Search for new physics with the XENONnT detector

R. Biondi on behalf of XENON Collaboration

XENON

34th Rencontres de Blois - 16th May 2023

The XENON Collaboration

- 27 Institutions Worldwide
- More than 180 Scientists

Main goal:

Detection of dark matter particles with a liquid xenon TPC Last Collaboration Meeting in L'Aquila 1-3 February 2023

Xenonexperiment.org
Xenon_experiment
XENONexperiment
XENONexperiment

The TPC Detection Principle

Z [cm]

Dual-phase (liquid+gas) Energy reconstruction time GXe 3D event reconstruction E, anode extraction 52 Fiducialization gate Event discrimination LXe drift time (depth) E Data outside FV ER data • **S1** ER data<10 keV particle Preliminary -20-40cathode -60-80 $S1_{\text{bottom}}$ S2_{top} S2_{bottom} -100**S1 S2** -120 $E = W\left(\frac{\mathfrak{S}_1}{\mathfrak{a}_1} + \frac{\mathfrak{S}_2}{\mathfrak{a}_2}\right)$ -140Drift Time Drift Time -1600 20 30 40 50 63 Electronic Recoil (γ, β) Nuclear Recoil (WIMP)

 $S1_{top}$

Search for new physics with the XENONnT detector (R. Biondi)

R [cm]

S2

Evolution of Xe-based DM detectors

	XENON10	XENON100	XENONIT	XENONnT	DARWIN - XLZD
Period	2005 - 2007	2008 - 2016	2012 - 2018	2019 - 2025	2025
Dimensions	15 x 20 cm	30 x 30 cm	lxlm	1.5 x 1.3 m	2.6 x 2.6 m
Active mass	14 kg	62 kg	2 tons	5.9 tons	40 tons
Sensitivity	~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²

The XENON project at LNGS

Laboratori Nazionali del Gran Sasso – INFN (Hall B)

XENONIT

1400 mt of rock: 3.800 m.w.e.

Muon flux ~ $1 \text{ m}^{-2} \text{ h}^{-1}$

Suppression factor: 10⁶

Low-ER excess in XENON1T

From: Phys. Rev. D 102, 072004

ER search in <30 keV range shown an excess of events over the expected background corresponding to a **3.3 o fluctuation**

Hypothesis of ³⁷Ar leak is excluded:

- Removed by Kr distillation
- Limits on air leak from other contaminants (Kr, Rn)

Several hypothesis:

- Solar axions (3.4σ over bkg)
- Neutrino magnetic moment (3.2σ over bkg)
- Bosonic DM: ALPs, dark photons (3.0 over bkg)
- β decay of Tritium
- New Physics?

XENONnT

Fast upgrade exploiting the infrastructures from XENONIT

New TPC

- Drift length 1.5 m (XENON1T had 1 m)
- Active **Xe mass 5.9 t** (2 t)
- Double the number of PMTs to 494
- Light detection efficiency: 36%
- Carefully **selected materials** to minimize background
- Field shaping rings with tunable potential

Commissioned in March 2020 during the lockdown due to COVID pandemic

Neutron Veto

Water Cherenkov detector built around the cryostat with 120 PMTs inside an enclosure of reflective panels

To tag **neutrons events** which contribute to background in WIMP search

Running with pure water: Measured tagging efficiency 68%

It will be doped with Gd to increase performances (~87% efficiency predicted)

Rn Removal Column

Low-ER search background comes mainly from β -decay of ²¹⁴Pb originating from ²²²Rn accumulating into LXe and GXe, mitigated through careful material screening and selection.

Rn atoms are kept in the column and decay

1.7µBq/kg

(GXe-only mode)

Two operation modes: GXe and LXe:

- GXe: Remove Rn emanated from signal cables, cryogenic pipe, ...
- LXe: Remove Rn emanated from TPC body, PMT, ...

Further x2 reduction achieved for new science run with GXe+LXe: <1 µBq/kg

Search for new physics with the XENONnT detector (R. Biondi)

10

Liquid Xe Purification System

Direct liquid circulation with cryogenic pump To purify faster the full inventory of LXe

- High flow: 2 liters LXe/min
- Replaceable filter units with low Rn emanation
- Online purity measurement by purity monitor

Achieved x10 better purity than XENON1T

Electron lifetime > 10 ms in science run

First Science Run - SR0

Main Goal: Clarify the excess in LOW-ER from XENONIT

- All but 17 PMTs working
- Triggerless acquisition
- Online processing
- Gain: 2 x 10⁶ stable at 3% level
- Drift field: 23 V/cm due to short circuit between cathode and bottom screen
- Extraction field: 2.9 kV/cm
- Extraction efficiency: ~53%
- Single Electron Gain: ~31 PE
- Internal calibration: ^{83m}Kr, ²²⁰Rn, ³⁷Ar
- External calibration: AmBe
- Tritium Enhanced mode (TED)

Occasional temporary ramp-downs of the anode, due to localized, high-rate, bursts of electrons (Hotspot).

Calibration

Two **ER calibration** sources at low energies:

³⁷Ar: mono-energetic peak at 2.82 keV, validates resolution model and energy reconstruction of peaks.

e-lifetime

²²⁰Rn: its daughter ²¹²Pb provides a flat β -spectrum used to estimate cut acceptances and energy threshold

NR calibration with **AmBe** source:

Search for new physics with the XENONnT detector (R. Biondi)

Corrections and Energy Reconstruction

S1 and S2 signals have to be corrected to take into account **position dependent response** of the detector, this is done via the periodical ^{83m}Kr calibration.

Corrected signals cS1 and cS2 are then used in the analysis

Energy reconstruction:

Using: ³⁷Ar, ^{83m}Kr, ^{131m}Xe, ^{129m}Xe calibration

$$E = 13.7 \text{ eV} \left(\frac{cS1}{g_1} + \frac{cS2}{g_2}\right)$$

H Low energy lines

 χ^2 -fit

 Q_y [PE/keV]

Residual [PE/keV]

Low Energy ER Analysis

From: PRL 129, 161805 (2022)

Full blind analysis

- Energy range: (1-140) keV
- Fiducial mass: (4.37±0.14) t
- Exposure: 1.16 tons years

No excess observed

The excess observed in XENONIT could come from either tritium or statistical fluctuation

Background in (1,30) keV:

(15.2 ± 1.3 stat)events/(t*y*keV)

Factor ~5 reduction w.r.t. XENONIT

Limits on New Physics

WIMPs search

From arXiv: 2303.14729

Background model:

Electronic Recoil (ER): Mainly β decay of ²¹⁴Pb from ²²²Rn

Accidental Coincidences (AC): random pairing of small S1 and S2 signals

Surface/Wall: ²¹⁰Pb plate-out on the PTFE wall of the TPC

Nuclear Recoil backgrounds (same shape as WIMP):

- CEvNS
- Neutrons

Signal-like region containing 50% of a 200GeV/c² WIMP signal with highest signal-to-noise ratio

WIMPs Results

WIMP Mass $M_{\rm DM}$ [GeV/c²]

Comparison with other LXe Experiments

ER Background:

Spin-Independent WIMP-Nucleon cross section:

PandaX-4T PRL 129, 161804 (2022) XENONIT PRD 102, 072004 (2020) LZ arXiv:2207.03764

XENONnT PRL 129, 161805 (2022)

Same conservative power-constraint applied to results of other LXe experiments from non-blind

Summary and Outlook

We performed a search for new physics exploiting electronic and nuclear recoil data from XENONnT

The average ER background rate of (15.8 ± 1.3 stat) events/(t·y·keV) in the (1, 30) keV energy region is the **lowest ever achieved in a DM search experiment**

Blind analysis shows **no excess above the background**, excluding BSM interpretations of the XENONIT excess.

Best fit for WIMP search indicates **no significant excess** we therefore set a new limit for SI WIMP cross section:

2.6 10⁻⁴⁷ cm² at 28 GeV/c² and 90% CL **Thank You!**

Search for new physics with the XENONnT detector (R. Biondi)

What's next:

- Ongoing science run (SR1) with factor 2 lower radon level
- Addition of Gd salt to the Neutron veto

BACKUP

Efficiencies

Detection efficiency validated using Monte Carlo and Data-Driven methods

Good agreement between the two approaches

Total efficiency takes also event-selection efficiency into account

Results from XENON1T

10

Tritium Enhanced Dataset (TED)

To Exclude presence of Tritium traces in the detector, XENONnT was operated **bypassing the GXe purification** for 14.3 days at the end of SRO

This would enhance the HT concentration in LXe by a factor 10-100

Data collected in this TED mode were **blinded**

After the unblinding, **no evidence was** found for a tritium-like excess

Tritium is therefore not included in the background model.

After the upblinding ne ovidence wa

