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Introduction

Collectivity in large systems and hydrodynamic description
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Introduction

Collectivity in small systems

Collectivity manifests in the form of long-range correlations, i.e. the ridge structure in two-particle
correlation measurements
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pp, p–Pb: Non-zero long-range correlation at ∼ 1.4 < |∆η| (double-ridge ⟨cos(2∆φ)⟩ → collectivity signal)

Long-range correlation emerges during the early stages. Pb–Pb: medium response to init. cond., pp: unclear

Several theoretical approaches with/without medium: IC+hydro1, hybrid corona2, string interaction models3
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Introduction

Interpretation by comparison to e+e−

Non-trivial interpretation of pp results due to intricate structure.

Study the simpler processes involved in e+e− annihilations
(point-like collision: no uncertainties on initial geometry or
parton distribution function description)

e+e− do not exhibit yield within the given confidence levels
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∫
|∆φmin|

d∆φ

Would we get similarly small values in pp as in e+e− or are the two systems intrinsically different?
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Introduction

Analysis details and selection criteria

ITS

TPC

The ALICE detector in Run 2.

Events and detectors:

pp
√
s = 13TeV recorded in 2017

558 million MB events

TPC+ITS for tracking

Charged tracks and multiplicity:

Multiplicity estimation: accepted
tracks in |η| < 1.0, pT > 0.2GeV/c

Trigger and associated particles∗

1.0 < pT < 2.0GeV/c, |η| < 1.0

“Long-range” definition
1.4 < |∆η| < 1.8

∗In a two-particle correlation particle 1 “trigger” and

particle 2 “associated”.
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Introduction

Analysis strategy for associated yield

Two-particle correlation function between trigger and associated particles (pT,trig > pT,assoc):

1

Ntrig
∗
d2Npair

d∆η∆φ
(∆η,∆φ) = N∗,mixed

pair (0, 0)
N∗,same

pair (∆η,∆φ)

N∗,mixed
pair (∆η,∆φ)

,

Heavy-ion example

same:
correlations of
particles from

same event

mixed:
correlations of
particles from
different events
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Analysis details

Long-range ∆φ-correlations in low multiplicity

Near-side ridge clearly visible in high-multiplicity events.
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ALICE Preliminary
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Fourier fit

-region

∫ (
1

Ntrig

d2Npair

d∆ηd∆φ

)
1

δ∆η
d∆η − CZYAM

2

Find the ZYAM∗ and |∆φmin| by fitting F (∆φ) = A(1 + 2
∑3

n=1 v
2,cent
n cos(n∆φ)) + CZYAM to the signal.

Measured in 1.4 < |∆η| < 1.8 to suppress short-range nonflow correlations
pT > 1.0GeV/c (trig and assoc) to avoid near-side jet broadening into |∆η| > 1.4 ∗Zero-Yield-At-Minimum
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Results

Ridge yield: precision measurement down to very low multiplicity in pp
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ALICE 95% C.L.

Non-zero yield even in very low
multiplicity collisions

The lowest bins are presented as 95%
confidence limit

Combined stat+syst uncertainty
obtained using a bootstrapping method

|zvtx| < 8 → 10 cm
1.4 → 1.5 < |∆η| < 1.8
Long-range wing bias
Integration range
Tracking mode

“Low mult.”
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Results

Ridge yield: comparison with CMS results, PRL 116, 172302 (2016)
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PRL 116, 172302 (2016)

JHEP 09, 091 (2010) 7 TeV

ALICE
CMS 2 < | | < 4
CMS 2 < | | < 4 

95% C.L.
67% C.L.
67% C.L. 

Conversion of CMS multiplicity to
ALICE using PYTHIA
(factor = 0.59× 1.15)

pT,min → 0.0GeV/c
|ηmax| → 4.0
CMS efficiency

CMS data points in agreement

Improved uncertainty in the low
multiplicity region: towards quantitative
constraints!
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Results

Conversion of ALEPH multiplicity

Multiplicity defined by accepted particles within
|η| < 1.0, pT > 0.2GeV/c

Conversion between different systems and
experiments is done using PYTHIA

ALEPH e+e− multiplicity cannot be directly
converted to ALICE pp: evaluate limits in terms of
both systems

Method Experiment Corr. factor

PYTHIA
ALEPH pp 13 TeV 0.57
ALEPH e+e− 91 GeV 0.78

Flat dN/dη ALEPH 0.63

Experiment |ηmax| pT,min
√
s

ALICE pp 1.0 0.2 13 TeV
ALEPH e+e− 1.738 0.2 91 GeV

0.0

0.2

0.4

0.6

0.8

1.0

1/
N

ev
t

dN
ch

/d

2 1 0 1 2

PYTHIA MONASH
pp 13 TeV
e+e  91 GeV
This analysis
ALEPH region
CMS region

Jasper Parkkila Long-range correlations in pp collisions 16.5.2023 10 / 12



Results

Ridge yield: comparison to ALEPH archived data e+e−, PRL 123, 212002 (2019)
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ALICE
ALEPH thrust
e+e  91 GeV

95% C.L.

95% C.L. 

pp mult. limit e+e− mult. limit

pp collision exhibits larger yield

Y pp
ridge ≳ Y e+e−

ridge within ⟨Nch⟩ = 10 ∼ 20
(≳ 3.2σ)

A comparison to e+e− can provide
insight to what processes might or do
not contribute to the yield

A reference point-like collision can also
help understand the magnitude of initial
stage effects
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Summary

Summary

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Y r
id

ge

0 8 16 24 32 40 48
NpT > 0.2 GeV/c, | | < 1.0

ch

ALICE Preliminary
pp s = 13 TeV

1 < pT, trig/assoc < 2 GeV/c
1.4 < | | < 1.8

PRL 123, 212002 (2019)

ALICE
ALEPH thrust
e+e  91 GeV

95% C.L.
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Precise measurement of near-side ridge yield in 13 TeV pp
collisions down to very low multiplicity

Compatible with earlier CMS results (and significantly smaller
uncertainties)

pp Y ridge larger than e+e− by ≳ 3.2σ in ⟨N⟩ = 10 ∼ 20

First quantitative comparison between the near-side yield
of e+e− and pp collisions

Identify the underlying mechanisms responsible for the
emergence of near-side yield in pp

The findings can be used to constrain the origin of collective effects in small hadronic system collisions.
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Summary

Backup

Thank you!
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Backup

Analysis strategy for associated yield

Two-particle correlation function between trigger and associated particles (pT,trig > pT,assoc).

1

Ntrig
∗(z)

d2Npair
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N∗,same
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N∗,mixed
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,
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∑
z

. . .

Per-trigger yield. Measure over region 1.4 < |∆η| < 1.8 at pT > 1,GeV/c i.e. outside the jet contributions:

Y (∆φ) =
1

Ntrig

dNpair

d∆φ
=

∫
1.4<|∆η|<1.8

(
1

Ntrig

d2Npair
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)
1

δ∆η
d∆η − CZYAM.

Ridge-yield, obtained by integrating the near-side peak (main observable in this analysis):

Y ridge =

∫
|∆φ|<|∆φmin|

1

Ntrig

dNpair

d∆φ
d∆φ
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