Long-range correlations in low-multiplicity pp collisions at $\sqrt{s} = 13 \,\mathrm{TeV}$ with ALICE

Jasper Parkkila (CERN) for the ALICE Collaboration

Recontres de Blois 16 May 2023

Introduction

Collectivity in large systems and hydrodynamic description

- Strong collectivity observed in heavy-ion collisions
- Collective motion a result of initial-state geometry and the fluid pressure gradients
- Well described by hydrodynamics

16.5.2023

Collectivity in small systems

 Collectivity manifests in the form of long-range correlations, i.e. the ridge structure in two-particle correlation measurements

• pp, p–Pb: Non-zero long-range correlation at $\sim 1.4 < |\Delta \eta|$ (double-ridge $\langle \cos(2\Delta \varphi) \rangle \rightarrow$ collectivity signal) • Long-range correlation emerges during the early stages. Pb–Pb: medium response to init. cond., pp: unclear • Several theoretical approaches with/without medium: IC+hydro¹, hybrid corona², string interaction models³ ¹PRD 96 (2017) 9 ²PRC 92 (2015) 3 ³ PLB 779 (2018)

Introduction

Interpretation by comparison to e^+e^-

Jasper Parkkila

16.5.2023

4/12

Analysis details and selection criteria

The ALICE detector in Run 2.

Events and detectors:

- pp $\sqrt{s} = 13 \, {
 m TeV}$ recorded in 2017
- 558 million MB events
- TPC+ITS for tracking

Charged tracks and multiplicity:

- Multiplicity estimation: accepted tracks in $|\eta| < 1.0$, $p_{\rm T} > 0.2 \, {\rm GeV}/c$
- Trigger and associated particles* $1.0 < p_{\rm T} < 2.0 \, {\rm GeV}/c, \ |\eta| < 1.0$
- "Long-range" definition $1.4 < |\Delta \eta| < 1.8$

*In a two-particle correlation particle 1 "trigger" and particle 2 "associated".

Introduction

Analysis strategy for associated yield

Analysis details

Long-range $\Delta \varphi$ -correlations in low multiplicity

Find the ZYAM^{*} and $|\Delta \varphi_{\min}|$ by fitting $F(\Delta \varphi) = A(1 + 2\sum_{n=1}^{3} v_n^{2,\text{cent}} \cos(n\Delta \varphi)) + C_{\text{ZYAM}}$ to the signal.

- ullet Measured in $1.4 < |\Delta\eta| < 1.8$ to suppress short-range nonflow correlations
- $p_{
 m T} > 1.0 \, {
 m GeV}/c$ (trig and assoc) to avoid near-side jet broadening into $|\Delta \eta| > 1.4$ *_{Zero-Yield-At-Minimum}

Jasper Parkkila

ALTOP

Results

Ridge yield: precision measurement down to very low multiplicity in pp

- Non-zero yield even in very low multiplicity collisions
- The lowest bins are presented as 95% confidence limit
- Combined stat+syst uncertainty obtained using a bootstrapping method

Tracking mode

Results

Ridge yield: comparison with CMS results, PRL 116, 172302 (2016)

Jasper Parkkila

9/12

Conversion of ALEPH multiplicity

- Exp AL
- Multiplicity defined by accepted particles within $|\eta| < 1.0, \ p_{\rm T} > 0.2 \, {\rm GeV}/c$
- Conversion between different systems and experiments is done using PYTHIA
- ALEPH e⁺e⁻ multiplicity cannot be directly converted to ALICE pp: evaluate limits in terms of both systems

Method	Experiment	Corr. factor
PYTHIA	ALEPH pp 13 TeV	0.57
	ALEPH e^+e^- 91 GeV	0.78
Flat $\mathrm{d} \textit{N}/\mathrm{d} \eta$	ALEPH	0.63

Experiment	$ \eta_{max} $	$p_{\mathrm{T,min}}$	\sqrt{s}
ALICE pp	1.0	0.2	13 TeV
ALEPH e^+e^-	1.738	0.2	91 GeV

Results

Ridge yield: comparison to ALEPH archived data $\mathrm{e^+e^-}$, PRL 123, 212002 (2019)

- pp collision exhibits larger yield $Y_{\rm ridge}^{\rm pp} \gtrsim Y_{\rm ridge}^{\rm e^+e^-}$ within $\langle N_{\rm ch} \rangle = 10 \sim 20$ $(\gtrsim 3.2\sigma)$
- A comparison to e⁺e⁻ can provide insight to what processes might or do not contribute to the yield
- A reference point-like collision can also help understand the magnitude of initial stage effects

11/12

Summary

- Precise measurement of near-side ridge yield in 13 TeV pp collisions down to very low multiplicity
- Compatible with earlier CMS results (and significantly smaller uncertainties)
- ullet pp $Y^{\rm ridge}$ larger than ${\rm e^+e^-}$ by $\gtrsim 3.2\sigma$ in $\langle \textit{N}\rangle = 10\sim 20$
- $\bullet\,$ First quantitative comparison between the near-side yield of e^+e^- and pp collisions
- Identify the underlying mechanisms responsible for the emergence of near-side yield in pp

The findings can be used to constrain the origin of collective effects in small hadronic system collisions.

Thank you!

Jasper Parkkila

• Two-particle correlation function between trigger and associated particles ($p_{T,trig} > p_{T,assoc}$).

$$rac{1}{N_{
m trig}{}^{*}(z)}rac{d^{2}N_{
m pair}}{d\Delta\eta\Deltaarphi}(\Delta\eta,\Deltaarphi,z)=N_{
m pair}^{*,{
m mixed}}(0,0,z)rac{N_{
m pair}^{*,{
m same}}(\Delta\eta,\Deltaarphi,z)}{N_{
m pair}^{*,{
m mixed}}(\Delta\eta,\Deltaarphi,z)},
onumber \ rac{1}{N_{
m trig}}rac{d^{2}N_{
m pair}}{d\Delta\eta\Deltaarphi}=\sum_{z}\ldots$$

• Per-trigger yield. Measure over region $1.4 < |\Delta \eta| < 1.8$ at $p_T > 1$, GeV/c i.e. outside the jet contributions:

$$Y(\Delta arphi) = rac{1}{N_{
m trig}} rac{{
m d}N_{
m pair}}{{
m d}\Delta arphi} = \int_{1.4 < |\Delta \eta| < 1.8} \left(rac{1}{N_{
m trig}} rac{{
m d}^2 N_{
m pair}}{{
m d}\Delta \eta {
m d}\Delta arphi}
ight) rac{1}{\delta_{\Delta \eta}} {
m d}\Delta \eta - C_{
m ZYAM}.$$

• Ridge-yield, obtained by integrating the near-side peak (main observable in this analysis):

$$Y^{\rm ridge} = \int_{|\Delta \varphi| < |\Delta \varphi_{\rm min}|} \frac{1}{N_{\rm trig}} \frac{{\rm d}N_{\rm pair}}{{\rm d}\Delta \varphi} {\rm d}\Delta \varphi$$

