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Application of Machine Learning 
to RNA Biology (genetics) for 

developing therapeutics to slow 
down or reverse terminal 

diseases.

So that we can live long enough 
to see the results from the 

future colliders.
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There is no Artificial Intelligence, yet.
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Examples of Intelligence
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Example of Sporadic Intelligence
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Only in movies and books
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The rest is glorified regression,
a.k.a. Machine Learning.



Does Physics need 
Machine Learning?
Warning: when you have only a hammer, 
everything looks like a nail.
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The sea of BSM theories:

o None have been realized at a few TeV
o No signatures of BSM have been found with 

either high energy or low energy 
observables

o There clearly seems to be no naturalness 
problem

o Nature does not mind and possibly 
advocates a large mass gap between EW 
and NP scales

o At the end of the day, regardless of what 
theories we conjure, data is the final judge

Thanks Tim!
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A roadmap for the future:

o We will have more data but incrementally better in terms of statistics (HL-LHC)

o We can have more data during the second half of the century but, really, do we have 
the patience or lifespan to wait?

o How do we make better use of data?

o How do we make better use of advanced statistical methods?

o Machine Learning (ML) is the bleeding edge of statistical learning algorithms. Can we 
leverage it effectively?

Is Machine Learning the new math that we need to find new physics



What is Machine 
Learning?
and can it be useful in understanding the laws 
of nature?
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really smart! Can they think like us?

If all the knowledge of the world could be converted to rules/laws
then, a computer can answer any question!

Sounds familiar?
hint: The Theory of Everything

Instead, lets call it the Rulebook of Everything or Artificial Intelligence

Turned out to be impossible: We are children collecting seashells when the vast ocean of 
knowledge lies before us unexplored

solution: learn from observations, the advent of data-driven statistical learning

Some History: 1950 – 1960
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Turing’s requirement from an intelligent machine:

o Natural Language Processing: communicate in a human language

o Knowledge Representation: to store information it is exposed to

o Automated Reasoning: to use the stored information to answer questions or to draw 
new conclusions

o Machine Learning: to adopt to new circumstances and to detect and extrapolate 
patterns

Beyond Turing:

o Computer Vision: to perceive objects
o Robotics: to manipulate objects and move about

statistical learning has far outperformed rule-based algorithms in all these areas

Question: How many of these are useful in the kind of Physics we do?

Physics Goal: extract and process the underlying patterns in data to discover the laws of 
Nature
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Question: How many of these are useful in the kind of Physics we do?

Turing’s requirement from an intelligent machine:

o Natural Language Processing: sequence analysis, has not found a lot of applications

o Knowledge Representation: lower dimensional embedding, not often used
o Automated Reasoning: we wish!

o Machine Learning: has become the backbone of experimental analyses. A lot of it can 
be applied to phenomenology and theory

Beyond Turing:
o Computer Vision: has found wide-spread application in experimental analyses

o Robotics: no, we still need to do our own jobs

Physics Goal: extract and process the underlying patterns in data to discover the laws of 
Nature
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Historically, classification and 
clustering have been used extensively 
in the analysis of experimental data

Classical methods are computationally 
less demanding and have contributed 
to almost all experimental discoveries 
in the past couple of decades

They are limited in their ability to map 
underlying patterns and quite limited 
in address several data types like 
images, sequences, non-Euclidean 
data, etc. Decision trees turned out to 

be very useful for experimental 
analyses
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The times they are a-changing

We are now in the age of the universal 
function approximators (Deep Learning) 
and ensemble learning

2000

0

1000

source: inspireHEP

20
12

What happened in 2012?
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The times they are a-changing
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The times they are a-changing

We are now in the age of the universal 
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o Deep learning emerged as the leading statistical learning method
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The times they are a-changing

We are now in the age of the universal 
function approximators (Deep Learning) 
and ensemble learning

2000

0

1000

source: inspireHEP

20
12

2012

o Higgs discovered
o Deep learning emerged as the leading statistical learning method
o I completed my PhD degree. 
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So why did it take so long?

o Our labeled datasets were thousands of times too small.

o Our computers were millions of times too slow.

o We initialized the weights in a stupid way.

o We used the wrong type of non-linearity.
quoted from some of the giants of ML

This summarizes what you need to build an analysis based on neural networks
otherwise, use classical machine learning (like tree-based learners or clustering)
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Can we do Physics with Machine Learning?

o Our labeled datasets were thousands of times too small.

— There are lots of data both experimental and synthetic (from simulations)
— There are methods that are not data hungry, but we rarely need them

o Our computers were millions of times too slow.

— Not anymore (but one needs to be not terrified of coding)
— Not all ML methods need large GPUs. A lot can be done on a laptop

o We initialized the weights in a stupid way.

— Neural networks still depend on point estimation of the parameters and have a   
     very large number of degenerate minima
— Neural networks also require a lot of tuning where all you can do is “hit and trial”

o We used the wrong type of non-linearity.

— This boils down to a choice of the basis function; something very familiar in physics
— Neural networks are nothing but nested functions whose coefficients (parameters) 
     need to be estimated using likelihood minimization
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What can we do with machine learning?



Two examples of 
Machine Learning
Introducing high-precision regressors and 
interpretable machine learning

24



Reducing the energy footprint of simulations for science

High Precision Regressors for Monte Carlo Generators

I do not think you can start with anything precise. You have to achieve such precision 
as you can, as you go along.

― Bertrand Russell

Based on:
F. Bishara, A. Paul, J. Dy, High-Precision Regressors for Particle Physics. Paper submitted to Nature 
Scientific Reports for peer-review. 
 
F .Bishara, A. Paul, J. Dy, Skip Connections for High Precision Regressors. Machine Learning and the 
Physical Sciences, Workshop at the 36th Conference on Neural Information Processing Systems 
(NeurIPS 2022). 
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o Monte Carlo simulations of physics processes at particle colliders like the Large Hadron 
Collider at CERN take up a major fraction of the computational budget. 

o A single data point can take seconds, minutes, or even hours to compute from first principles. 

o 10! − 10"# data points are necessary per simulation; machine learning regressors can replace 
physics simulators to significantly reduce this computational burden. 

o High-precision regressors are required that can deliver data with relative errors of less than 
1% or even 0.1%	over the entire domain of the function. 

o Goal: Significantly reduce the training and storage burden of Monte Carlo simulations at 
current and future collider experiments.

Can we speed up Monte Carlo event generators?
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Talk by Alexander Huss on May 16th  
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Needs a surrogate regressor since it is very slow to compute from first principles

o Train boosted decision trees (BDT), Deep Neural Networks (DNN) and 
Deep Neural Networks with skip connections (sk-DNN) with simulated 
data from particle physics.

o We use 2-, 4-, and 8-dimensional (D) data to compare BDTs, DNN and sk-
DNNs with the aim of reaching 

o Aim: errors < 1%− 0.1% over at least 90% of the input feature space.

o Architectural decisions, training strategies and data volume.

building surrogate regressors

sk-DNN building blocks

A lot of generative models have been proposed but 
struggle to achieve even ~10% errors even with lower 
dimension kinematic space
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𝛿 =
𝑓 𝒙 !"#$%&'#$ 	− 𝑓 𝒙 '"(#

𝑓(𝒙)'"(#

2D
sk-DNN

2D
DNN

2D
BDT

4D
sk-DNN

4D
DNN

4D
BDT

8D
sk-DNN

8D
DNN

8D
BDT

The precision was achieved using:

o Symmetry properties of the 
physics process

o Exponential cooling of learning 
rate

o Physics informed normalization

error quantification:

results
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2D  

summary

4D  

8D  

o BDTs outperform DNNs at lower dimensions. 

o Fully-connected DNNs perform better at higher 
dimensions. 

o sk-DNNs outperforms both BDTs and DNNs at 
4D and 8D.

o sk-DNNs can outperform DNNs with a larger 
number of parameters.

o The regressors can provide precise predictions 
in 10-3 –  10-6 seconds << few seconds taken by 
MC simulation.

Code: https://github.com/talismanbrandi/high-precision-ml



Enhancing the power of particle collider searches

Interpretable Machine Learning for Higgs Signals

If you can't explain it simply, you don't understand it well enough.
– Albert Einstein

Based on:
C. Grojean, A. Paul, and Z. Qian, Resurrecting 𝑏𝑏ℎ with kinematic shapes. JHEP04 (2021) 139. DOI: 
10.1007/JHEP04(2021)139
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Related to:
C. Grojean, A. Paul, and Z. Qian, I. Strümke, Lessons on interpretable machine learning from particle 
physics. Nature Review Physics 4, 284–286 (2022). DOI: 10.1038/s42254-022-00456-0

L. Alasfar, R. Gröber, C. Grojean, A. Paul, and Z. Qian, Machine learning the trilinear and light-quark 
Yukawa couplings from Higgs pair kinematic shapes. JHEP11 (2022) 045. DOI: 
10.1007/JHEP11(2022)045

https://doi.org/10.1007/JHEP04(2021)139
https://doi.org/10.1038/s42254-022-00456-0
https://doi.org/10.1007/JHEP11(2022)045
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Higgs couplings and 𝑏"𝑏ℎ with ℎ → 𝛾𝛾

This is what we are looking for.

It took 40 years to find the Higgs. 
So, measuring one of its decay modes precisely is 
a very challenging task!
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tiny signals embedded in multiple large backgrounds

signals

𝒃(𝒃𝒉 
background

6 Summary

Gleaning tiny and obfuscated signals from dominating backgrounds has been the boon and

the bane of particle physics, in both the theoretical and experimental realms. The evolution

of methods used to do so has gone through several stages with multivariate analysis being

the most evolved. The strength of multivariate analyses in the form of machine learning

methods like decision trees and neural networks have dominated experimental analyses for

quite a few years now. In this work we augment phenomenological analyses by bringing

forth to it the strength of interpretable machine learning.

The extraction of y
2
b from the associated production of the Higgs with a bb̄ has been

written o↵ due to the presence of dominant irreducible backgrounds, especially from Zh

production [20]. The arguments were based on the fact that Zh, Z ! bb̄ and the y
2
b -driven

contribution have very similar kinematic signatures making it di�cult to distinguish the

weaker contribution proportional to y
2
b , from the irreducible background. In this work we

show that, the dismissal of the measurability of the y
2
b -driven contribution in an attempt

to isolate yb is premature. The use of multivariate analysis in the form of BDT can still

allow for the separation of the hidden signal.

We go a step further and add interpretability to the machine learning method by

appealing to a measure derived from game theory called the Shapley values. This facilitates

us in working with high-level kinematic variables, instead of momenta four-vectors, and

gives us insight into the hierarchy of importance of these kinematic variables. This, in

turn, allows us to narrow down and focus on those kinematic variables that are the most

important, providing a way of understanding the physics underlying the possibilities of

separating the y
2
b -driven contribution from the backgrounds.

In summary, this work provides the following innovations and insights:

• An irreducible background like Zh production can be tamed with multivariate meth-

ods that can be better understood with interpretable machine learning tools. Kine-

matic shapes are the key to distinguishing small signals that cut-based analyses mis-

erably fail at.

• Machine learning algorithms do not need to be black-boxes and certain nuances of

the distributions that they probe can be understood with metrics such as the Shapley

values.

• At the FCC-hh, the associated production of bb̄h stands to gain as its production

rate grows much faster than the Zh production rate and the dominant bb̄�� back-

ground with rising energies. This can be exploited to get a good measurement of the

magnitude and sign of yb from bb̄h production which can be comparable to that from

a h ! bb̄ measurements.

• Since constraint from h ! bb̄ is very stringent on the magnitude of b and gg ! h

can fix the phase, �b, in combination with h ! bb̄, probing bb̄h does not add to these

constraints significantly at HL-LHC (figure 8). While at the FCC-hh, bb̄h production

does not add much to the constraint on |b|, the constraint on �b can gain by about

– 26 –

Channel LO � (fb) NLO-k-fact 6 ab�1 [#evt] 2b-jets[%]

y
2
b 0.0648 1.5 583 7.7%

ybyt -0.00829 1.9 -95 4.0%

y
2
t 0.123 2.5 1,840 12%

Zh 0.0827 1.3 645 21%P
bb̄h 0.262 - 2,970 -

bb̄�� 12.9 1.5 116,000 14%

Table 2. SM cross-section for the main signal and background processes at 14TeV with 6 ab�1

data, and number of events after the basic cuts as defined in Eq. (2.4). For the bb̄h production, the
Higgs is decayed to a pair of photons.

For the “non-Higgs” background, there is the dominant irreducible QCD-QED back-

ground of bb̄��. There are also potential backgrounds from various fakes such as j��, jj��,

cj��, cc̄��, or bb̄j�. The rate of light jets faking a bottom or photon is at the percentage or

sub-percentage level, and makes the fake backgrounds mostly negligible after considering

the dominant bb̄�� background. Hence, we ignore these in this work.

The total cross-section at 14TeV of the various contributing channels after basic cuts

as defined in Eq. (2.4) is shown in table 2. We calculate the production and decay of the

signal in the four-flavor scheme at LO, following the results presented in Ref. [19] with

their public code for contributions proportional to y
2
b and ybyt. The interactions between

Higgs and gluon are treated as point-like e↵ective couplings ggh and gggh with massive

quark e↵ects included at one-loop defined as:

L � �
1

4
C1hG

a
µ⌫G

a,µ⌫
, (2.1)

C1 = �

X

Q=t,b

yQ

v
F


mQ

mh

�
↵S

3⇡
, (2.2)

where F [mQ/mh] is a function of the massive quark and Higgs mass ratio. The functions

are defined in detail in appendix B. Input parameters are set to be the same as in Ref. [20],

where sizable EW corrections are discussed and included to NLO level. Wherever applicable

for our LO parton level simulation, we set m
pole
b = 4.58 GeV, m

MS
b (mMS

b ) = 4.18 GeV,

mh = 125 GeV, mt = 173.34 GeV, mZ = 91.15348 GeV, �Z = 2.4946 GeV and GF =

1.16639 · 10�5 GeV�2. Bottom-quark Yukawa running e↵ects as function of the dynamical

renormalization scale are included. The central scale is chosen as HT /4 where HT is the

scalar sum of the transverse mass of the parton level bb̄h system.

As shown in table 2, the computation is first done at leading order (LO) and then an

overall k-factor is applied on the LO bb̄h cross-sections according to the di↵erent produc-

tion channels, based on the fixed order inclusive cross-section results provided in Ref. [19].

The k-factors are relatively flat over the kinematic distributions for the bb̄h final states. We

assume a further SM decay of the Higgs to di-photon and parton shower does not signif-

icantly a↵ect this simplification. The branching ratio for the decay of Higgs to di-photon

is further normalized as the Higgs cross-section working group recommended value [25].

– 6 –

𝒃(𝒃𝜸𝜸 
background

Traditional cut-based analysis cannot separate the 
different 𝑏,𝑏ℎ contributions – no 𝑦& sensitivity at HL-LHC

Signal to background ratio ~ 1:250
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building an interpretable framework

tagged b-jet in our selection. At the HL-LHC, with 6 ab�1 of data (ATLAS+CMS com-

bined), and summing up the contributions from the four types of bb̄h signals at LO, we get

a statistical significance of 6.8� on the total SM bb̄h signal, with the basic cuts as defined

in Eq. (2.4). Performing a mass window cut of 123 < m�� (GeV) < 127 around the Higgs

mass peak further increases the significance to about 10�. With this estimate, there is no

doubt that we should be able to see a clear bb̄h signal on top of the dominant QCD-QED

bb̄�� background at the HL-LHC.

The next goal is to evaluate the sensitivity to the contribution proportional to yb out of

the total signal, which is the primary motivation of looking at the bb̄h channel in this work.

We can gather from the number of events with 6 ab�1 given in table 2, the sensitivity to

the y
2
b -driven channel is only about 1.6� after basic cuts. We will try to see if this can be

improved by exploring the higher dimensional kinematic shapes using multivariate analysis.

The Zh, Z ! bb̄ channel has the distinct feature that the invariant mass of the two

b-jets can be reconstructed to the Z boson mass. However, given the basic cuts, only about

20% of Zh channel has both b-jets tagged in our simulation. The fraction of events having

two tagged b-jets is even smaller from other bb̄h channels, as shown in the last column of

table 2. Given the limited signal statistics, especially at the HL-LHC, we do not require

two tagged b-jets or stringent mass window cuts, to allow for more events from the y
2
b and

ybyt channels. Instead we stay as inclusive as possible with generous cuts, and resort to

kinematic shapes and multivariate analyses to further explore the variance in shapes of the

higher dimensional distributions amongst the di↵erent channels.

As discussed before, the y
2
b -driven channel could be overwhelmed by the other yb-

independent contributions such as Zh and those proportional to y
2
t . Despite the sizable

contribution from these other bb̄h channels, and the similarity between the 1D distributions

of the kinematic observables, the Zh channel can still be separated from the y
2
b channel with

relative ease given information from higher dimensional distributions. We will see a nice

separation from the multivariate analysis, and understand the physics ramifications brought

about from the higher dimensional kinematic distributions as well. The y
2
t contribution

is a bit harder to disentangle, and remains as the dominant background which reduces

sensitivity to yb. However, we will show systematic approaches to enhance sensitivity to

contribution proportional to y
2
b or ybyt while suppressing y

2
t and all other background

contamination.

After detector simulation and jet definition, we have, for most events, a final state of

two photon jets and at least one b-jet, where the two photons reconstruct back to a real

scalar Higgs mass for all the bb̄h channels. We first define and evaluate a comprehensive

set of kinematic observables as the following:

• p
b1
T , p

b2
T , p

�1
T , p

��
T ,

• ⌘bj1 , ⌘bj2 , ⌘�1 , ⌘�� ,

• nbjet, njet, �R
b�
min, ��

bb
min,

• m�� , mbb, mb1h, mbb̄h, HT .

– 9 –

Understanding differences in shapes

The choice of variables is important:

o Momenta four vectors are not easily 
interpretable

o Kinematic variables are interpretable 
but there is no clear “complete set”
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the devil is in the correlation

o Cut-based analyses start to falter with multivariate correlations – difficult to visualize and interpret

o Machine learning algorithms excel at multivariate analyses

o Machine learning algorithms are essentially black-boxes – not good for understanding the 
underlying dynamics



a cooperative game

L. S. Shapley, Notes on the n-Person Game-II: The Value of an n-Person Game (1951).

The most important player

The total payoff

The value of each player and each combination of 
players

The value of the player in each game

Marginalized values

36
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some useful properties of Shapley values

Dummy Player: A player that doesn’t contribute to any subset of players must receive zero attribution 

Efficiency: Attributions must add to the total gain

Symmetry: Symmetric players must receive equal attribution

Linearity: Attribution for the (weighted) sum of two games must be the same as the (weighted) sum of 
the attributions for each of the games 

For a game                      with a set      of players and a payoff   :  
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Shapley Additive exPlainers

Lloyd S. Shapley
Nobel Laureate 2012

S. M. Lundberg et al., From local explanations to global understanding with explainable AI for 

trees. Nature Machine Intelligence 2, 56–67 (2020)

Black-box model Interpretable  model

Local interpretation: event by event

https://www.nature.com/articles/s42256-019-0138-9
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cooperation in Physics

multivariate inherits correlations!

o Variables “cooperate” to bring the outcome

o Outcome can be a measurable quantity or a probability of being of a certain kind

o This covers both regression and classification

signal signal background background

background



the transition to interpretability

Interpretable Machine 
Learning

Interpretable 
variables

Interpretable 
models

Attribution of variable 
importance

Shapley values

40
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the interpretable framework

o The ML model gives a 60% improvement over a traditional statistical analyses

o The ML model is doing what it is supposed to do from the Shapley values: Trust in ML

QCD-QED 
Backgrounds

𝑏𝑏̅ℎ
backgrounds

Boosted Decision Trees
+

Signal Classification

Shapley values 
+ 

Physics Insights

Signal

Interpretable 
variables

Interpretable 
model

Variable 
importance for 

predicting output

Measurement of Yukawa couplings

Si
m

u
la

te
d

 D
at

a
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Shapley values tell us why the 5 channels can be separated although the kinematic distributions are very similar for 4 of them

Code: https://github.com/talismanbrandi/Interpretable-ML-bbh
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Summary

o Sorry, generative Large Language Models will not write your papers anytime soon.

o Machine learning is good for approximating underlying multivariate distributions and 
mapping them to downstream tasks like classification, regression, sample generation 
etc.

o What ML models you use depends completely on the data type and the task at hand. 
Sometimes, classical methods outperform deep learning.

o Several statistical analyses can be converted to statistical learning analyses by simply 
rethinking how we do the analyses.

o Interpretable Machine Learning can help us demystify the ML workflow converting a 
blackbox into an explainable model.

o This is just the tip of the tip of the iceberg. (no type here)

For a wide range of ML papers in HEP: https://iml-wg.github.io/HEPML-LivingReview  

https://iml-wg.github.io/HEPML-LivingReview


“Give me the liberty to know, to utter, and to argue freely according 
to [con]science, above all liberties.”

― John Milton, Areopagitica

Thank you!


