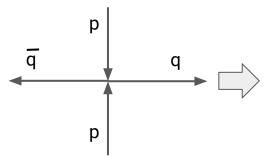
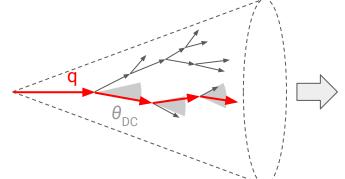
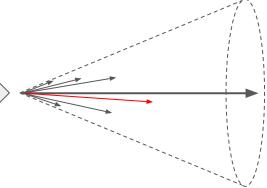
Heavy-flavour jet measurements in pp and Pb-Pb collisions by ALICE

Vít Kučera (Inha Univ.)
for the ALICE Collaboration


16 May 2023 34th Rencontres de Blois


Physics motivation for heavy-flavour jets


hard scattering

parton shower

hadronisation

Early perturbative production of heavy quarks

 \rightarrow tests for pQCD down to low p_{T}

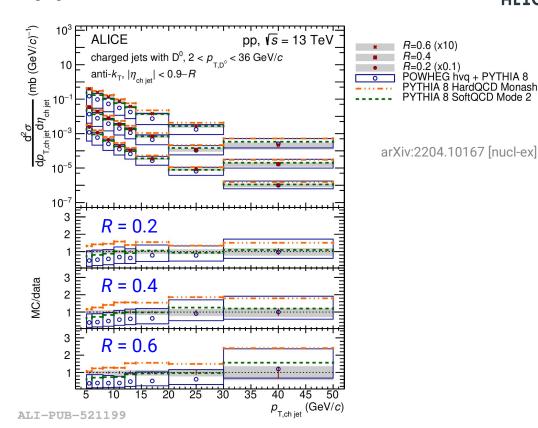
Heavy flavour conserved in the parton shower and experimentally traceable

- → access to properties of gluon emissions (e.g. splitting function)
 - Dead-cone effect, $\theta_{DC} = m_q / E_q$
 - Casimir colour factors
 - Modification in QGP


Hadronisation mechanisms

- Baryons vs mesons
- Fragmentation in QGP

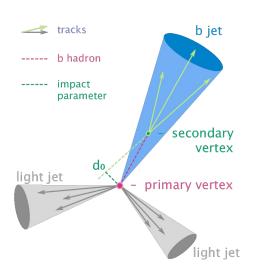
Charm-jet production in pp collisions

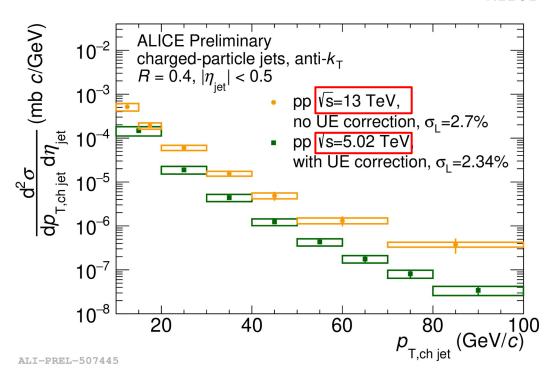

Tagged with reconstructed D⁰

Jet resolution parameter (*R*) dependence probes the angular profile of the parton shower.

Agreement with pQCD in pp collisions

→ calibrated baseline for Pb-Pb collisions




Beauty-jet production in pp collisions

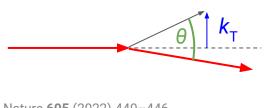
Identification of b-jets using

- track impact-parameter distributions
- secondary-vertex displacement

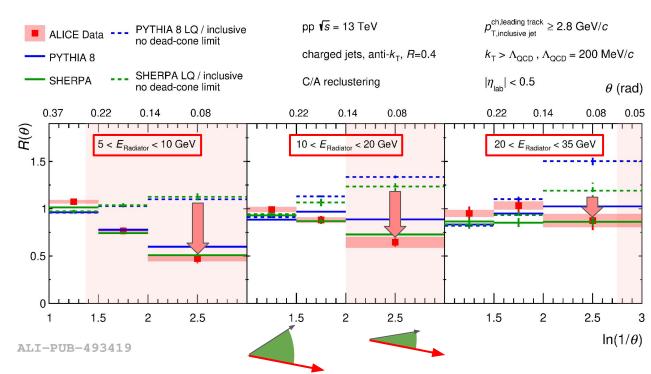
Harder p_{T} dependence at larger collision energy

JHEP 01 (2022) 178

Dead-cone effect

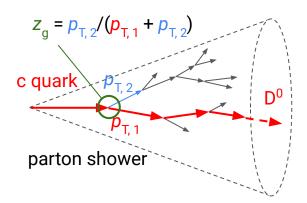


Ratio of distributions of splitting angles θ for heavy-flavour jets and inclusive jets


Significant suppression of \blacksquare small- θ emissions at low energy

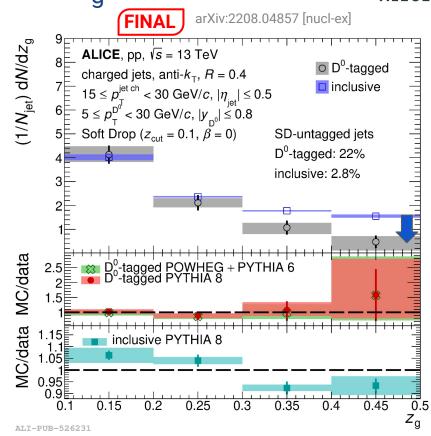
Dead cone narrowing with increasing E_{Radiator}

First direct observation in QCD



Groomed-charm-jet substructure: z

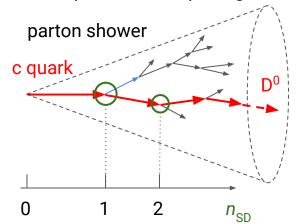
 p_{T} symmetry of the first perturbative splitting



First direct experimental constraint on the splitting function of heavy quarks

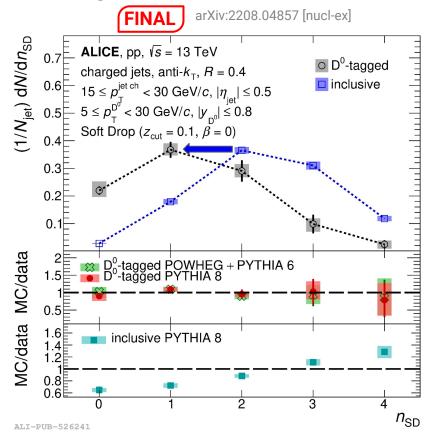
Symmetric emissions from charm quarks suppressed

Good agreement with MC models for charm jets


PYTHIA steeper than the measurement for inclusive jets

Groomed-charm-jet substructure: n_{SD}

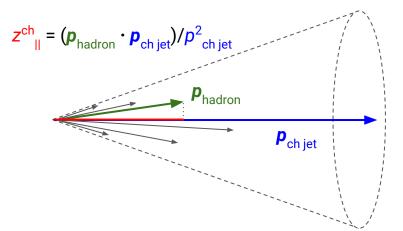
Number of perturbative splittings of the leading branch



Fewer perturbative emissions from charm quarks -

Fragmentation of charm quarks is harder.

Good agreement with MC models for charm jets ■■


Shift to larger $n_{\rm SD}$ for PYTHIA for inclusive jets \blacksquare

D⁰ fragmentation function

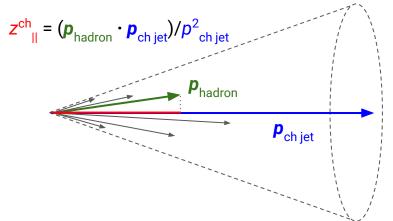
Hadronisation stage of charm-quark fragmentation

Measured in a wide phase-space region:

 \sqrt{s} = 5.02 TeV, 13 TeV Jet p_{T} ∈ [5, 50] GeV/c D⁰ p_{T} ∈ [2, 36] GeV/c R = 0.2, 0.4, 0.6

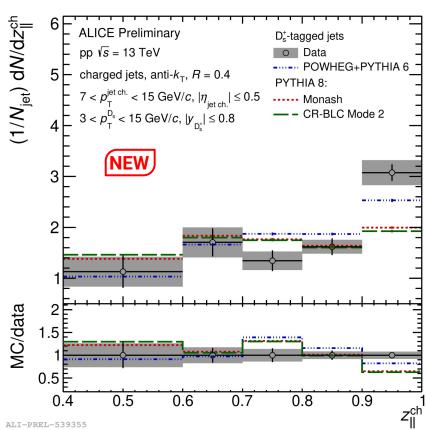
Good description by models at high jet $p_{\scriptscriptstyle T}$ and small R

 $1/N_{\rm jets} dN/dz_{\parallel}^{\rm ch}$ ALICE pp, √s = 13 TeV $15 < p_{T, ch jet} < 50 \text{ GeV}/c$ charged jets, anti-k_T $p_{_{\rm T,D^0}} > 10 \,{\rm GeV}/c$ $5 < p_{T,ch jet} < 7 \text{ GeV/}c$ $p_{\text{T.D}^0} > 2 \text{ GeV/}c$ R=0.2 $1/N_{\rm jets} dN/dz_{\parallel}^{\rm ch}$ _{F.D0} > 2 GeV/*c* $p_{\text{TD}^0} > 5 \text{ GeV/}c$


jet p_⊤

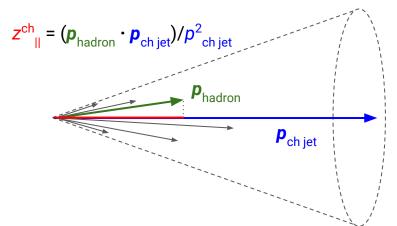
arXiv:2204.10167 [nucl-ex]

D_s⁺ fragmentation function

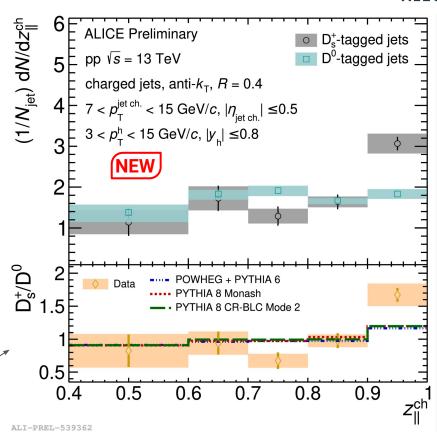


Hadronisation stage of charm-quark fragmentation

First z^{ch} measurement for D_s^+

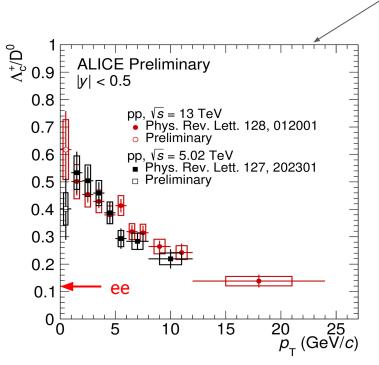

Exploring the effect of strangeness in the production of strange charm hadrons

D_s⁺ fragmentation function


Hadronisation stage of charm-quark fragmentation

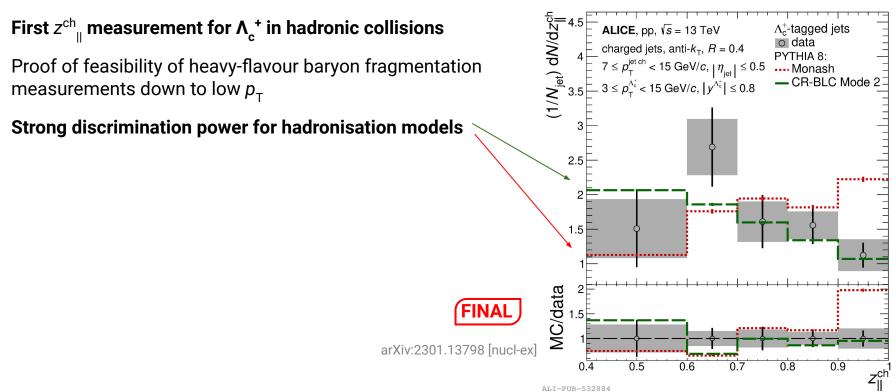
First z^{ch} measurement for D_s^+

Exploring the effect of strangeness in the production of strange charm hadrons


Hint of harder fragmentation into D_s⁺ than into D⁰

Λ_c^+ fragmentation function

A more differential look at the baryon-to-meson ratio enhancement in pp w.r.t. ee/ep collisions


See Luigi Dello Stritto's talk, 16 May, 17:00 Studies on the hadronization of charm and beauty quarks with ALICE

ALI-PREL-502456

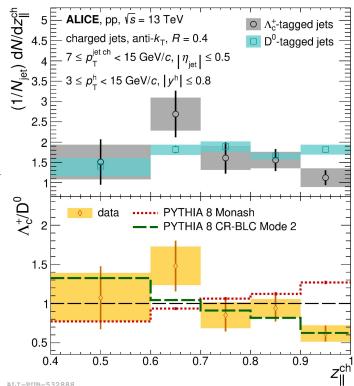
Λ_c^{+} fragmentation function

A more differential look at the baryon-to-meson ratio enhancement in pp w.r.t. ee/ep collisions

Λ_c^+ fragmentation function

A more differential look at the baryon-to-meson ratio enhancement in pp w.r.t. ee/ep collisions

First z^{ch} measurement for Λ_c^+ in hadronic collisions


Proof of feasibility of heavy-flavour baryon fragmentation measurements down to low $p_{\rm T}$

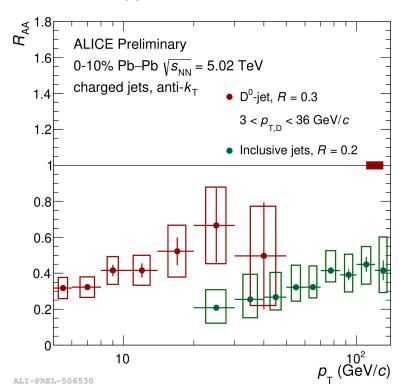
Strong discrimination power for hadronisation models

Hint of softer fragmentation into Λ_c^+ than into D^0

New way of constraining hadronisation mechanisms (e.g. local parton density dependence of fragmentation)

FINAL arXiv:2301.13798 [nucl-ex]

Modification of charm jets in Pb-Pb



Ratio of normalised differential yields of D⁰-tagged jets in central Pb-Pb and pp collisions

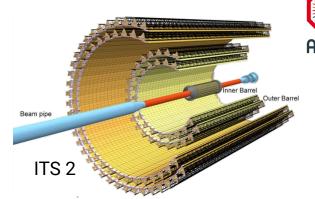
Parton energy loss expected to depend on the mass

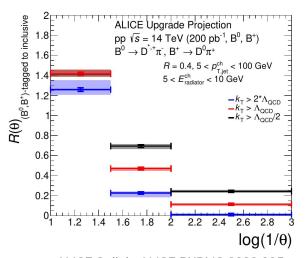
Hint of higher $R_{\rm AA}$ of charm jets compared to inclusive jets in the common $p_{\scriptscriptstyle
m T}$ region

- Casimir colour factors
- Dead-cone effect

Summary and Run 3 prospects

Heavy-flavour jets are excellent probes for perturbative and non-perturbative QCD processes.


More data and better tracking resolution in Run 3 → better accuracy


Better characterisation of hadronisation mechanisms from fragmentation functions of Λ_c^+ and D^0 Local parton multiplicity effects

Substructure of charm and beauty jets

Low p_{T} : dead-cone effect for charm vs beauty ——High p_{T} : Casimir colour factors for quarks vs gluons

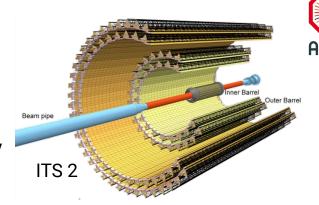
Pb-Pb collisions: probe to study QGP
Modification of heavy-quark fragmentation
Mass dependence of parton energy loss

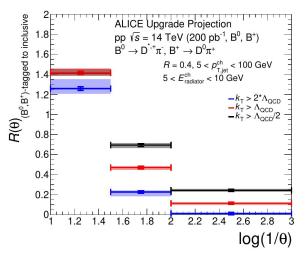
ALICE Collab. ALICE-PUBLIC-2020-005

Summary and Run 3 prospects

Heavy-flavour jets are excellent probes for perturbative and non-perturbative QCD processes.

More data and better tracking resolution in Run 3 → better accuracy


Better characterisation of hadronisation mechanisms from fragmentation functions of Λ_c^+ and D^0 Local parton multiplicity effects


Substructure of charm and beauty jets

Low p_{T} : dead-cone effect for charm vs beauty ——High p_{T} : Casimir colour factors for quarks vs gluons

Pb-Pb collisions: probe to study QGP
Modification of heavy-quark fragmentation
Mass dependence of parton energy loss

Thank you for your attention

ALICE Collab. ALICE-PUBLIC-2020-005

Backup

Summary

Heavy-flavour jets are excellent probes of perturbative and non-perturbative QCD processes.

Heavy-quark production

→ Jet cross section

Parton shower evolution (dead-cone effect, Casimir colour factors)

 \rightarrow Jet substructure from low to high jet p_{T}

Hadronisation mechanisms

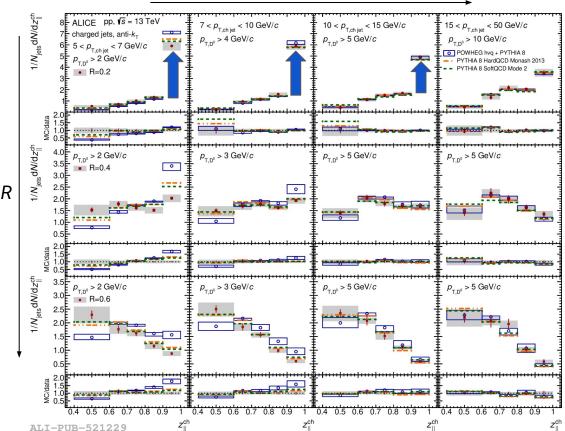
→ Fragmentation functions of baryons vs mesons

Medium-induced modification of parton radiation

 \rightarrow Heavy-ion collisions (R_{AA} ,...)

Thank you for your attention

D⁰ fragmentation function

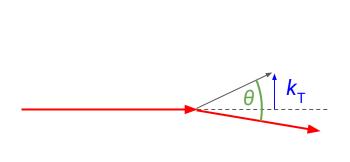

Narrow low- p_T jets are often single D⁰.

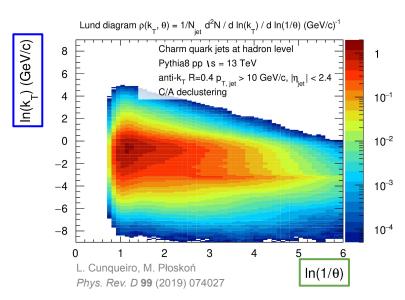
Fragmentation softens with increasing R.

Significant shape transition for R = 0.4

Models harder at low jet p_{T}

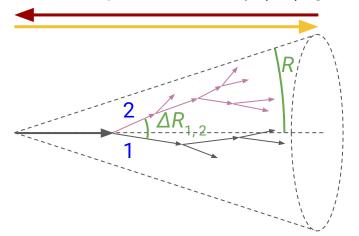
Discrepancy larger at larger R


arXiv:2204.10167 [nucl-ex]


Jet substructure: Lund maps

Lund maps of splittings to access kinematics of parton shower evolution

- Splitting angle $\theta = \Delta R$ of prongs
- Splitting scale k_T (transverse component of emission momentum) Requesting higher k_T suppresses non-perturbative effects.

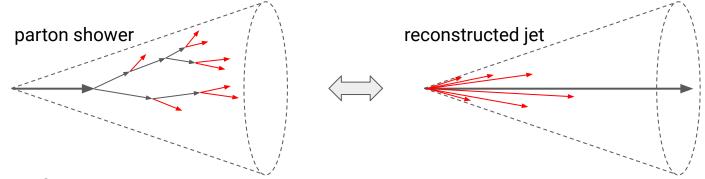

Jet substructure: declustering and grooming

Access evolution of the parton shower: jet splittings (declustering)

Groom away soft radiation at large angles: isolate hard structures inside the jet (grooming)

- Reclustering with Cambridge/Aachen (angular ordering)
- Declustering: unwind reclustering history → chronologically ordered splittings
- Grooming with Soft Drop (SD): groom away soft prongs not satisfying the condition

$$\frac{p_{\mathrm{T,2}}}{p_{\mathrm{T,1}} + p_{\mathrm{T,2}}} > z_{\mathrm{cut}} \left(\frac{\Delta R_{\mathrm{1,2}}}{R}\right)^{\beta}$$
$$\Delta R_{\mathrm{a,b}} \equiv \sqrt{(y_{\mathrm{a}} - y_{\mathrm{b}})^{2} + (\varphi_{\mathrm{a}} - \varphi_{\mathrm{b}})^{2}}$$


A. J. Larkoski, S. Marzani, G. Soyez et al. JHEP 05 (2014) 146

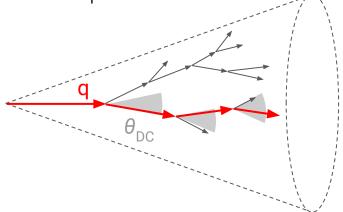
Jet substructure

Jet substructure observables constructed from jet constituents after jet clustering

Characterise internal fragmentation pattern of parton shower

- Tests of QCD predictions
 - Casimir colour factors: different fragmentation of quarks and gluons
 - **Dead-cone effect**: suppression of emission phase space for $\theta < \theta_{DC} = m_q/E_q$ \rightarrow Mass effects sizeable in the low p_{τ} kinematic range.
- Insight into nonperturbative phenomena (hadronisation, underlying-event effects)
- Baseline for medium effects of quark-gluon plasma in heavy-ion collisions

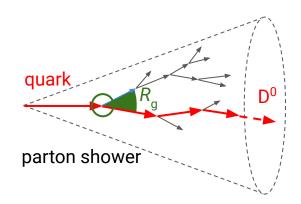
Substructure of heavy-flavour jets



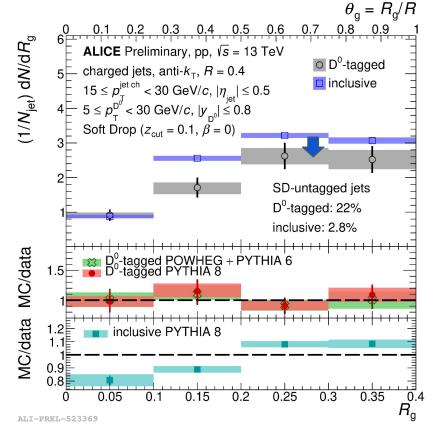
 $m_{\rm q} > \Lambda_{\rm QCD} \rightarrow {\rm perturbative\ production\ down\ to\ low\ jet\ } p_{\rm T}$

Heavy flavour conserved through the shower evolution

Inclusive vs heavy-flavour jets at low p_{T} :


- Casimir colour factors: different fragmentation of quarks and gluons
- **Dead-cone effect**: suppression of emission phase space for $\theta < \theta_{DC} = m_q/E_q$
 - \rightarrow Mass effects sizeable in the low $p_{\scriptscriptstyle T}$ kinematic range.

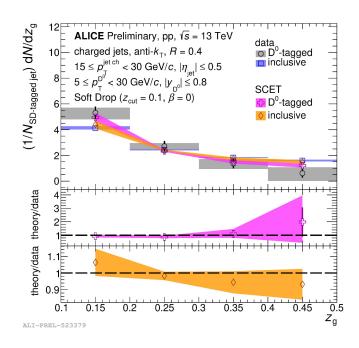
Groomed-charm-jet substructure: R_a


Angular size of the first perturbative splitting

Wide emissions from charm quarks suppressed. 👈

Good agreement with MC models for charm jets ■■

PYTHIA steeper than the measurement for inclusive jets



Groomed-jet substructure: z_g

Agreement within uncertainties with Soft-collinear effective theory (SCET)

Same trend as MC models.

H. T. Li and I. Vitev. *Phys. Lett. B* **793** (2019) 259–264 H. T. Li, Z. L. Liu, and I. Vitev. *Phys. Lett. B* **827** (2022) 137007