

Report from the Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches



# **COSINUS**

### Leonie Einfalt



### Motivation

- Vast number of DM direct detection
- experiments employing different detection methods Large region of **parameter space** already **excluded** for DM-nucleus elastic standard scenario scattering Large region of parameter space already
- One experiment claims a signal: **DAMA/LIBRA**

 $10^{-10}$ 10



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

### Motivation

- Vast number of DM direct detection
- experiments employing different detection methods Large region of **parameter space** already **excluded** for DM-nucleus elastic standard scenario scattering Large region of parameter space already
- One experiment claims a signal: **DAMA/LIBRA**

 $10^{-10}$ 10



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

## DAMA/LIBRA signal

- DAMA/LIBRA sees a modulation signal as predicted by Earth's movement through the DM-wind in the Milky Way with a statistical significance of 13.7 $\sigma$
- Light signal (PMTs) in 250 kg Nal with a threshold of 1keVee
- Located at Gran Sasso Underground Lab (LNGS), data taking since 1996
- Period: 0.9983 ± 0.0007 (in the 2-6 keVee region)
- Phase: 22<sup>nd</sup> May +/- 4 days (cosine peaking June 2<sup>nd</sup>)







| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

m

## **Theory prediction & unknowns**



Uncertainties in many astrophysical parameters, DM density and DM distribution at Earth's position in the Milky Way

Possible non-trivial dependence on target material in the cross section



need to use same target material to probe DAMA/LIBRA signal

#### Nal based experiments:

ANAIS, SABRE South/North, COSINE, KIMS, PICO-LON, DM-Ice & COSINUS



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

### **COSINUS experiment**

- Aims at model independent test of DAMA
- Uses same material: Nal
- In the same underground lab at Gran Sasso
- Novel and unique operation of Nal as cryogenic
  detector with Transition Edge Sensors (TES)
  - Detecting phonon and light signal simultaneously
  - Particle discrimination (electron/gamma vs. nuclear recoil) on event-by-event basis
  - Lower threshold in nuclear recoil energy



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

### Particle discrimination

 Light-quenching —> different bands in the light yield vs. phonon energy plane

- Intrinsic measurement of quenching factors possible
- Simulation for 100 kg days exposure before cuts for 1keV nuclear recoil threshold
- Same sensitivity at smaller target mass
  (~1 kg for COSINUS vs. 250 kg for DAMA)



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

## Status of the experiment



**Experimental facility on-site** 

**Simulation and Screening** 

**Detector R&D** 

| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

### **Construction of the facility**

- Located in hall B at LNGS
- Construction of water tank, control building and clean room finished
- Construction of electrical and clean room infrastructure currently ongoing
- Dry cryostat delivery autumn 2023







| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

## **Construction of the facility**

- Located in Hall B at LNGS
- Construction of water tank, control building and clean room finished
- Construction of electrical and clean room infrastructure currently ongoing
- Dry cryostat delivery autumn 2023





| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

## Shielding concept

- Cryostat surrounded by 8cm Cu shield
- Dry-well supported by tripod
- Water tank as passive shielding
- PMTs for active Cherenkov muon veto

Simulation study on passive shielding concept: Eur. Phys. J. C (2022) 82: 248



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

## Shielding concept

- Cryostat surrounded by 8cm Cu shield
- Dry-well supported by tripod
- Water tank as passive shielding
- PMTs for active Cherenkov muon veto

Simulation study on passive shielding concept: Eur. Phys. J. C (2022) 82: 248





| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

## Shielding concept

- Cryostat surrounded by 8cm Cu shield
- Dry-well supported by tripod
- Water tank as passive shielding
- PMTs for active Cherenkov muon veto

Simulation study on passive shielding concept: Eur. Phys. J. C (2022) 82: 248



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

## Shielding concept

- Cryostat surrounded by 8cm Cu shield
- Dry-well supported by tripod
- Water tank as passive shielding
- PMTs for active Cherenkov muon veto -

Simulation study on passive shielding concept: Eur. Phys. J. C (2022) 82: 248





| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

## Shielding concept

- Cryostat surrounded by 8cm Cu shield
- Dry-well supported by tripod
- Water tank as passive shielding
- PMTs for active Cherenkov muon veto

**Simulation study on passive** shielding concept: Eur. Phys. J. C (2022) 82: 248





| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

### Simulation and Screening

### **Active muon veto simulation**

- PMT Veto to tag muons
- Monte Carlo simulation to find most efficient PMT & dead layer placement
- For single muon and shower events

#### Intrinsic radiation background

► Use the ICP-MS measurements of crystal and setup (copper, holders, cables,...) contaminants to determine the intrinsic radiogenic background





|                               | K40 Cont. (ppb) | U Cont. (ppb) | Th Cont. (ppb) |
|-------------------------------|-----------------|---------------|----------------|
| Nal 2018<br>Astrograde Powder | <15             | <0.01         | <0.005         |
| Nal 2018 MLL V2.              | 110             | < 0.015       | <0.015         |

| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

### Detector R&D

- Two channel read-out via TESs: light (silicon beaker) and phonon signal (Nal crystal)
- Problem: attaching TES directly to the crystal as Nal is
  - Hygroscopic
  - Very soft
  - Has a low melting point
  - attach TES to external structure and create some kind of connection



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

### Detector R&D

- Solution: the remoTES design
  - ► TES is attached to remote Al<sub>2</sub>O<sub>3</sub> wafer
  - Wafer is connected to the Nal via gold pads and a gold bonding wire
  - Tested by the COSINUS collaboration for Si, TeO<sub>2</sub> and Nal crystals



NIMA 1045 (2023) 167532

| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

### Nal remoTES results

- Multiple successful operations of Nal as a cryogenic detector
- Most performant measurement so far carried out at CRESST test facility at LNGS (underground)
  - $\sigma_{\text{Nal}} = 0.441 + /- 0.11 \text{keV}$  (threshold < 2keV),  $\sigma_{\text{LD}} = 0.988 + /- 0.052 \text{ keVee}$
  - Clear particle discrimination between nuclear and electron/gamma recoils (publication in progress)



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

### Timeline



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

# Thank you for your attention!







## Back Up

| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

## Physics reach

#### COSINUS $1\pi$

- ► 2023 2025
- Exclude or confirm nuclear recoil
  origin of the DAMA signal (no rate no DM modulation)
- Independent of dark matter halo model and DM-SM interaction
- Set strong limit on standard scenario scattering with only 100 kg d exposure

### **COSINUS 2** $\pi$

 Investigate annual modulation signature with COSINUS

More detailed model-independent physics reach study in Kahlhoefer et al JCAP05(2018)074



| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

 $\mathbf{O}$ 

### **ANAIS vs. COSINUS**

ANAIS experiment published results from **3 years** of data taking -> amplitude estimate supports nonmodulation hypothesis and is **incompatible with the DAMA result at 3.3** $\sigma$ 

### **BUT:**

- Not a DM-SM model independent result
- $3.3\sigma vs 13\sigma$
- Still uncertainties present due to Nal quenching factor -> not an issue for COSINUS with particle discrimination





arXiv:2103.01175

| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |

### **COSINUS** at TUNL

- Nal crystals of different TI-doping levels produced inside collaboration at **SICCAS**
- Measurement of quenching factors of Nal performed by **TUNL**
- Simulation and analysis ongoing



#### **Measurement setup at TUNL**

| H |   |
|---|---|
|   |   |
|   | ļ |
| Ц | _ |
| Z |   |
| _ |   |
| Ц |   |
| Ц |   |
| _ |   |
| Z |   |
| C |   |
| ŭ |   |
|   |   |
|   |   |