ALICE insights into strangeness production in pp collisions

Francesca Ercolessi on behalf of the ALICE Collaboration

University and INFN Bologna

From large to small collision systems

Large systems:

- Many partonic collisions → collective partonic motion
- Statistical approach to describe light flavour particle production
- **S quark can be thermally produced in the QGP** (dominantly by fusion of thermalized gluons)
- After hadronization, the abundance of (multi)strange hadrons reflects that of strangeness in the partonic phase
- Strangeness enhancement in AA relative to pp was historically proposed as a signature of QGP formation

From large to small collision systems

Small systems:

- High-energy hadronic interactions are not *elementary*:
 multiparton interactions (MPI)
- Strangeness canonical suppression + energy threshold problem in a hadron gas at high temperature
- Observations in small systems show striking similarities to AA
- Measurements of strange hadron production used as input for tuning Monte Carlo generators (PYTHIA, EPOS, ...)

From large to small collision systems

Small systems:

- High-energy hadronic interactions are not *elementary*:
 multiparton interactions (MPI)
- Strangeness canonical suppression + energy threshold problem in a hadron gas at high temperature
- Observations in small systems show striking similarities to AA
- Measurements of strange hadron production used as input for tuning Monte Carlo generators (PYTHIA, EPOS, ...)

How can we explain the observations in small collisions systems (no QGP formation there)?

Strangeness production across systems

ALICE observed that the ratio of strange to non-strange hadron yields (h/π) :

- increases with midrapidity multiplicity
- **smoothly evolves across** different collision **systems**
- shows a larger enhancement for particles with larger strangeness content

Models traditionally applied in pp fail to quantitatively reproduce the data

Nature Phys 13, 535-539 (2017) Eur. Phys. J. C 80, 167 (2020)

ALI-PREL-321075

Strangeness production across systems

Recent ALICE results contribute to understanding:

- the connection of strangeness production to hard processes and soft out-of-jet processes
- the relation to specific **event topologies** (pencil-like, isotropic)
- the correlation of strangeness production to **global** event properties w.r.t. local particle multiplicity, possibly also giving insights into earlier collision phase mechanisms

Nature Phys 13, 535-539 (2017) Eur. Phys. J. C 80, 167 (2020)

ALI-PREL-321075

34th Rencontres de Blois

6

ALICE strangeness reconstruction

Kinematical and geometrical criteria are used to reconstruct candidates for strange hadrons

34th Rencontres de Blois

Identification of (multi-)strange baryons is based on two topologies:

V⁰ → neutral particle decaying weakly into a pair of charged particles (V-shaped decay)

$${
m K}_{
m S}^{0} o \pi^{+} + \pi^{-}$$
 $\Lambda o {
m p} + \pi^{-}$

→ Cascade → charged particle decaying weakly into a V⁰ + charged particle $\Xi^- \rightarrow \Lambda + \pi^ \bar{\Xi}^+ \rightarrow \bar{\Lambda} + \pi^+$

Cascade \rightarrow

ALICE strangeness reconstruction

Kinematical and geometrical criteria are used to reconstruct candidates for strange hadrons

Identification of (multi-)strange baryons is based on two topologies:

V⁰ → neutral particle decaying weakly into a pair of charged particles (V-shaped decay)

> charged partic into a V⁰ + cha

 $\Xi^- \to \Lambda + \pi$

 $\bar{\Xi}^+ \to \bar{\Lambda} + \pi$

$$m K_S^0
ightarrow \pi^+ + \pi$$

 $\Lambda o \mathrm{p} + \pi^-$

Brand new technique for strange hadron reconstruction is under development: the **strangeness tracking**

- → finds signatures of weakly decaying hyperons / hypertritons before decay using the upgraded ITS2
 - \rightarrow will allow for unprecedented precision in measuring these particles during Run 3 of the LHC and beyond

34th Rencontres de Blois

D.D.Chinellato, "Strangeness tracking" LHCP 2022

Strangeness-hadron correlation

ANGULAR CORRELATION METHOD

1) Trigger particle as a proxy for the **jet axis** ($p_T > 3$ GeV/c)

- 2) Identification of associated particles (strange hadrons)
- 3) Angular correlation between trigger and associated particles

$$\Delta \varphi = \varphi_{Trigg} - \varphi_{Assoc}$$
$$\Delta \eta = \eta_{Trigg} - \eta_{Assoc}$$

 φ : azimuthal angle η = - ln (tan(θ /2)) θ : polar angle

Strangeness in and out-of-jet

(Multi-)strange hadrons are mostly produced in the **transverse to leading** region

The **toward leading yield** shows a weak multiplicity dependence

Strangeness in and out-of-jet

(Multi-)strange hadrons are mostly produced in the **transverse to leading** region

The **toward leading yield** shows a weak multiplicity dependence

 Ξ^{\pm}/K_{S}^{0} full yield ratio increases with multiplicity \rightarrow larger strangeness content of Ξ^{\pm} w.r.t. K_{S}^{0}

The toward leading ratio is lower w.r.t. transverse to leading and full yield ratio

Compatible increase with multiplicity is observed in and out-of-jet within uncertainties

$E_{\rm EFF} < \sqrt{s}~{ m due}~{ m to}~{ m leading}~{ m baryon}~{ m emission}$ at forward rapidity

$E_{\rm EFF} < \sqrt{s}\,$ due to leading baryon emission at forward rapidity

The concept of effective energy

The **charged-particle multiplicity** produced in a pp collision is:

- characteristic of the hadronic final state
- strongly correlated to the initial effective energy

EFFECTIVE ENERGY

energy available for particle production in the initial stages of the pp collision

 $E_{\rm EFF} < \sqrt{s}\,$ due to **leading baryon emission** at forward rapidity

ALICE can measure:

- midrapidity multiplicity (SPD)
- leading energy (ZDC)

 $E_{\text{eff}} = \sqrt{s} - E_{\text{leading}} \simeq \sqrt{s} - E_{\text{ZDC}}$

multiplicity (VOM = VOA+VOC)

Single-differential event classes

The **forward energy decreases with** increasing particle **multiplicity** produced at **midrapidity**

Standalone V0 event classes

ALICE Collaboration arxiv.org/2107.10757

Francesca Ercolessi for the ALICE Collaboration

34th Rencontres de Blois

Multi-differential event classes

The **forward energy decreases with** increasing particle **multiplicity** produced at **midrapidity**

Standalone V0 event classes

Event classes defined using VO and SPD (clusters):

Fixed multiplicity at midrapidity + different forward energy deposits in the ZDC

Strangeness vs multiplicity and energy

ALICE

Strangeness production per charged particle:

- increases with midrapidity multiplicity (left)
- is anticorrelated with the ZDC energy (right)
- shows hierarchy with strangeness content vs multiplicity and forward energy

Can we **disentangle** the dependence on leading energy and multiplicity?

Francesca Ercolessi for the ALICE Collaboration

34th Rencontres de Blois

In events with the same particle multiplicity produced:

- increase in Ξ production per charged particle is observed for decreasing forward energy (ZDC)
- scaling trends with ZDC energy are **compatible within uncertainties**

In events with the same particle multiplicity produced:

- increase in Ξ production per charged particle is observed for decreasing forward energy (ZDC)
- scaling trends with ZDC energy are **compatible within uncertainties**

ALICE

In events with the same particle multiplicity produced:

- increase in Ξ production per charged particle is observed for decreasing forward energy (ZDC)
- scaling trends with ZDC energy are **compatible within uncertainties**

Strangeness studies using spherocity

 $S_{O}^{p_{T}=1} = \frac{\pi^{2}}{4} \min_{\hat{n}} \left(\frac{\Sigma_{i} |p_{T,i} \times \hat{n}|}{N_{trks}} \right)$ S = 0 "pencil-like" limit (hard events) S = 1 "isotropic" limit (soft events)

Fixed VO multiplicity (forward): S_{o} selects different yields but similar p_{T} shapes

Fixed mid-rapidity multiplicity: S_{o} selects harder spectra

Summary

Striking observations at the LHC: strangeness enhancement vs multiplicity from small to large systems

Big theoretical effort in order to reproduce ALICE data, but we are still far from a complete understanding

Recent ALICE results help to understand:

- (Multi-)strange hadrons are **mostly produced in out-of-jet processes**, but strangeness **enhancement** with multiplicity is **observed in both toward and transverse to leading** processes
- Strangeness enhancement in pp collisions is **observed** at **fixed midrapidity multiplicity**, showing **correlation with leading energy** at forward rapidity
- S_o is a powerful tool to **select** events with specific **event topologies** and study strangeness enhancement at fixed mid-rapidity/forward multiplicity

Summary

Striking observations at the LHC: strangeness enhancement vs multiplicity from small to large systems

Big theoretical effort in order to reproduce ALICE data, but we are still far from a complete understanding

Recent ALICE results help to understand:

 (Multi-)strange bedrops are mostly produced in out-of-let processes, but strangeness; en The study of strangeness production in pp collisions will benefit from the large statistics ALICE is collecting during Run 3
 Str co The extended Run 3 pp programme will provide a sample larger by more than three orders of magnitude than that of Run 2 for specific signals of interest, i.e. events with a reconstructed Ω baryon

Backup

Strangeness-hadron correlation

1) Trigger particle as a proxy for the **jet axis** ($p_T > 3$ GeV/c)

- 2) Identification of associated particles (strange hadrons)
- 3) Angular correlation between trigger and associated particles

$$\Delta \varphi = \varphi_{Trigg} - \varphi_{Assoc}$$
$$\Delta \eta = \eta_{Trigg} - \eta_{Assoc}$$

 φ : azimuthal angle η = - ln (tan(θ /2)) θ : polar angle

Toward leading = Full - Transverse to leading

AI TCF

Standalone VO event classes

Event classes defined using VO and SPD (clusters):

Fixed multiplicity at midrapidity + different forward energy deposits in the ZDC

ZDC energy fixed in a small range +

different multiplicity produced in the event

Strangeness at constrained ZDC energy

In events with ZDC energy deposits fixed in a small range:

- strangeness enhancement with multiplicity is reduced (left)
- within the small ZDC energy range, scaling trends are compatible within uncertainties (right)

Similar results are obtained for the Ω baryon (higher strangeness content)

Forward energy vs MPI

Inverse dependence of very forward energy as a function of the number of MPIs observed in Pythia

Francesca Ercolessi for the ALICE Collaboration

34th Rencontres de Blois