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Application of Machine Learning
to RNA Biology (genetics) for
developing therapeutics to slow
down or reverse terminal
diseases.

So that we can live long enough
to see the results from the
future colliders.
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There is no Artificial Intelligence, yet.



Examples of Intelligence




Example of Sporadic Intelligence




Only in movies and books

X2 4X + 5

=9

X-4x <0

n(BNC)=22
n(B) =68
n(C) =84
n(BUC) =n(B)+n(C)n(BNC)

He = 4.002602
Nag22.989769

log,x + log,y

log.x - log.y a(be) = (ablc
a+b=b+a
a(b+c) = ab+ac

126 =6xy
2x+2y=20




The rest is glorified regression,
a.k.a. Machine Learning.



Does Physics need
Machine Learning?

Warning: when you have only a hammer,
everything looks like a nail.



Thanks Tim!

The sea of BSM theories:

Supersymmetry

o None have been realized at a few TeV

o No signatures of BSM have been found with
either high energy or low energy
observables

o There clearly seems to be no naturalness
problem

o Nature does not mind and possibly
advocates a large mass gap between EW
and NP scales

o At the end of the day, regardless of what o L Higes
theories we conjure, data is the final judge Axionlke Paricls
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A roadmap for the future:

o We will have more data but incrementally better in terms of statistics (HL-LHC)

o We can have more data during the second half of the century but, really, do we have
the patience or lifespan to wait?

o How do we make better use of data?
o How do we make better use of advanced statistical methods?

o Machine Learning (ML) is the bleeding edge of statistical learning algorithms. Can we
leverage it effectively?

Is Machine Learning the new math that we need to find new physics

11



What is Machine
Learning?

and can it be useful in understanding the laws
of nature?
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Some History: 1950 - 1960

If all the knowledge of the world could be converted to rules/laws
then, a computer can answer any question!

Sounds familiar?
hint: The Theory of Everything
Instead, lets call it the Rulebook of Everything or Artificial Intelligence

Turned out to be impossible: We are children collecting seashells when the vast ocean of
knowledge lies before us unexplored

solution: learn from observations, the advent of data-driven statistical learning

13



Turing's requirement from an intelligent machine:
o Natural Language Processing: communicate in a human language
o Knowledge Representation: to store information it is exposed to

o Automated Reasoning: to use the stored information to answer questions or to draw
new conclusions

o Machine Learning: to adopt to new circumstances and to detect and extrapolate
patterns

Beyond Turing:
o Computer Vision: to perceive objects
o Robotics: to manipulate objects and move about

statistical learning has far outperformed rule-based algorithms in all these areas
Question: How many of these are useful in the kind of Physics we do?

Physics Goal: extract and process the underlying patterns in data to discover the laws of
Nature 14



Question: How many of these are useful in the kind of Physics we do?

Turing's requirement from an intelligent machine:
o Natural Language Processing: sequence analysis, has not found a lot of applications

o Knowledge Representation: lower dimensional embedding, not often used
o Automated Reasoning: we wish!

o Machine Learning: has become the backbone of experimental analyses. A lot of it can
be applied to phenomenology and theory

Beyond Turing:
o Computer Vision: has found wide-spread application in experimental analyses
o Robotics: no, we still need to do our own jobs

Physics Goal: extract and process the underlying patterns in data to discover the laws of
Nature

15



Historically, classification and

clustering have been used extensively

INn the analysis of experimental data

Classical methods are computationally
less demanding and have contributed

to almost all experimental discoveries
INn the past couple of decades

They are limited in their ability to map
underlying patterns and quite limited
in address several data types like

Images, sequences, non-Euclidean
data, etc.

CLASSICAL

Data is pre-categorized
or numerical

SUPERVISED

Predict
a number

Predict
a category

CLASSIFICATION

«Divide the socks by color»

@ @
J

«l

REGRESSION

«Divide the ties by length»

MACHINE LEARNING

wnot labeled
in any way
UNSUPERVISED

|dentify Sequences

Divide
by similarity

CLUSTERING

«Split up similar clothing
into Stacks»

Find hidden
dependencies

ASSOCI|ATION

«Find What clothes | often
wear togethery»

.

Tim= v

DIMENSION
REDUCTION
(generalization)

«Make the best outfits from the given clothes»

Decision trees turned out to
be very useful for experimental
analyses 16



The times they are a-changing

We are now in the age of the universal
function approximators (Deep Learning)

and ensemble learning
2000

1000

<+«— 2012

2003 source: inspireHEP 2023

What happened in 20127
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Machine
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The times they are a-changing

We are now in the age of the universal
function approximators (Deep Learning)

and ensemble learning

<+«— 2012

2003

2012
o Higgs discovered

source: inspireHEP
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1000

2023
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o Deep learning emerged as the leading statistical learning method
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GradientBoost  CatBoost  LightGBM
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The times they are a-changing

We are now in the age of the universal
function approximators (Deep Learning)
and ensemble learning

2000
1000

o

o

N

1 0

2003 source: inspireHEP 2023
2012

o Higgs discovered

LSMm

Radial Basis Function
Neural Networks (RBFNN)

Generative Adversarial
Networks (GANS)

LSTM GRU

Modular Neural
Networks
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Networks (RNN)
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o Deep learning emerged as the leading statistical learning method

o | completed my PhD degree.

AdaBoost Boosting XGBoost

GradientBoost  CatBoost  LightGBM
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So why did it take so long?

o Our labeled datasets were thousands of times too small.
o Our computers were millions of times too slow.
o We initialized the weights in a stupid way.

o We used the wrong type of non-linearity.

guoted from some of the giants of ML

Deep Learning =

Lots of training data + Parallel Computation + Scalable, smart algorithms

This summarizes what you need to build an analysis based on neural networks
otherwise, use classical machine learning (like tree-based learners or clustering)

21



Can we do Physics with Machine Learning?

o Our labeled datasets were thousands of times too small.

— There are lots of data both experimental and synthetic (from simulations)
— There are methods that are not data hungry, but we rarely need them

o Our computers were millions of times too slow.

— Not anymore (but one needs to be not terrified of coding)

— Not all ML methods need large GPUs. A |ot can be done on a laptop

o We initialized the weights in a stupid way.

— Neural networks still depend on point estimation of the parameters and have a
very large number of degenerate minima
— Neural networks also require a lot of tuning where all you can do is “hit and trial”

o We used the wrong type of non-linearity.

— This boils down to a choice of the basis function; something very familiar in physics
— Neural networks are nothing but nested functions whose coefficients (parameters)
need to be estimated using likelihood minimization

22



Anomaly detection
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Two examples of
Machine Learning

Introducing high-precision regressors and
Interpretable machine learning

24



High Precision Regressors for Monte Carlo Generators

Reducing the energy footprint of simulations for science

| do not think you can start with anything precise. You have to achieve such precision

as you can, as you go along.
— Bertrand Russell

@":x}g'@ Based on:

o F. Bishara, A. Paul, J. Dy, High-Precision Regressors for Particle Physics. Paper submitted to Nature
swpsfld  Scientific Reports for peer-review.
824

@- =“Lmd® [ Bishara, A. Paul, J. Dy, Skip Connections for High Precision Regressors. Machine Learning and the
Physical Sciences, Workshop at the 361" Conference on Neural Information Processing Systems
(NeurlPS 2022).
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Can we speed up Monte Carlo event generators?

o Monte Carlo simulations of physics processes at particle colliders like the Large Hadron
Collider at CERN take up a major fraction of the computational budget.

o Asingle data point can take seconds, minutes, or even hours to compute from first principles.

o 10° — 102 data points are necessary per simulation; machine learning regressors can replace
physics simulators to significantly reduce this computational burden.

o High-precision regressors are required that can deliver data with relative errors of less than
1% or even 0.1% over the entire domain of the function.

o Goal: Significantly reduce the training and storage burden of Monte Carlo simulations at
current and future collider experiments.
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Talk by Alexander Huss on May 16th

MAIN CHALLENGES @ NNLO

2 ST
o~ | do | =
cross section ~  phase space QOO,S S5
scattering amplitude

3.
5 2
o3& i loop | lexity of ified b
£ & | @ amplitudes & multi-loop integrals complexity often quantified by
S = the multiplicity (“#legs”): 2 —» n
22 rapid growth in complexity with number of scales
:'C—'_ o «v» kinematic invariants & particle masses (int./ext.)
=2 . : L .
§ & @ infrared subtractions « realistic setup (arbitrary cuts, observables, ...)

extract IR singularities in d® without performing the integration

«v» more difficult with more coloured legs (simpler if massive)
13
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building surrogate regressors

F(z) = foo(®) + & for(z) + o” (@) + for(@)} + ...

Y
Needs a surrogate regressor since it is very slow to compute from first principles

o Train boosted decision trees (BDT), Deep Neural Networks (DNN) and
Deep Neural Networks with skip connections (sk-DNN) with simulated
data from particle physics.

o We use 2-, 4-, and 8-dimensional (D) data to compare BDTs, DNN and sk-
DNNs with the aim of reaching =

L Dense, Leaky ReLU activation

v

L Dense, Leaky ReLU activation

|

‘ Dense, Linear activation

o Aim:errors < 1% — 0.1% over at least 90% of the input feature space.

o Architectural decisions, training strategies and data volume.

A lot of generative models have been proposed but
struggle to achieve even ~10% errors even with lower
dimension kinematic space



4 distribution for 2D DNN regressors

4 distribution for 2D sk-DNN regressors

4 distribution for 2D BDT regressors

2D
DNN

baseline (8-56)
[ 856 (22,569)
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results

error quantification:

S =

_ f(x)predicted - f(x)true

fX) true

The precision was achieved using:

O

Symmetry properties of the
physics process

Exponential cooling of learning
rate

Physics informed normalization
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summary
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10-2 o BDTsoutperform DNNs at lower dimensions.

Fully-connected DNNs perform better at higher
dimensions.

o Ssk-DNNs outperforms both BDTs and DNNs at

4D and 8D.

o sk-DNNs can outperforrm DNNs with a larger
number of parameters.

o The regressors can provide precise predictions
in 103 — 10°° seconds << few seconds taken by

MC simulation.

Code: https//github.com/talismanbrandi/nigh-precision-m! 30



INnterpretable Machine Learning for Higgs Signals
Enhancing the power of particle collider searches

If you can't explain it simply, you don't understand it well enough.
— Albert Einstein

Based on:
C. Grojean, A. Paul, and Z. Qian, Resurrecting bbh with kinematic shapes. JHEPO4 (2021) 139. DOI:

10.1007/JHEPO4(2021)139

Related to: @F}’?ﬁiq
C. Grojean, A. Paul, and Z. Qian, |. Strumke, Lessons on interpretable machine learning from particle E%i—k i
physics. Nature Review Physics 4, 284-286 (2022). DOI: 10.1038/s42254-022-00456-0 “@} R

G!,:;#,i:"gi@ L. Alasfar, R. Grober, C. Grojean, A. Paul, and Z. Qian, Machine learning the trilinear and light-quark
‘a;kgﬁgg*éﬁ Yukawa couplings from Higgs pair kinematic shapes. JHEPT (2022) 045. DOI:

e i

®§m;’*:,,:§§ 10.1007/JHEP11(2022)045
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QUARKS

LEPTONS

Higgs couplings and bbh with h = yy

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
| 1l 1l
. | —
=2.2 MeV/c? ) =1.28 GeV/c? ) =173.1 GeV/c* ) 0 =124.97 GeV/c?
% % % 0 0
‘0|9 'O ([O® |- d
up charm top gluon higgs
=4.7 MeV/c? ) =96 MeV/c* ) =4.18 GeV/c* ) 0
% % % y 0
‘@ O |[FO® |f
down strange bottom photon /
) "
~0.511 MeV/c? =105.66 MeV/c? =1.7768 GeV/c? =91.19 GeVic? )
-1 =1 A 0
@ |® '@ || @ |3
(@)
electron muon tau Z boson 8 2
e [e]
- =4 R mao
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0 . 0 ] +1 W
O
- O (D [® [ ® |S:
28
electron muon tau (8]
. neutrino l neutrino neutrino W boson {Dg

SCALAR BOSONS

Decays of a 125 GeV Standard-Model Higgs boson

charm/anti-charm,' 27 OVZV% 0242-\; others
3 2%
tau/antitau > 1398 22 0.6%

6% ; i

2 gluons
9%

|

This is what we are looking for.

It took 40 years to find the Higgs.
So, measuring one of its decay modes precisely is
a very challenging task!
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tiny signals embedded in multiple large backgrounds

YbYt

bbh

bbyy

Traditional cut-based analysis cannot separate the

different bbh contributions — no y,, sensitivity at HL-LHC

signals

Channel | LO o (fb) | NLO-k-fact | qa—ll | | 2b-jets[%)]

Y2 0.0648 1.5

Yot -0.00829 1.9

y? 0.123 2.5 [

Zh 0.0827 1.3 K
> bbh 0.262 - A }

bbyy 12.9 1.5 / |

/ N
bbh bbyy
background background

Signal to background ratio ~ 1:250
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building an interpretable framework

Understanding differences in shapes 140 Oy 120 (=
120 Yyt Yol
Oy 100 1 Oy
— 100 azn — 3 zh
> bhyy/100 | Lo 801 bbyy/100
° b1 b 71 Y 3 80 ]
pTapTapT7pT7 ~ — 609
£ 60 =
N § 404
Z 40 =
d 77bj17 77bj27 77’717 77’7’77 = " T 204
o Njets Njer, ARV, Al : "
bjety, Ttjet, min? min? , : —20
110 120 130 140 200 400 600 800 1000
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® MMy, Mpp, My ks Mgy, HT- — o - —
b b 200 Yy
200 4 Yol 120 4 Yyt Ybyt
Oy Oy Oy
. . .. 100 4 _
The choice of variables is important: 190 Do ol T Do | 2 A
© o 804 v
. g
o Momenta four vectors are not easily _%1004 = =100
interpretable § g £
Z 40 =
. . . . = ) 3 5
o Kinematic variables are interpretable B 20 =
but there is no clear “complete set” .
] N .
50 100 150 200 250 300 G 100 200 300 400 500 250 500 750 1000 1250
Py [GeV] »7 [GeV] iy, [GeV]
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the devil is in the correlation

HT [GeV]

50 i 50 é 50 i 50
0 S . - . S . . ; g . - :
10007 4507
800 120 yb 9504 o 3504 v
100 200 300
6004 = _ .
4001 £ 60 59[?150— &2
100 1 150
40
2004 1004
20 507 50
0 T T T T 0 T 0 T T T T 0 T T T T
0 200 400 600 0 50 0 0 250 0 200 400 600 0 100 0 400 600 0 50
My [GeV] dN/dHy [GeV~] My, [GeV] AN /dmy, [GeV—1] My, [Ge\/] dN/dp}} [GeV~!] M, [GeV] dN/dp} [GeV~Y]
o Cut-based analyses start to falter with multivariate correlations — difficult to visualize and interpret
o Machine learning algorithms excel at multivariate analyses
o Machine learning algorithms are essentially black-boxes — not good for understanding the

underlying dynamics
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a cooperative game

The value of each player and each combination of The value of the player in each game

$0

players

$7

Marginalized values

$15

N
ik
%FE \

a2}
] N

L S. Shapley, Notes on the n-Person Game-Il: The Value of an n-Person Game (1951). 36



some useful properties of Shapley values

Foragame G = (K,v) with a set K of players and a payoff v:

Dummy Player: A player that doesn’t contribute to any subset of players must receive zero attribution

$r(v) = 0.

Efficiency: Attributions must add to the total gain

D) = v (K).

ke

Symmetry: Symmmetric players must receive equal attribution

VAU =v( AU = ¢(v) = ¢i(v).

Linearity: Attribution for the (weighted) sum of two games must be the same as the (weighted) sum of
the attributions for each of the games

O (v + 0) = ¢ (v) + dp(w) Vkelk.
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Shapley Additive exPlainers

Black-box model Interpretable model

Output=0.4 Output =04
T
Age =65 —| +04 <— Age =65
Sex =F —| Q. _
Explanation — Sex=F
BP =180 —| — BP =180
= — BMI=40 Lloyd S. Shapley
T .
Base rate = 0.1 Base rate = 0.1 Nobel Laureate 2012

Local interpretation: event by event

S. M. Lundberg et al, From local explanations to global understanding with explainable Al for
trees. Nature Machine Intelligence 2, 56-67 (2020) 38



https://www.nature.com/articles/s42256-019-0138-9

cooperation in Physics

background background

02<|pl <04 MWo04<|p<06 Mo6<|p<08 [M08<|p|<10

== - — +p
multivariate inherits correlations!

o Variables “cooperate” to bring the outcome

o Outcome can be a measurable quantity or a probability of being of a certain kind
o This covers both regression and classification
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the transition to interpretability

INPUT BLACK BOX

THE BLACK BOX IS AN ALGORITHIM
THAT TAKES DATA AND TURNS IT INTO
SOMETHING. THE ISSUE IS THAT
BLACK BOXES OFTEN FIND PATTERNS

WITHOUT BEING ABLE TO EXPAIN
THEIR METHODOLOGY.
</21%//> </82%//>
{‘OBJECTTEXT' | {OBJECTTEXT'
—_—
[LAST\\\> [HEAD()] UUTPUT

}

Attribution of variable
importance

Interpretable
variables

Shapley values

Interpretable

Models Grey
Area

More

Explainable
Models

Interpretable

Decision Linear Random
Trees Regression Forest
Logistic
Regression

| |
Neural Convolutional
Neural
Network

Network

Less
Interpretable

Interpretable Machine
Learning

Interpretable
models
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Simulated Data

the interpretable framework

YvYt

Interpretable
variables

QCD-QED
Backgrounds

Shapley values
+

Physics Insights

Boosted Decision Trees
+

Signal Classification

I I
I
I
I N Variable
[ importance for
| N predicting output
| B
| -y
i Yoyt
[ ) | -y
[ | | . )
my, | bbyy
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o The ML model gives a 60% improvement over a traditional statistical analyses

o The ML model is doing what it is supposed to do from the Shapley values: Trust in ML
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Shapley values tell us why the 5 channels can be separated although the kinematic distributions are very similar for 4 of them

12 variable machine learning assisted analysis for classifying 5 particle-production channels
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Code: https//github.com/talismanbrandi/Interpretable-ML-bbh 42



Summary

o Sorry, generative Large Language Models will not write your papers anytime soon.

o Machine learning is good for approximating underlying multivariate distributions and
mMapping them to downstream tasks like classification, regression, sample generation
etc.

o What ML models you use depends completely on the data type and the task at hand.
Sometimes, classical methods outperform deep learning.

o Several statistical analyses can be converted to statistical learning analyses by simply
rethinking how we do the analyses.

o Interpretable Machine Learning can help us demystify the ML workflow converting a
plackbox into an explainable model.

o This s just the tip of the tip of the iceberg. (no type here)

For a wide range of ML papers in HEP: https//iml-wg.github.io/HEPML -LivingReview
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https://iml-wg.github.io/HEPML-LivingReview

‘Give me the liberty to know, to utter, and to argue freely according
to [con]science, above all liberties.”

— John Milton, Areopagitica

Thank you!



