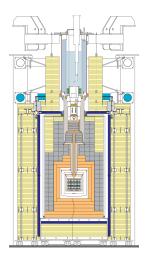


The CRESST-III Dark Matter Search

Status and Outlook

Anna Bertolini on behalf of the CRESST collaboration May 16, 2023

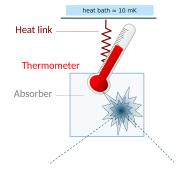
Max-Planck-Institute for Physics


The CRESST Collaboration

Anna Bertolini (Max-Planck-Institute for Physics) - Rencontres de Blois 2023

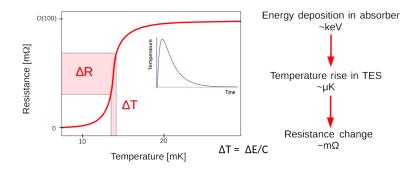
The CRESST Experiment

Cryogenic Rare Event Search with Superconducting Thermometers

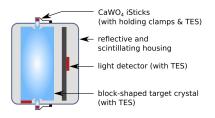

- Located in the LNGS underground laboratories
- Detects potential DM particles via scattering off target nuclei
- Uses Transition Edge Sensors (TES)
- Operates at $\sim 15~\text{mK}$

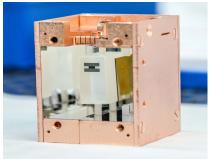
Cryogenic calorimeters

- A particle interaction causes an energy deposition in the crystal
- Calorimeter equation:

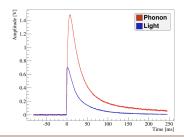

$$\Delta T = \frac{\Delta E}{C}$$

For low heat capacity (true at low temperatures) \Rightarrow low energy deposition can lead to significant temperature variation


• Temperature variation is measurable with the TES

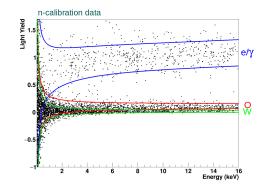

The Transition Edge Sensor

- Sensor is operated at transition between normal conducting and super conducting phase
- Very small temperature variations can be measured through resistance variations


CRESST III Detectors

Anna Bertolini (Max-Planck-Institute for Physics) - Rencontres de Blois 2023

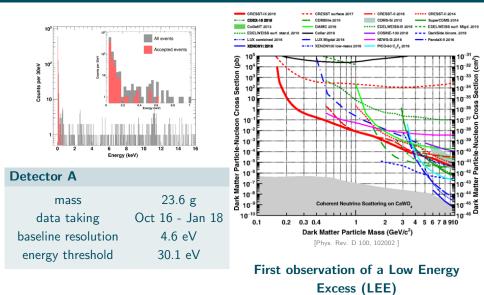
- Main absorber: scintillating crystal with dimension (2x2x1) cm³
- Additional light detector for background discrimination
- Reflective foil to optimize light collection
- Simultaneous readout of both channels



Event Discrimination

We can discriminate events depending on their light output:

 $\mathsf{LightYield}{=}^{\mathsf{Light signal}}_{\mathsf{Phonon signal}}$


To define the region of the bands we perform a neutron calibration

Result

Excellent discrimination between **nuclear recoils** (signal) and **electron/photon interactions** (background)

First Results from CRESST III (2019)

Anna Bertolini (Max-Planck-Institute for Physics) - Rencontres de Blois 2023

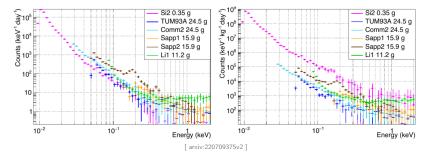
What we knew:

- unknown rise of particle events
- energy range of 30 eV 200 eV

Possible origins:

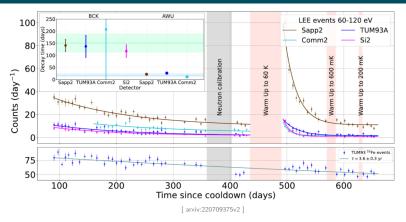
- excess might be related to the target material (CaWO₄)
- could be caused by stress of the holder
- might be related to the scintillating foil

Dedicated modifications to probe the LEE


- different target materials
- changes to the holding structure of the crystal
- remove scintillating components

- The main goal of this run was to understand the LEE
- We kept the data blind to allow for DM searches
- At the end of the run we performed a neutron calibration
- The run was followed by a set of tests for LEE studies

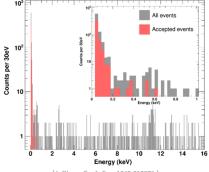
Name	Material	Holding	Foil	Mass	Threshold
Comm2	CaWO ₄	bronze clamps	no	24.5g	29eV
TUM93A	CaWO ₄	2 Cu + 1 CaWO ₄	yes	24.5g	54eV
Sapp1	AI_2O_3	Cu sticks	no	15.9g	157 eV
Sapp2	AI_2O_3	Cu sticks	no	15.9g	52eV
Li1	LiAlO ₂	Cu sticks	yes	11.2 g	84eV
Si2	Si	Cu sticks	no	0.35 g	10eV


Observations on LEE

- Excess is observed in every material and geometry
- Rate does not scale with mass (right plot)

We therefore exclude a DM origin

Time Dependence of the LEE

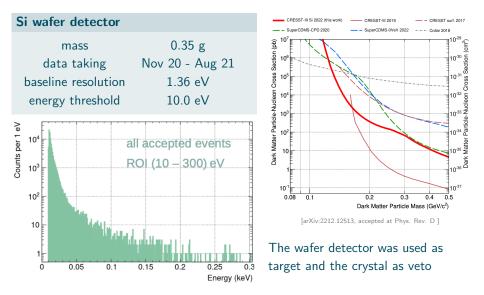


- LEE decreases over time with similar decay time in all detectors (\sim 150 d)
- Neutron calibration has no effect on the LEE rate
- Warm-up to 60 K leads to an increase of the rate, which then decreases with a faster rate (\sim 15 d)
- Warm-up to 200 mK and 600 mK do not affect the LEE rate Anna Bertolini (Max-Planck-Institute for Physics) - Rencontres de Blois 2023

What we have learned about the LEE

Observations:

- present in different materials
- does not scale with size
- rate decays with time
- rate increases after a warm-up



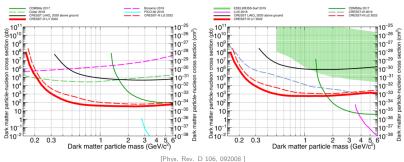
[J. Phys.: Conf. Ser. 1342 012076]

Open possibilities:

- LEE might originate from stress
- LEE might be related to the sensor

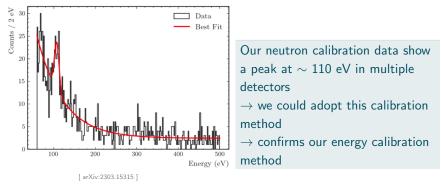
Results from a Si Wafer Detector

Spin Dependent Limits with LiAlO₂ Detectors


Lithium aluminate detector

mass	11.2 g		
data taking	Nov 20 - Aug 21		
baseline resolution	12.8 eV		
energy threshold	83.6 eV		

Lithium aluminate contains three isotopes sensitive to spin-dependent DM interactions: Li-6, Li-7, Al-27


Proton

Recoil Peak in Neutron Calibration

- Sub-keV calibration is challenging: it is difficult to find a low energy source and it generates additional background
- Radiative capture of thermal neutrons could provide a good energy calibration at around 100 eV [CRAB collaboration arXiv:2011.13803]
- $\bullet\,$ In CaWO4 this effect should be visible as a 112 eV peak

- Perform additional warm up tests to study the LEE
- Ongoing detector R&D e.g. new detector designs and stress free holdings
- Preparation of a new run for excess studies at end of the year
- Preparation for upgrade of read-out system to 288 channels, aiming to reach 1 tonne day exposure

Summary

- With the current run (Nov 2020 ongoing) CRESST released new dark matter results:
 - extension to lower DM masses with 10 eV energy threshold
 - competitive spin-dependent DM limits
- We performed warm-up test to study the origin of the LEE
 - excess decreases over time
- Neutron source might be used for low energy calibration
- Ongoing preparation of a new run with new detector designs

