Atom Interferometry for dark matter and gravitational waves

Christopher M^c**Cabe**

in collaboration with Leonardo Badurina, Ankit Beniwal, Diego Blas, John Carlton, Val Gibson, Jeremiah Mitchell, and others in AION

34th Rencontres de Blois, 18 May 2023

Setting the scene

Light pulse atom interferometry (physical-space)

- Launch ultra-cold cloud of atoms into an atomic fountain
- Sequence of optical pulses manipulate the atoms
- Quantum superposition over macroscopic distances (>50cm achieved)
- Interfere using a final optical pulse when they spatially overlap
- Image the two interferometer output ports

Light pulse atom interferometry (space-time)

Christopher McCabe

Two-level system separated by optical frequency difference ω_a

Initial pulse: 'beamsplitter' Middle pulse: 'mirror' Final pulse: 'beamsplitter (interfere)'

Atom evolves extra clock phase:

$$\frac{1}{\sqrt{2}}|1\rangle + \frac{1}{\sqrt{2}}|2\rangle e^{-i\omega_a T}$$

Phase sensitive to changes in timings, atomic structure, and local accelerations

New atom interferometers across the world coming online

MAGIS-100, arXiv:2104.02835; MIGA, arXiv:1703.02490; AION, arXiv:1911.11755; VLBAI, arXiv:2003.04875; ZAIGA, arXiv:1903.09288

AION: Atom Interferometer Observatory and Network

7 institutes in the UK

AION, arXiv:1911.11755

Christopher McCabe

Collaboration ~50 people Cold atom: fundamental physics ratio is ~50:50

Badurina, CM, et al (AION), arXiv:1911.11755 Image from Abe et al (MAGIS-100) arXiv:2104.02835

Christopher McCabe

Operate in gradiometer configuration: run two atom interferometers simultaneously with the same laser

Pushing state-of-the-art single photon strontium atom interferometry

Partnering with MAGIS-100 in the US

Most sensitive to 'mid-band' (0.1 - 10 Hz)

AION: envisaged as a multi-stage project

Christopher McCabe

Stage 1: AION-10

~10m tower in the Beecroft building in Oxford (new, low-vibration building)

Now: 5 new Sr labs and design '24-'26: construction '26-'27: commissioning 2028+: science

AION: envisaged as a multi-stage project

AION-10 2020s ~10m instrument in Oxford AION-100 2030s ~100m instrument at Boulby/CERN/...?

Christopher McCabe

CERN study: arXiv:2304.00614 ; AEDGE, arXiv:1908.00802; Roadmap, arXiv:2201.07789

Near-term aim: probe dark matter

Badurina, Blas, **CM**, PRD, arXiv:2109.10965 Badurina, ..., **CM**, et al, Phil.Trans.Roy.Soc.Lond., arXiv:2108.02468

DM landscape: classifying by mass

Ultra-light dark matter

DM lighter than ~few eV behaves as a classical wave

Angular frequency set by the ULDM mass: $\omega \simeq m_{arphi} \left(1 + \mathcal{O}(v^2)\right)$

e.g., Foster et al arXiv: 1711.10489 Derevianko arXiv:1605.09717

Classifying atom interferometer signals

Difficulty: very high Careful analysis of systematic effects needed, which may be hard to quantify

Focus initially on time-dependent signals

Christopher McCabe

ULDM-induced signal Static vs Time-dependent

Difficulty: medium Characteristic DM signal allows for greater signal discrimination

An oscillating ULDM field can induce several signals testable with Als:

- 1. Changes in fundamental constants (scalar ULDM)
- 2. Accelerations on test masses (vector ULDM)
- 3. Precession of spins (pseudoscalar ULDM)

Christopher McCabe

Time-dependent signals

Changes in fundamental constants (Scalar)

$$\mathcal{L} \supset \sqrt{4\pi G_N} \phi igg[d_{m_e} m_e ar{e} e - rac{d_e}{4} F_{\mu
u} F^{\mu
u} igg]
ightarrow m_e(t,\mathbf{x}) = m_e igg[1 + d_{m_e} \sqrt{4\pi G_N} \phi(t,\mathbf{x}) igg]
ightarrow lpha(t,\mathbf{x}) = lpha igg[1 + d_e \sqrt{4\pi G_N} \phi(t,\mathbf{x}) igg]$$

Oscillations in the field lead to oscillations in optical transitions:

Christopher McCabe

$$\int \Delta \omega_A(t) \sim \left[d_{m_e} + \xi_A d_e \right] \cos(m_\phi t + \xi_A d_e)$$

See e.g., Geraci et al, arXiv:1605.04048 and Arvanitaki et al, arXiv:1606.04541

Phase is accumulated by the excited state relative to the ground state along all paths:

$$\Phi_{t_1}^{t_2}(\mathbf{r}) = \int_{t_1}^{t_2} \Delta \omega_a(t, \mathbf{r}) dt$$

 $\Delta \omega_A(t) \sim \left[d_{m_e} + \xi_A d_e \right] \cos(m_\phi t + \theta)$

 t_1, t_2 = time in excited state

Scalar ULDM signal

Many parameters to tune to reach sensitivity

$$d_{m_e}^{\text{best}} \sim \left(\frac{1}{T}\right)^{5/4} \frac{1}{C n \Delta r} \left(\frac{\Delta t}{N_a}\right)^{1/2} \left(\frac{1}{T_{\text{int}}}\right)^1$$

Handles to optimise (in order of priority):

 $T \sim Is$ (interrogation time) $C \sim 0.1 - I$ (constrast) $n \sim 1000$ (LMT) $\Delta r \sim AI$ separation $\Delta t \sim sampling$ time $N_a \sim atoms$ in cloud $T_{int} \sim 10^7 s$ (integration time)

Sensitivity	\mathbf{L}	T_{int}	$\delta \phi_{ m noise}$	\mathbf{LMT}
Scenario	[m]	[sec]	$[1/\sqrt{\text{Hz}}]$	$[\mathrm{number}\ n]$
AION-10 (initial)	10	1.4	10^{-3}	100
AION-10 (goal)	10	1.4	10^{-4}	1000
AION-100 (initial)	100	1.4	10^{-4}	1000
AION-100 (goal)	100	1.4	10^{-5}	40000
AION-km	2000	5	$0.3 imes10^{-5}$	40000

Badurina, CM, et al, arXiv:1911.11755, 2108.02468

Near- and long-term prospects (Scalar)

Long-term aim: Gravitational wave searches

Badurina, Buchmueller, Ellis, Lewicki, CM, Vaskonen Phil.Trans.Roy.Soc.Lond., arXiv:2108.02468

Gravitational wave detection

Dimopoulos et al, PRD arXiv:0802.4098, PRD arXiv:0806.2125 Graham et al, PRL arXiv:1206.0818, PRD arXiv:1606.01860

Christopher McCabe

$$\Phi \propto hL \sin^2\left(rac{\omega T}{2}
ight)$$

Sensitive to GW frequencies ~ 1/T ~ Hz

GW soundscape today

Conventional GW soundscape ~2040

CERN 08/21

GW soundscape (~2040s) with atom interferometers

Badurina, Buchmueller, Ellis, Lewicki, CM, Vaskonen Phil.Trans.Roy.Soc.Lond., arXiv:2108.02468

Example: sensitivity to binary mergers (equal masses)

Christopher McCabe

Badurina, Buchmueller, Ellis, Lewicki, CM, Vaskonen Phil.Trans.Roy.Soc.Lond., arXiv:2108.02468

Example: sensitivity to binary mergers (equal masses)

Badurina, Buchmueller, Ellis, Lewicki, CM, Vaskonen Phil.Trans.Roy.Soc.Lond., arXiv:2108.02468

Ongoing work: mitigating backgrounds

Badurina, Gibson, CM, Mitchell, PRD, arXiv:2211.01854 Carlton, CM, to appear

Short-termer challenge: operating in a university building

Christopher McCabe

Many moving 'test masses'

ULDM searches run for many months

Could the busy environment hide a fundamental physics signal?

Mitigation through data analysis

Preliminary: Carlton, CM, to appear

Simple strategy works: mask noisy periods in analysis

Loss in sensitivity small since:

$$d_{m_e}^{\text{best}} \sim \left(\frac{1}{T_{\text{int}}}\right)^{1/4}$$

Recover shot-noise limited sensitivity

Exploring methods to keep all data

Seismic activity induces Gravity Gradient Noise (GGN)

Expectation: will limit low-frequency searches

Rayleigh waves give the largest density variations so considered the most dangerous

Harms, Living Rev.Rel.18 (2015) 3, arXiv:1507.05850; Baker et al, arXiv:1201.5656; Vetrano et al, arXiv:1304.1702; Harms et al, arXiv:1308.2074; Chaibi et al, arXiv:1601.00417; Junca et al (MIGA), arXiv:1902.05337

Christopher McCabe

Longer-term challenge: seismic noise

(Partially) mitigated with multi-gradiometer configuration

GGN signal decays exponentially from the surface $\Phi_{\text{Rayleigh}} = \left(\widetilde{A}e^{-qkz_0} + \widetilde{B}e^{-kz_0} \right)$

ULDM (or GW) signals scale linearly with AI separation

$$\Phi_{\rm ULDM} \sim \frac{\Delta z}{L}$$

Cross-correlation methods to search for the linear signal

Badurina, CM, et al, PRD, arXiv:2211.01854

Christopher McCabe

Multi-gradiometer: probe depth-scaling of signal and background

Badurina, CM, et al, PRD, arXiv:2211.01854

Christopher McCabe

ULDM Projections for km-baseline

ASN = best-case sensitivity

Blue: New High Noise Model with **two** interferometers

Other curves: New High Noise Model with *five* interferometers

Increased sensitivity for ~0.1 to 1 Hz

Historically, new observational techniques have led to new discoveries

Ultralight dark matter probe

- Mass $< 10^{-12} \, \text{eV}$

- Scalar-, vector- and pseudoscalar-coupled DM candidates

Mid-band gravitational wave detection

- LIGO sources before they reach LIGO band
- Early-Universe cosmological sources

And more...

- Tests of quantum mechanics at macroscopic scales
- Probe of seismic activity...

Summary

- Time-varying energy shifts, EP-violating new forces, spin-coupled effects

Science and Technology Facilities Council

A wide landscape of DM candidates

US Cosmic Visions

Speed distribution in our galaxy

Many models also predict some substructure in the distribution, see e.g., O'Hare et al arXiv:1807.09004, 1810.11468, 1909.04684

Coherence of the field

Impact of the speed distribution apparent over long time-scales: field amplitude evolves with a 'coherence time' $\tau \sim (m_{\rm DM} \sigma_v^2)^{-1}$

Al signals depend on the field amplitude \Rightarrow will also vary with a coherence time

B – L coupled vector appears in many extensions of the Standard Model

As ULDM, this generates background 'dark electric field':

In a *dual-species interferometer*, isotopes experience a different forces (accelerations):

Graham et al arXiv:1512.06165

Christopher McCabe

 $E_{B-L} \sim \cos(m_{\rm DM}t + \theta)$

$$\Delta F_{B-L} \sim g_{B-L} \left(\frac{Z_1}{A_1} - \frac{Z_2}{A_2}\right) E_{B-L}$$

Other ULDM signals (1): Near- and long-term prospects (Vector)

Christopher McCabe

log₁₀[*m*/eV]

Abe et al arXiv:2104.02835

Other ULDM signals (2): Precession of spins (Pseudoscalar)

Light pseudoscalar (axions) are ubiquitous in extensions of the Standard Model

In a dual-species interferometer, pseudoscalars couple to the different spin of the isotopes:

Phase
$$\sim (m_{S,1} - m_{S,2}) \cos(m_a t + \theta)$$

Challenging: km-baseline, highrepetition rate (10 Hz), long interrogation time, good control of magnetic fields $\delta B \sim 10^{-15} \mathrm{T}$

Graham et al arXiv:1709.07852

Beyond oscillating field signals...

See also Riedel et al arXiv:1212.3061, 1609.04145

Christopher McCabe

Some work in the direction of the DM abundance

e.g. 'Thermal misalignment of scalar dark matter' Batell & Ghalsaia, arXiv:2109.04476

Complementarity with atomic clocks

Multi-gradiometer configuration

Lots of space for multiple atom interferometers on km-baseline!

Effect of Rayleigh waves

Model wave travelling across the surface as:

$$\vec{\xi}(\varrho,\theta,z,t) = \left(\xi_H(z)\hat{k} - \xi_V(z)\vec{e}_z\right)e^{i(k\varrho\cos(\theta-\theta')-\theta')}$$

Horizontal displacement Vertical displacement

Induces density fluctuations below the surface:

 $\frac{\delta\rho(z>0)}{\rho_0} = \left[\xi_V\delta(z) + \mathcal{R}(z)\right]e^{i(k\rho\cos(\theta-\theta')-\omega t)}$

$$\mathcal{R}(z) = k\xi_V \frac{(q^2 - 1)}{q} \left(\frac{1 + s^2}{1 - s^2}\right) e^{-qkz} \quad \text{wher}$$

re $q, s \sim \mathcal{O}(1)$

Effect of Rayleigh waves

Density fluctuations imply a time dependent gravitational potential:

$$\left\langle \delta\phi\left(z_{0},t\right)\right\rangle = -2\pi G\rho_{0}\,\xi_{V}\,e^{-i\omega t}\,\frac{1}{qk}\,\left($$

Vertical displacement

Induces a phase in the interferometers:

$$\Phi_{\text{Rayleigh}} = \left(\widetilde{A}e^{-qkz_0} + \widetilde{A} \right)$$

Amplitude decays exponentially

 $\left(\frac{1+s^2}{1-s^2}\right)\left((1+\sqrt{q/s})e^{-kz_0}-2e^{-qkz_0}\right)$

Amplitude decays exponentially with depth

 $\widetilde{B}e^{-kz_0}$ $\xi_V \cos(\omega T + \Theta)$

Vertical displacement

Badurina et al, arXiv:2211.01854

Christopher McCabe

Projections for km-long baseline

ASN = target sensitivity

Orange: Peterson's New High Noise Model

Blue: Peterson's New Low Noise Model

с_н parameterises decay length of Rayleigh wave density variation:

$$\lambda_{\rm GGN} = \frac{c_H}{\omega_a} \simeq 100 \,\mathrm{m} \,\left(\frac{250 \,\mathrm{m\,s}^{-1}}{c_H}\right)^{-1} \,\left(\frac{2.5 \,\mathrm{Hz}}{\omega_a}\right)^{-1} \,$$

 10^{1}

