

Recent results on J/ ψ photoproduction in UPCs with ALICE

Tomáš Herman for the ALICE Collaboration

Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering

> 34th Rencontres de Blois May 14-19, 2023 Blois, France

Introduction

Proton structure

• Active search for **saturation** at **low** *x*!

New measurements are needed

2000 ത്ത്ത g0000000

Y = In 1/x

• Onset of saturation is expected to depend on the atomic mass number

Saturation may contribute to nuclear shadowing!

Ultra-peripheral collisions

• Hadronic interactions are suppressed

Photon-induced reactions

can be measured at the LHC!

- Photon-induced reactions also contribute at b < 2R:
 - J/ ψ excess at very low $p_{\rm T}$ ALICE^[1,3]
 - Dielectron excess at very low $p_{\rm T}$ ALICE^[2]

[1] ALICE: Phys. Rev. Lett. 116 (2016) 222301, [2] ALICE: CERN-EP-2022-068 , [3] ALICE: CERN-EP-2022-071

Tomáš Herman

Blois 2023 7

Photoproduction $p_{\rm T}$ signature

- Photon interacts with the **whole nucleus**: $p_T \approx 60 \text{ MeV}/c \sim 1/R_{Pb}$
 - Coherent (Pb-Pb) Target ion stays intact

Photoproduction $p_{\rm T}$ signature

- Photon interacts with the **whole nucleus**: $p_T \approx 60 \text{ MeV}/c \approx 1/R_{Pb}$
 - **Coherent** (Pb-Pb) Target ion stays intact

- Photon interacts with single nucleon: $p_{\rm T} \approx 300 \text{ MeV/}c \simeq 1/R_{\rm N}$
 - Incoherent (Pb-Pb) Target ion breaks, nucleon stays intact
 - Exclusive (p-Pb) Target proton stays intact

Tomáš Herman

Recent results on J/ψ photoproduction in UPCs with ALICE

 \bigcirc

Photoproduction $p_{\rm T}$ signature

- Photon interacts with the **whole nucleus**: $p_T \approx 60 \text{ MeV/}c \sim 1/R_{Pb}$
 - **Coherent** (Pb-Pb) Target ion stays intact

- Photon interacts with single nucleon: $p_{\rm T} \approx 300 \text{ MeV/}c \simeq 1/R_{\rm N}$
 - Incoherent (Pb-Pb) Target ion breaks, nucleon stays intact
 - Exclusive (p-Pb) Target proton stays intact

- Photon interacts with single nucleon and excites it: $p_{T} \approx 1 \text{ GeV}/c$
 - **Dissociative** (p-Pb) Target proton breaks
 - Dissociative (Pb-Pb) Target nucleon breaks as well as the ion

•

Dissociative

 \bigcirc

Recent results on J/ψ photoproduction in UPCs with ALICE

Photoproduction kinematics

- LHC is a Light-Hadron Collider at the highest available energies
- Many photoproduction processes can be studied in ALICE \longrightarrow Vector meson production

13

Blois 2023

Recent results on J/ψ photoproduction in UPCs with ALICE

Blois 2023

Photoproduction kinematics

- LHC is a Light-Hadron Collider at the highest available energies
- Many photoproduction processes can be studied in ALICE

 Vector meson production
- Bjorken-*x* evolution of the parton distribution Xe, Pb Xe, Pb $\longrightarrow \qquad x = \frac{M_{\rm VM}}{\sqrt{s_{\rm NN}}} e^{\pm y}$ n $-\rho^0, J/\psi, \psi'(y, p_T^2)$ Centre-of-mass energy of the photon-target system $W^2_{\gamma p, Xe, Pb}$ $\longrightarrow W^2_{\gamma p, Xe, Pb} = 2E_{p, Xe, Pb}M_{VM}e^{\mp y}$ p, Xe, Pb p, Xe, Pb

Many photoproduction processes can be studied in ALICE Vector meson production • Bjorken-*x* evolution of the parton distribution Xe, Pb Xe, Pb $\longrightarrow \qquad x = \frac{M_{\rm VM}}{\sqrt{s_{\rm NN}}} e^{\pm y}$ $-\rho^0, J/\psi, \psi'(y, p_T^2)$ $W^2_{\gamma p, Xe, Pb}$ $\longrightarrow W^2_{\gamma p, Xe, Pb} = 2E_{p, Xe, Pb}M_{VM}e^{\mp y}$ p, Xe, Pb p, Xe, Pb to the |t| (~ p_T^2) dependence Tomáš Herman Recent results on J/ψ photoproduction in UPCs with ALICE **Blois 2023**

Photoproduction kinematics

- LHC is a Light-Hadron Collider at the highest available energies

Centre-of-mass energy of the photon-target system

Transverse-plane distribution of the partons

ALICE detector in Run 2

Recent results on J/ψ photoproduction in UPCs with ALICE

Blois 2023

ALICE

Recent results on J/ψ photoproduction in UPCs with ALICE

Blois 2023

Results

Energy dependence

PREVIOUSLY ON ALICE - Coherent J/ ψ : y - dependence

Recent results on J/ψ photoproduction in UPCs with ALICE

PREVIOUSLY ON ALICE - Coherent J/ ψ : y - dependence

Blois 2023

Blois 2023

Tomáš Herman

Blois 2023

Tomáš Herman

Blois 2023

33

Blois 2023

Ambiguity riddle - neutron tagging

Tomáš Herman

Ambiguity riddle - neutron tagging

Blois 2023

Same rapidity, different impact parameter range

Ambiguity riddle - neutron tagging

Blois 2023

Tomáš Herman

Recent results on J/ψ photoproduction in UPCs with ALICE

Blois 2023

Recent results on J/ψ photoproduction in UPCs with ALICE

Blois 2023

Tomáš Herman

Recent results on J/ψ photoproduction in UPCs with ALICE

Blois 2023

• Nuclear suppression factor - approximate measure of nuclear shadowing

$$S_{Pb} = \sqrt{\left(\frac{\mathrm{d}\sigma}{\mathrm{d}y}\right)_{\mathrm{data}} / \left(\frac{\mathrm{d}\sigma}{\mathrm{d}y}\right)_{\mathrm{IA}}}$$

Blois 2023

• Nuclear suppression factor - approximate measure of nuclear shadowing

• Nuclear suppression factor - approximate measure of nuclear shadowing

Results

|t| dependence

PREVIOUSLY ON ALICE - Coherent J/ ψ : |t| - dependence

 Sensitive to the <u>average</u> of the transverse spatial distribution of the target

PREVIOUSLY ON ALICE - Coherent J/ ψ : |t| - dependence

- Sensitive to the <u>average</u> of the transverse spatial distribution of the target
- Differs from STARlight (driven by the nuclear form factor) in shape and magnitude

|t| dependent QCD dynamical effects!

PREVIOUSLY ON ALICE - Coherent J/ ψ : |t| - dependence

- Sensitive to the <u>average</u> of the transverse spatial distribution of the target
- Differs from STARlight (driven by the nuclear form factor) in shape and magnitude

|t| dependent QCD dynamical effects!

- Models based on pQCD describe data within current uncertainties:
 - Nuclear **shadowing** (LTA)
 - Gluon saturation (b-BK)
- Future measurements should allow to distinguish between the predictions

Incoherent J/ ψ : |t| - dependence

 Sensitive to the <u>fluctuations</u> of the transverse spatial distribution of the target

Incoherent J/ ψ : |t| - dependence

- Sensitive to the <u>fluctuations</u> of the transverse spatial distribution of the target
- No model describes the data quantitatively
 - No subnucleon structure GSZ-el, MS-p
 - Subnucleon structure GSZ-el+diss, MS-hs

Incoherent J/ ψ : |t| - dependence

- Sensitive to the <u>fluctuations</u> of the transverse spatial distribution of the target
- No model describes the data quantitatively
 - No subnucleon structure GSZ-el, MS-p
 - Subnucleon structure GSZ-el+diss, MS-hs
 - -----> Shape favoured by data!

Probing for gluonic "hot spots" in Pb for the first time!

Outlook

Outlook: LHC Runs 3 & 4

- \mathcal{L} increase 1 nb⁻¹ (Run 2) \rightarrow 13 nb⁻¹ (Runs 3+4)
- **Continuous readout** \rightarrow higher data collection efficiency
- Significant detector upgrades
- **O-O run** → new system size

Many more collisions to be recorded by ALICE!

PbPb													
	σ	All	Central 1	Central 2	Forward 1	Forward 2							
Meson		Total	Total	Total	Total 1	Total							
$\rho \to \pi^+ \pi^-$	5.2b	68 B	5.5 B	21B	4.9 B	13 B							
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	9.5 B	210 M	2.5 B	190 M	1.2 B							
$\phi \to \mathrm{K}^+\mathrm{K}^-$	0.22b	2.9 B	82 M	490 M	15 M	330 M							
${ m J}/\psi o \mu^+\mu^-$	1.0 mb	14 M	1.1 M	5.7 M	600 K	1.6 M							
$\psi(2S) \to \mu^+ \mu^-$	30µb	400 K	35 K	180 K	19 K	47 K							
$Y(1S) \rightarrow \mu^+ \mu^-$	$2.0 \ \mu b$	26 K	2.8 K	14 K	880	2.0 K							

pPb - lead shine, γp												
	σ	All	Ctl. 1	Ctl. 2	FW 1	FW 2	BW 1	BW 2				
Meson		Total	Total	Total	Total	Toal	Total	Total				
$\rho \to \pi^+ \pi^-$	35 mb	70 B	3.9 B	15 B	2.0 B	5.5 B	850 M	2.0 B				
$\phi \to \mathrm{K}^+\mathrm{K}^-$	$870 \ \mu b$	1.7 B	65 M	290 M	22 M	120 M	9.7 M	52 M				
$J/\psi \to \mu^+ \mu^-$	6.2 µb	12 M	1.0 M	5.2 M	260 K	800 K	180 K	430 K				
$\psi(2S) \rightarrow \mu^+ \mu^-$	134 nb	270 K	22 K	110 K	6.0 K	18 K	3.2 K	7.7 K				
$Y(1S) \rightarrow \mu^+ \mu^-$	5.74 nb	11 K	1.1 K	5.4 K	310	880	41	100				

CERN Yellow Rep.Monogr. 7 (2019) 1159-1410

52 **Blois 2023**

Conclusion

- Energy dependence of the photonuclear cross section in Bjorken-x range (10⁻⁵,10⁻²)
 - Data and models with **shadowing** or **saturation** <u>agree at low x</u> but <u>diverge at high x</u>
- Transverse parton structure of Pb
 - Models with **shadowing** or **saturation** describe the **coherent** |t| dependence
 - Models with **subnucleon structure** are preferred by the **incoherent** |t| dependence
- Major improvements for Runs 3 & 4:
 - Increased precision, more differential measurements and new measurements

Plenty of new results to discriminate model predictions!

Thank you for your attention!

Backup

56

Tomáš Herman

57

• Very clear signal

• Measured in 3 decay channels: $\mu^+\mu^-$, e^+e^- , $p\bar{p}$

Tomáš Herman

Coherent ψ ' cross section

58

• Clear signal even with less events

• Measured in 3 decay channels: $\mu^+\mu^-\pi^+\pi^-$, $e^+e^-\pi^+\pi^-$, l^+l^-

Coherent J/ ψ cross section: y - dependence

- Impulse approximation (IA): Photoproduction data from protons, does not include nuclear effects except coherence
- **STARlight:** Photoproduction data from protons + Vector Meson Dominance model, includes multiple scattering but no gluon shadowing
- **EPS09 LO:** parametrization of nuclear shadowing data
- LTA: Leading Twist Approximation of nuclear shadowing
- IIM BG, IPsat, BGK-I: Color dipole approach coupled to the Color Glass Condensate formalism with different assumptions on the dipole-proton scattering amplitude
- **GG-HS:** Color dipole model with hot spots nucleon structure
- **b-BK:** Color dipole approach coupled with impact-parameter dependent Balitsky-Kovchegov equation

Blois 2023

Exclusive and Dissociative J/ ψ signal extraction

ALICE

60

Blois 2023

• Simultaneous unbinned fit of mass and $p_{\rm T}$ spectra of $\mu^+\mu^-$ pairs

Run 1 ALICE Pb-Pb UPC at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Tomáš Herman

Run 1 ALICE p-Pb UPC at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

ALICE: Eur. Phys. J. C (2019) 79: 402

Recent results on J/ψ photoproduction in UPCs with ALICE

Coherent ρ^0 cross section: A - dependence

- Measurement with Pb and Xe collisions
- Power-law fit: $\alpha = 0.96 \pm 0.02$
 - Below coherent ---> Shadowing
 - Value close to incoherent is a coincidence caused by large shadowing effect
 - Black-disc limit distant at $W_{\gamma A}$ = 65 GeV

- Models **agree** with the data:
 - GKZ shadowing
 - CCKT saturation

Coherent J/ ψ cross section: y - dependence

• Nuclear suppression factor: for $x \in (0.3, 1.4) \cdot 10^{-3}$

$$S_{Pb} = \sqrt{\left(\frac{d\sigma}{dy}\right)_{data}} / \left(\frac{d\sigma}{dy}\right)_{IA} = 0.65 \pm 0.03$$

- Models with **shadowing** (EPS09, LTA) and **saturation** (GG-HS):
 - Describe central and forward data
 - Underestimate semi-forward data
- Other models describe either the central or the forward rapidity region

No model describes the full rapidity dependence

Blois 2023

Coherent ψ ' cross section: y - dependence

65

(qu)^{3.0} ALICE Pb+Pb \rightarrow Pb+Pb+ ψ ' $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ • Nuclear suppression factor: for $x \in (0.3, 1.6) \cdot 10^{-3}$ ALICE coherent ψ' <mark>б</mark>р/2.5 • Impulse approximation $S_{\rm Ph} = 0.66 \pm 0.06$ STARLIGHT EPS09 LO (GKZ) Consistent with the J/ψ result 2.0 ----- LTA (GKZ) --- GG-HS (CCK) • Models with **shadowing**: - b-BK (BCCM) 1.5 $(0.66)^2$ • EPS09 - agrees • LTA - agrees 1.0 • Models with **saturation**: 0.5 • **b-BK** - agrees • GG-HS - overpredicts 0.0 -3 -2 _1 0 • Other models overpredict the results ALICE: Eur. Phys. J. C 81 (2021) 712 ALI-PUB-482761

Coherent J/ ψ cross section: |t| - dependence

- From p_T^2 -dependent photoproduction to |t|-dependent photonuclear production:
 - $p_{\rm T}^2$ to |t| transition with two different unfolding methods
 - Correction on interference of photon sources
 - From UPC to photonuclear cross section using the photon flux
 12 _ coh

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{J/\psi}}^{\mathrm{con}}}{\mathrm{d}y \mathrm{d}p_{\mathrm{T}}^2} \bigg|_{\mathrm{y}=0} = 2n_{\mathrm{\gamma Pb}}(y=0) \frac{\mathrm{d}\sigma_{\mathrm{\gamma Pb}}}{\mathrm{d}|t|}$$

Probing the transverse partonic structure of the nucleus at low x!

Coherent J/ ψ cross section: |t| - dependence

- Measurement down to very low |t| approaching HERA-like precision!
- Difference from STARlight (driven by the nuclear form factor) in shape and magnitude

/t/ dependent QCD dynamical effects!

- Models based on pQCD describe data within current uncertainties:
 - Nuclear **shadowing** (LTA)
 - Gluon saturation (b-BK)
- Future measurements should allow to distinguish between the predictions

$\gamma\gamma \rightarrow \mu\mu$ cross section

- $\gamma \gamma \rightarrow \mu \mu$ cross section in the **low mass** region!
- STARlight:
 - LO QED without final-state radiation or other NLO effects
 - No interactions within the radius of the targets
 - Slight excess in data agreement within 3 sigma
- Can be used to improve current models
 - Fix background for VM or jet photoproduction
 - Improve predictions for light-by-light scattering

Recent results on J/ψ photoproduction in UPCs with ALICE

Blois 2023

Energy dependence: Exclusive J/ ψ cross section

ALICE

- ALICE data covers three orders of magnitude in x!
- Power law fit to ALICE data
 - Exponent: $\delta = 0.70 \pm 0.04$
 - No change between HERA and LHC
- ALICE and LHCb are compatible
- Agreement with models:
 - **JMRT NLO**: DGLAP formalism with main NLO contributions
 - **CCT**: Saturation in an energy dependent hot spot model

Blois 2023

Energy dependence: Dissociative J/ ψ cross section

- First measurement of the dissociative cross section at the LHC!
 - Agreement with HERA results
 - Agreement with **CCT**, predicts maximum at $W_{\gamma p} \approx 500 \text{ GeV}$

➤ Energies ≈ 1 TeV to be available in Run 3!

Recent results on J/ψ photoproduction in UPCs with ALICE

Blois 2023

73

Recent results on J/ψ photoproduction in UPCs with ALICE

ALICE: J/ ψ measurement at midrapidity

Recent results on J/ψ photoproduction in UPCs with ALICE

ALICE: J/ ψ measurement at forward rapidity

Tomáš Herman

Recent results on J/ψ photoproduction in UPCs with ALICE

Blois 2023

ALICE: Vetoes to enforce exclusivity condition

76

Recent results on J/ψ photoproduction in UPCs with ALICE

Blois 2023