Alessandro Montanari, on behalf of the H.E.S.S. Collaboration

Landessternwarte, ZAH, Heidelberg University

34th Rencontres de Blois 16 May 2023

May 14-19

34th Rencontres de Blois

A landscape of H.E.S.S. results on Indirect Dark Matter Search

Alessandro Montanari, on behalf of the H.E.S.S. Collaboration

Landessternwarte, ZAH, Heidelberg University

34th Rencontres de Blois 16 May 2023

May 14-19

34th Rencontres de Blois

A landscape of H.E.S.S. results on Indirect Dark Matter Search

Flux for annihilation...

$$\frac{d\Phi(\Delta\Omega, E_{\gamma})}{dE_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\rm DM}^2} \frac{dN_{\gamma}}{dE_{\gamma}} \times \int_{\Delta\Omega} d\Omega \int_{l.o.s.} \rho^2(r[s]) ds$$

$$\frac{d\Phi(\Delta\Omega, E_{\gamma})}{dE_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\rm DM}^2} \frac{dN_{\gamma}}{dE_{\gamma}} \times \int_{\Delta\Omega} d\Omega \int_{l.o.s.} \rho^2(r[s]) ds$$
Flux for annihilation...

Weakly Interacting Massive Particles (WIMPs)

• Weak interaction mass scale and ordinary gauge couplings \rightarrow right relic DM density with no fine-tuning

$$\Omega_{\rm DM} h^2 = \frac{3 \times 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma v \rangle} \qquad \langle \sigma v \rangle_{\rm W} \sim \frac{\alpha^2}{m_{\rm WIMP}^2} \sim 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$$

- Mass scale at GeV-TeV
- Benchmark for indirect detection: thermally produced WIMPs

Dark matter can be identified

- WIMPs might annihilate to SM model particles
 → Very High Energy (VHE, E > 100 GeV) γ-rays
- Pointing back to the source
 - \rightarrow Reveal abundance and distribution of DM
- Spectral features characteristic of DM
 - \rightarrow Discrimination from background

Dark matter can be identified

- WIMPs might annihilate to SM model particles
 → Very High Energy (VHE, E > 100 GeV) γ-rays
- Pointing back to the source
 - \rightarrow Reveal abundance and distribution of DM
- Spectral features characteristic of DM
 - \rightarrow Discrimination from background

Identification of DM is possible

The H.E.S.S. observatory

with Imaging Atmospheric Cherenkov Telescopes (IACT) we can:

- Perform pointed observations
- Systematically scan limited regions

Targets to search for dark matter

Galaxy satellites of the Milky Way

- Many of them within 100 kpc
 - High DM concentration expected
 - Low astrophysics background

DM subhalos in the Galactic halo

- Low signal
- Low astrophysics background

Galactic Center

- Very close (~8 kpc)
- High DM concentration, but...
 - DM profile? Core? Cusp?
- High astrophysical background

Galactic halo

- Large statistics
- Galactic diffuse background

Targets to search for dark matter

Galaxy satellites of the Milky Way

- Many of them within 100 kpc
 - High DM concentration expected
- Low astrophysics background

DM subhalos in the Galactic halo
Low signal

Low astrophysics background

IACT observational strategies for DM search:

- Deep observations of the Galactic Center region
- Observations of the most promising dwarf galaxies
- Observations of promising **DM subhalo candidates**

Very close (~8 kpc)

Galad

- High DM concentration, but...
 - DM profile? Core? Cusp?
- High astrophysical background

Galactic halo

- Large statistics
- Galactic diffuse background

Galactic Center searches

~ surveyed region by H.E.S.S.

Galactic Center searches

0 -

~ surveyed region by H.E.S.S.

The Inner Galaxy Survey

- The Inner Galaxy Survey (IGS, 2014-2020)
 - \rightarrow 546 hours of high quality data
- H.E.S.S. multi-year observational program of the inner few degrees around the Galactic Center, conducted with the full five-telescopes array
- One of the motivations: to reach the best sensitivity possible to DM annihilation signals

- No excess compatible with DM signal
 → Computation of upper limits on
 the annihilation cross section
- Most constraining limits for TeV mass range for the channels tested:
 - annihilation into the W⁺W⁻
 channel⟨σv⟩= 3.7x10⁻²⁶ cm³/s at
 1.5 TeV
- Comparing w/ other experiments

Constraints on the line

- Using H.E.S.S. I data, collected between 2004 and 2014, for a total of 254 hours
- No excess compatible with DM signal
 → Computation of upper limits on
 the annihilation cross section
- Limits for above 300 GeV:
 - annihilation into the γγ
 channel(σv)= 4x10⁻²⁸ cm³/s at
 1 TeV

Searches towards dwarf galaxies

Observations of DES dwarf galaxies

No observed positive excess

H.E.S.S. Collaboration, Phys. Rev. D 102, 062001 (2020)

H.E.S.S. Collaboration, Phys. Rev. D 103, 102002 (2021)

- Complementary targets are dwarf irregular galaxies
- 18 hours of observations with H.E.S.S. of the Wolf-Lundmark-Melotte galaxy
- DM distribution well parametrized by a coreNFW
- → Improvement of a factor at least 10 w.r.t. previous limits from other experiments

Selection of the most promising DM subhalos

Ref. Ajello et al., Astrophys. J. Suppl. 2017, 232, 18

Thorough selection of the most promising unassociated sources in the *Fermi*-LAT catalog as DM subhalos - the unidentified Fermi objects (UFOs)

4 observed by H.E.S.S.

A. Montanari, for the H.E.S.S. Collaboration - Landscape of indirect DM detection with H.E.S.S. - 34th Rencontres de Blois

UFO spectral energy distribution

- *Fermi-LAT* flux points and upper limits
- DM-induced emission models are viable according to *Fermi*-LAT measurements
- Need massive DM because no energy cut-off is seen from the *Fermi*-LAT data analysis

H.E.S.S. upper limits

- Fermi-LAT flux points and upper limits
- DM-induced emission models are viable according to *Fermi*-LAT measurements
- Need massive DM because no energy cut-off is seen from the *Fermi*-LAT data analysis
- → H.E.S.S. upper limits (no excess found) constrain some viable DM-induced emission models for *Fermi*-LAT

DM-induced models excluded

Sensitivity reach to DM signals

~ surveyed region by H.E.S.S.

Assessing the sensitivity to dark matter signal

- Mock dataset of H.E.S.S. IGS observations \rightarrow 500h and 1000h of flat exposure
- Most up-to-date setup:
 - Andvanced calculations for theoretical gamma-ray DM annihilation yields
 - Recent DM profiles determination from measurements of the MW rotation curve

Cautun et al., MNRAS, 494.3, (2020)

 Background modeling considering residual and conventional TeV astrophysical background

H.E.S.S.

AM, Emmanuel Moulin and Nicholas L. Rodd, Phys. Rev. D 107, 043028 (2023)

Assessing the sensitivity to dark matter signal

- Mock dataset of H.E.S.S. IGS observations \rightarrow 500h and 1000h of flat exposure
- Most up-to-date setup:
 - Andvanced calculations for theoretical gamma-ray DM annihilation yields
 - Recent DM profiles determination from measurements of the MW rotation curve

Cautun et al., MNRAS, 494.3, (2020)

- Background modeling considering residual and conventional TeV astrophysical background
- \rightarrow Assessing the ~ final sensitivity reach of the current generation of IACTs

AM, Emmanuel Moulin and Nicholas L. Rodd, Phys. Rev. D 107, 043028 (2023)

Prospects for canonical DM models

Prospects for canonical DM models

- Tucl)

3FHL J0929.2

10-1

E (TeV)

10

Thank you for your attention!

A. Montanari, for the H.E.S.S. Collaboration - Landscape of indirect DM detection with H.E.S.S. - 34th Rencontres de Blois

- Tucl)

3FHL J0929.2

10-1

E (TeV)

10

Backup slides

A. Montanari, for the H.E.S.S. Collaboration - Landscape of indirect DM detection with H.E.S.S. - 34th Rencontres de Blois

$$\frac{d\Phi(\Delta\Omega, E_{\gamma})}{dE_{\gamma}} = \frac{1}{4\pi} \frac{1}{m_{\rm DM}\tau} \frac{dN_{\gamma}}{dE_{\gamma}} \times \int_{\Delta\Omega} d\Omega \int_{l.o.s.} \rho(r[s]) ds$$

If the source is distant:

- every point in the source is distant $\rightarrow r \sim R$
- the flux depends approximately ~ M/R^2 (M total mass of the source)
- strongest signal from targets with the largest DM mass and also quite close \rightarrow strongest constraints from galaxy clusters observations

Gamma-rays from dark matter annihilation

- WIMPs might annihilate to SM model particles
- Particles in the final state
 - \rightarrow Very High Energy (VHE, E > 100 GeV) $\gamma\text{-rays}$

Gamma-rays from dark matter annihilation

- WIMPs might annihilate to SM model particles
- Particles in the final state \rightarrow VHE (E > 100 GeV) γ -rays
- VHE γ-rays point back to the source

 \rightarrow Reveal abundance and distribution of DM

- Spectral features characteristic of DM
 - \rightarrow Discrimination from background

Dark matter can be identified

- WIMPs might annihilate to SM model particles
- Particles in the final state \rightarrow VHE (E > 100 GeV) γ -rays
- VHE γ-rays point back to the source
 - \rightarrow Reveal abundance and distribution of DM
- Spectral features characteristic of DM
 - \rightarrow Discrimination from background

Identification of DM possible:

- γ -rays distribution \rightarrow DM density distribution
- γ -rays spectrum \rightarrow reaction processes and DM mass

The H.E.S.S. observatory

Energy range 30 GeV - 100 TeV Energy resolution ~10% (68% cont.) Angular resolution ~0.1°/gamma, Effective detection area A_{eff} ~10⁵ m² at TeV energies 1300 hours of observations/year Observations preferred for zenith angles < 60°

A. Montanari, for the H.E.S.S. Collaboration - Landscape of indirect DM detection with H.E.S.S. - 34th Rencontres de Blois

Imaging Atmospheric Cherenkov Technique

IACT observational strategy:

 Pointed observations or systematic scans of limited regions

Particle physics factor:

- Differential photon yield
- DM particle mass
- Cross section

Astrophysics factor: J-factor

- DM distribution in the target
- Large uncertainties...
 - Baryon feedback
 - Tidal Stripping
 - Clustering

Data analysis with Test Statistics

$$L(N_{\rm S}, N_{\rm B}|N_{\rm ON}, N_{\rm OFF}, \alpha) = \frac{(N_{\rm S} + N_{\rm B})^{N_{\rm ON}}}{N_{\rm ON}!} e^{-(N_{\rm S} + N_{\rm B})} \frac{(N_{\rm S}' + \alpha N_{\rm B})^{N_{\rm OFF}}}{N_{\rm OFF}!} e^{-(N_{\rm S}' + \alpha N_{\rm B})} e^{-(N_{\rm S}' + \alpha N_{\rm B})} \frac{(N_{\rm S}' + \alpha N_{\rm B})^{N_{\rm OFF}}}{N_{\rm OFF}!} e^{-(N_{\rm S}' + \alpha N_{\rm B})} e^{-(N_{\rm S}' + \alpha N_{\rm B})} \frac{(N_{\rm S}' + \alpha N_{\rm B})^{N_{\rm OFF}}}{N_{\rm OFF}!} e^{-(N_{\rm S}' + \alpha N_{\rm B})} \frac{(N_{\rm S}' + \alpha N_{\rm B})^{N_{\rm OFF}}}{N_{\rm OFF}!} e^{-(N_{\rm S}' + \alpha N_{\rm B})^{N_{\rm OFF}}} e^{-(N_{\rm S}' + \alpha N_{\rm B})^{N$$

- Counting experiment, measured events
- Expected events in the ON and OFF regions
- Ratio between the angular size of the ON and OFF regions
- Comparison of hypotheses through Log-Likelihood Ratio Test Statistics (TS)
 - Signal against background-only

$$LLRTS = -2 \ln\left(\frac{L_1}{L_0}\right)$$

• No significant excess in the dataset

 \rightarrow Upper limits (U.L.) on the free parameter that we want to test

Upper limit determination with the TS

Comparison of hypotheses through Log-Likelihood Ratio Test Statistics (TS) $LLRTS = -2 \ln\left(\frac{L_1}{L_0}\right)$ No significant excess in the dataset LRTS \rightarrow Upper limits (U.L.) on the free parameter that we want to test LLRTS (1dof) = 2.71 for 95% C.L. UL Ref. Cowan, G., Cranmer, K., Gross, E. et al. Eur. Phys. J. C 71, 1554 (2011) Example for Dark Matter search

Systematic uncertainty

- No excess compatible with DM signal
 → Computation of upper limits on
 the annihilation cross section
- Most constraining limits for TeV mass range for the channels tested:
 - annihilation into the W⁺W⁻
 channel(σv)= 3.7x10⁻²⁶ cm³/s
 at 1.5 TeV

129, 111101 (2022)

H.E.S.S. Collaboration, Phys. Rev. Lett.

Searches towards dwarf galaxies

Determination for Reticulum II

- Stellar velocity dispersion \rightarrow J-factor

Modeling the DM distribution:

- Pressure-supported systems
- Use kinematic tracers of the gravitational potential
- Works very well in DM-dominated environments, e.g. dwarf galaxies, via the Jeans equation modeling

H.E.S.S. Collaboration, Phys. Rev. D 102, 062001 (2020)

Limits and uncertainty on the J-factor

H.E.S.S. Collaboration, Phys. Rev. D 103, 102002 (2021)

- Complementary targets are dwarf irregular galaxies
- 18 hours of observations with H.E.S.S. of the Wolf-Lundmark-Melotte galaxy
- DM distribution well parametrized by a *coreNFW*
- → Improvement of a factor at least 10 w.r.t. previous limits from other experiments

DM-induced models for UFO emissions

- Combination of Fermi-LAT and H.E.S.S. datasets
- 95% C.L. combined U.L. on the product between the annihilation cross section and the J-factor
- Some viable models to explain the stacked
 Fermi-LAT datasets and considering the H.E.S.S. U.L.

Allowed J-factors for the UFOs

- Assuming thermally produced WIMPs, we fix the annihilation cross section
- J-factors allowed given combined H.E.S.S.
- But, high J-factors for the UFOs from cosmological simulations
- → DM induced emission for the UFOs very unlikely, according to the H.E.S.S.

constraints

1000h annihilation yields

Background modeling considering residual and conventional TeV astrophysical background AM, Emmanuel Moulin and Nicholas L. Rodd, Phys. Rev. D 107, 043028 (2023)

Assessing the sensitivity to dark matter signal

- Mock dataset of H.E.S.S. IGS observations \rightarrow simulating 500h and 1000h of flat exposure
- Most up-to-date and andanced calculations for theoretical gamma-ray DM
- Recent DM profiles determination from measurements of the MW rotation curve Cautun et al., MNRAS, 494.3, (2020)

 W^+W

Prospects for canonical DM models

 The Quintuplet, TeV scale state charged under representation 5 of SU(2)

Ref. for the spectra Bauer, C. W., Rodd N. L., and Webber B. R., JHEP 06, 121 (2021)

- Thermal Quintuplet excluded within the present sensitivity
- A few non-thermally produced
 Quintuplet models are still available
 above several ten TeV masses

AM, Emmanuel Moulin and Nicholas L. Rodd, Phys. Rev. D 107, 043028 (2023)

Limits from galaxy clusters

- Observations of the Fornax galaxy cluster
- 14.5 hours of total live time
- Possible enhancements to the gamma-ray flux are considered:
 - DM substructures
 - Sommerfeld effect
- Limits for different particle models and annihilation channels
- \rightarrow reaching $\langle \sigma v \rangle \sim 10^{-22-23}$ cm³/s at 1 TeV

H.E.S.S. Collaboration, Astrophys. J., 750, 123 (2012)

Points of the p9MSSM in the (σ^{SI} , σv_0) space

Hryczuk A., Jodlowski K., Moulin E. et al., JHEP, 43, 1910 (2019)

Landscape of photon indirect detection

Boddy, Lisanti, McDermott, Rodd, Weniger et al., arXiv: 2203.06380

Constraints on DM from PBHs evaporation

- Limit on Primordial Black Holes (PBHs) evaporation
- Number of gamma-rays from PBH evaporation scales as √∆t
- Background increases as Δt
- Optimal time window of few tens of seconds
- → Signature of PBH, burst of few gamma-like events arriving coincidentally
- \rightarrow Upper limits on the burst rate

H.E.S.S. Collaboration, JCAP 04 (2023)

Constraints on DM from PBHs evaporation

- Limit on Primordial Black Holes (PBHs) evaporation
- Constraints on initial fraction of DM in PBHs:
- \rightarrow Subdominant fraction of DM

H.E.S.S. Collaboration, JCAP 04 (2023)

