sterile neutrino:

Higher order operators

Class 1	$\psi^2 H^4$	Class 5	$\psi^4 D$
\mathcal{O}_{LH}	$\epsilon_{ij}\epsilon_{mn}(L_i^T C L_m) H_j H_n(H^{\dagger} H)$	$\mathcal{O}_{LLar{d}uD}^{(1)}$	$\epsilon_{ij}(\bar{d}\gamma_{\mu}u)(L_i^T C(D^{\mu}L)_j)$
Class 2	$\psi^2 H^2 D^2$	Class 6	$\psi^4 H$
$\mathcal{O}_{LHD}^{(1)}$	$\epsilon_{ij}\epsilon_{mn}(L_i^T C(D_\mu L)_j)H_m(D^\mu H)_n$	$\mathcal{O}_{LL\bar{e}H}$	$\epsilon_{ij}\epsilon_{mn}(\bar{e}L_i)(L_j^T C L_m)H_n$
$\mathcal{O}_{LHD}^{(2)}$	$\epsilon_{im}\epsilon_{jn}(L_i^T C(D_\mu L)_j)H_m(D^\mu H)_n$	$\mathcal{O}_{LLQar{d}H}^{(1)}$	$\epsilon_{ij}\epsilon_{mn}(\bar{d}L_i)(Q_j^TCL_m)H_n$
Class 3	$\psi^2 H^3 D$	$\mathcal{O}^{(2)}_{LLQ\bar{d}H}$	$\epsilon_{im}\epsilon_{jn}(\bar{d}L_i)(Q_j^TCL_m)H_n$
\mathcal{O}_{LHDe}	$\epsilon_{ij}\epsilon_{mn}(L_i^T C \gamma_\mu e) H_j H_m (D^\mu H)_n$	$\mathcal{O}_{LLar{Q}uH}$	$\epsilon_{ij}(\bar{Q}_m u)(L_m^T C L_i)H_j$
Class 4	$\psi^2 H^2 X$	$\mathcal{O}_{Leuar{d}H}$	$\epsilon_{ij}(L_i^T C \gamma_\mu e)(ar d \gamma^\mu u) H_j$
\mathcal{O}_{LHB}	$\epsilon_{ij}\epsilon_{mn}g'(L_i^T C\sigma^{\mu u}L_m)H_jH_nB_{\mu u}$		
$\mid \mathcal{O}_{LHW}$	$\epsilon_{ij}(\epsilon au^I)_{mn}g(L^T_i C \sigma^{\mu u}L_m)H_jH_nW^I_{\mu u}$		

https://arxiv.org/pdf/1708.09390.pdf

Higher order operators

$$L = L_{SM} + \frac{1}{E_{new}}L_1 + \frac{1}{E_{new}^2}L_2 + \dots$$

Your favorite LNV theory

Leptoquarks, SUSY, Kaluza Klein, LR symmetric couplings, etc etc

Class 1	$\psi^2 H^4$	Class 5	$\psi^4 D$
\mathcal{O}_{LH}	$\epsilon_{ij}\epsilon_{mn}(L_i^TCL_m)H_jH_n(H^\dagger H)$	${\cal O}^{(1)}_{LLar duD}$	$\epsilon_{ij}(\bar{d}\gamma_{\mu}u)(L_i^T C(D^{\mu}L)_j)$
Class 2	$\psi^2 H^2 D^2$	Class 6	$\psi^4 H$
$\mathcal{O}_{LHD}^{(1)}$	$\epsilon_{ij}\epsilon_{mn}(L_i^T C(D_\mu L)_j)H_m(D^\mu H)_n$	$\mathcal{O}_{LLar{e}H}$	$\epsilon_{ij}\epsilon_{mn}(\bar{e}L_i)(L_j^TCL_m)H_n$
$\mathcal{O}_{LHD}^{(2)}$	$\epsilon_{im}\epsilon_{jn}(L_i^T C(D_\mu L)_j)H_m(D^\mu H)_n$	$\mathcal{O}^{(1)}_{LLQar{d}H}$	$\epsilon_{ij}\epsilon_{mn}(\bar{d}L_i)(Q_j^TCL_m)H_n$
Class 3	$\psi^2 H^3 D$	$\mathcal{O}^{(2)}_{LLQ\bar{d}H}$	$\epsilon_{im}\epsilon_{jn}(\bar{d}L_i)(Q_j^TCL_m)H_n$
\mathcal{O}_{LHDe}	$\epsilon_{ij}\epsilon_{mn}(L_i^T C \gamma_\mu e) H_j H_m (D^\mu H)_n$	$\mathcal{O}_{LLar{Q}uH}$	$\epsilon_{ij}(ar{Q}_m u)(L_m^T C L_i)H_j$
Class 4	$\psi^2 H^2 X$	$\mathcal{O}_{Leuar{d}H}$	$\epsilon_{ij}(L_i^T C \gamma_\mu e) (ar d \gamma^\mu u) H_j$
\mathcal{O}_{LHB}	$\epsilon_{ij}\epsilon_{mn}g'(L_i^T C\sigma^{\mu u}L_m)H_jH_nB_{\mu u}$		
\mathcal{O}_{LHW}	$\epsilon_{ij}(\epsilon au^I)_{mn}g(L^T_i C \sigma^{\mu u}L_m)H_jH_n W^I_{\mu u}$		

https://arxiv.org/pdf/1708.09390.pdf

Higher order operators

$$L = L_{SM} + \frac{1}{E_{new}}L_1 + \frac{1}{E_{new}^2}L_2 + \dots$$

If your detector can resolve the electron tracks, you can tell the difference...!

But we need to see it first...

Kamland-Zen backgrounds →

TABLE I: Summary of the estimated and best-fit background contributions for the frequentist and Bayesian analyses in the energy region 2.35 < E < 2.70 MeV within the 1.57-m-radius spherical volume. In total, 24 events were observed.

Background	Estimated	Best-fit		
		Frequentist	Bayesian	
136 Xe $2\nu\beta\beta$	-	11.98	11.95	
	Residual radioactivity in Xe-LS			
²³⁸ U series	0.14 ± 0.04	0.14	0.09	
232 Th series	-	0.84	0.87	
External (Radioactivity in IB)				
²³⁸ U series	-	3.05	3.46	
232 Th series	-	0.01	0.01	
	Neutrino interact	tions		
$^{8}\mathrm{B}$ solar $\nu \ e^{-}$	$\mathrm{ES} \qquad 1.65 \pm 0.04$	1.65	1.65	
Spallation products				
Long-lived	$7.75\pm0.57~^\dagger$	12.52	11.80	
$^{10}\mathrm{C}$	0.00 ± 0.05	0.00	0.00	
⁶ He	0.20 ± 0.13	0.22	0.21	
¹³⁷ Xe	0.33 ± 0.28	0.34	0.34	

[†] Estimation based on the spallation MC study. This event rate constraint is not applied to the spectrum fit.

TABLE I: Summary of the estimated and best-fit background contributions for the frequentist and Bayesian analyses in the energy region 2.35 < E < 2.70 MeV within the 1.57-m-radius spherical volume. In total, 24 events were observed.

Background	Estimated	Best-fit		
		Frequentist	Bavesian	
136 Xe $2\nu\beta\beta$	_	11.98	11.95	
	Residual radioactivity	in Xe-LS		
238 U series	0.14 ± 0.04	0.14	0.09	
²³² Th series	-	0.84	0.87	
External (Radioactivity in IB)				
²³⁸ U series	-	3.05	3.46	
²³² Th series	-	0.01	0.01	
	Neutrino interac	tions		
⁸ B solar νe^-	$\mathrm{ES} \qquad 1.65 \pm 0.04$	1.65	1.65	
Spallation products				
Long-lived	$7.75\pm0.57~^\dagger$	12.52	11.80	
$^{10}\mathrm{C}$	0.00 ± 0.05	0.00	0.00	
⁶ He	0.20 ± 0.13	0.22	0.21	
¹³⁷ Xe	0.33 ± 0.28	0.34	0.34	

[†] Estimation based on the spallation MC study. This event rate constraint is not applied to the spectrum fit.

Measuring Energy

Where are the backgrounds from?

Radiogenics

Solar neutrinos(!)

Cosmogenics

These will limit all future experiments.

TABLE I: Summary of the estimated and best-fit background contributions for the frequentist and Bayesian analyses in the energy region 2.35 < E < 2.70 MeV within the 1.57-m-radius spherical volume. In total, 24 events were observed.

Background	Estimated	Best-fit		
		Frequentist	Bayesian	
$^{136}\mathrm{Xe}~2\nu\beta\beta$	-	11.98	11.95	
	Residual radioactivity in Xe-LS			
238 U series	0.14 ± 0.04	0.14	0.09	
232 Th series	-	0.84	0.87	
External (Radioactivity in IB)				
²³⁸ U series	-	3.05	3.46	
²³² Th series	-	0.01	0.01	
Neutrino interactions				
$^{8}\mathrm{B}$ solar $\nu~e^{-}$	$\mathrm{ES} \qquad 1.65 \pm 0.04$	1.65	1.65	
Spallation products				
Long-lived	7.75 ± 0.57 $^{ op}$	12.52	11.80	
$^{10}\mathrm{C}$	0.00 ± 0.05	0.00	0.00	
⁶ He	0.20 ± 0.13	0.22	0.21	
137 Xe	0.33 ± 0.28	0.34	0.34	

[†] Estimation based on the spallation MC study. This event rate constraint is not applied to the spectrum fit.

"100kg-class" experiments:

LEGEND

- Germanium diodes immersed in low background liquid argon.
- Lowest demonstrated background from any technology with GERDA and Majorana.
- 200 kg phase in operation, 1 Ton phase proposed.
- Superb energy resolution, ~0.2% FWHM
- Deployable in stages as isotope becomes available.

nEXO

- 5 Ton liquid xenon time projection chamber using enriched ¹³⁶Xe.
- Several signal-sensitive variables combined in a multivariate manner for final signal metric.
- Demonstrated energy res around 2-3% FWHM, aiming to improve through ongoing R&D.
- Outer tons of ¹³⁶Xe self-shield the middle ~2 tons to give a clean, very sensitive inner region.

LEGEND

- Germanium diodes immersed in low backgroup • liquid argon.
- Lowest demonstrated background from any . technology with GERDA and Majorana.
- 200 kg phase in operation, 1 Ton phase propos •
- Superb energy resolution, ~0.2% FWHM
- Deployable in stages as isotope becomes avai

Scaling is mostly a matter of repetition.

nFX()

LEGEND

Germanium diodes immersed in low background

Background suppression from self shielding emerges at large scale, and power comes from a multivariate analysis of many somewhat-signal-sensitive variables.

nEXO

5 Ton liquid xenon time projection chamber using philosophic sector of 136 Xe.

Several signal-sensitive variables combined in a nultivariate manner for final signal metric.

Dei nonstrated energy res around 2-3% FWHM, aiming to improve through ongoing R&D.

Duter tons of 136 Xe self-shield the middle ~2 tons o give a clean, very sensitive inner region.

CUPID

- ¹⁰⁰Mo enriched scintillating Li₂MoO₄ bolometers read out with transition edge sensors. 280kg of isotope.
- Excellent demonstrated energy resolution of 0.2% FWHM.
- Scintillation allows separation of surface backgrounds from bulk, which ultimately limited CUORE sensitivity.
- New crystals have been operated in CUPID-Mo demonstrator, showing strong performance.

SNO+

- 3.9 tons of tellurium loaded in 780 tons of liquid scintillator in an upgraded SNO detector
- Water-filled phase, scintillator-phase in progress.
- Isotope to be added in stages until maximal loading without detriment to scintillator optical properties.
- Modest energy resolution characteristic of scintillator detectors.
- Large isotope mass enabled by high natural abundance of ¹³⁴Te - no enrichment needed.

NEXT

- Xenon gas (10-15 bar) time projection chambers with enriched ¹³⁶Xe.
- Recombination-less ionization readout in gas gives leading energy resolution in xenon, ~0.9% FWHM.
- Tracks can be imaged topologically to separate signals (2 blobs) from backgrounds (1 blob)
- Full detector volume is active isotope (no self shielding)
- NEXT-100 will run in 2023, followed by ton-scale phases.

Please indulge me while I talk about my own stuff for 2 slides...

18c6-ai 18c6-nac Off-state Unbound PET = Off-state quenching Unbound PET = quenching excitation excitation On-state Bound NO PET Bound NO PET = emmisior excitatio excitation

Eg: Single Ba²⁺ ions imaged over mm² surfaces in high pressure xenon gas for NEXT.

Barium Tagging

In the decay:

¹³⁶Xe→¹³⁶Ba + 2e

Barium does not accompany any of the major cosmogenic or radiogenic backgrounds.

Single ion imaging may enable background-free multi-ton scale techniques.

Efficient identification of one ion in a ton of material is an extreme technological challenge.

Progress on imaging is being made rapidly in both liquid and gaseous xenon.

Collection from detector volume is the next major R&D challenge.

Toward Normal Ordering

The path to normal ordering is far from clear. Ultra-low background, very large scale detectors, with hundreds of tons of isotope, are needed.

We would need to do it if:

- Neutrino masses are normal ordered
- The same mechanism generates neutrino mass and drives 0nubb
- The absolute mass of the lightest neutrino is <0.05 eV

These may very well all be true statements...

What then?

Isotopes

- Already a challenging problem for ton-scale experiments, but would need hundreds of tons of isotope to go to normal ordering.
- Difficulties are associated with both acquisition of raw material and enrichment.
- Some notable factoids:
 - Tellurium:

Comes naturally enriched to 34%. So natural tellurium is the most viable for an unenriched experiment.

Molybdenum:

New capacity for enrichment of Molybdenum in 100Mo for nuclear medicine is needed. Onubb may be parasitic?

• Germanium:

Semiconductor industry enriches germanium already; 76Ge can in principle be extracted as byproduct?

• Xenon:

Atmospheric carbon capture technology based on metal organic frameworks has plausible extendibility to capture atmospheric Xe. Free from steel industry capacity limit?

R&D and new facilities would be needed to produce isotope at the scale needed for a normal-ordering experiment.

Giant TPCs

Kiloton-scale xenon detectors for neutrinoless double beta decay and other new physics searches

A. Avasthi,¹ T.W. Bowyer,² C. Bray,³ T. Brunner,^{4,5} N. Catarineu,⁶ E. Church,² R. Guenette,⁷
S.J. Haselschwardt,⁸ J.C. Hayes,² M. Heffner,^{6,*} S.A. Hertel,⁹ P.H. Humble,² A. Jamil,¹⁰ S.H. Kim,⁶
R.F. Lang,¹¹ K.G. Leach,³ B.G. Lenardo,¹² W.H. Lippincott,¹³ A. Marino,³ D.N. McKinsey,^{14,8}
E.H. Miller,^{15,16} D.C. Moore,^{10,†} B. Mong,¹⁵ B. Monreal,¹ M.E. Monzani,^{15,16} I. Olcina,^{8,14} J.L. Orrell,²
S. Pang,⁶ A. Pocar,⁹ P.C. Rowson,¹⁵ R. Saldanha,² S. Sangiorgio,⁶ C. Stanford,⁷ and A. Visser⁶

If energy resolution achievable at scale, with kiloton masses, normal ordering parameter space is accessible.

Giant TPCs

...in salt caverns?

Kiloton-scale xenon detectors for neutrinoless double beta decay and other new physics searches

A. Avasthi,¹ T.W. Bowyer,² C. Bray,³ T. Brunner,^{4,5} N. Catarineu,⁶ E. Church,² R. Guenette,⁷
S.J. Haselschwardt,⁸ J.C. Hayes,² M. Heffner,^{6,*} S.A. Hertel,⁹ P.H. Humble,² A. Jamil,¹⁰ S.H. Kim,⁶
R.F. Lang,¹¹ K.G. Leach,³ B.G. Lenardo,¹² W.H. Lippincott,¹³ A. Marino,³ D.N. McKinsey,^{14,8}
E.H. Miller,^{15,16} D.C. Moore,^{10,†} B. Mong,¹⁵ B. Monreal,¹ M.E. Monzani,^{15,16} I. Olcina,^{8,14} J.L. Orrell,²
S. Pang,⁶ A. Pocar,⁹ P.C. Rowson,¹⁵ R. Saldanha,² S. Sangiorgio,⁶ C. Stanford,⁷ and A. Visser⁶

 ← Radiogenics become totally irrelevant due to self shielding

Cosmogenics and solar neutrinos become a serious concern!

If energy resolution achievable at scale, with kiloton masses, normal ordering parameter space is accessible.

High-pressure TPCs in pressurized caverns: opportunities in dark matter and neutrino physics

Author:

Benjamin Monreal (Case Western Reserve U.) [benjamin.monreal@case.edu]

Isotope in kTons of liquid scintillator

THEIA: Summary of physics program

Snowmass White Paper Submission

M. Askins,^{1,2} Z. Bagdasarian,^{1,2} N. Barros,^{3,4,5} E.W. Beier,³ A. Bernstein,⁶ M. Böhles,⁷ E. Blucher,⁸

Isotope in kTons of liquid scintillator

Time [ns]

Conclusions

- NDBD is the only sensitive known way to probe the Majorana nature of the neutrino.
- Experiments at the 100kg scale have demonstrated background indices in the range 2-200 ct/ton/ky/yr
- Ton-scale experiments plan to reduce backgrounds by 1.5-3 orders of magnitude relative to 100kg phases and probe the inverted mass ordering range of parameter space.
- Beyond-ton-scale will require huge, ultra-low background detectors that we don't yet know how to build, but need to figure out!

Thank you for your attention

