

The FASER Experiment: First Physics Results

34th Rencontres de Blois 14th – 19th May 2023

Lottie Cavanagh on behalf of the FASER Collaboration charlotte.cavanagh@cern.ch

Introduction: The FASER Experiment

FASER is a new, small experiment designed to search for new long-lived particles (LLPs), and to study high energy neutrinos, produced at the ATLAS Interaction Point.

- Exploits large LHC collision rate with highly collimated forward production of light particles
- In addition to neutrinos, FASER targets new long-lived BSM particles including dark photons and ALPs
- Located 480m downstream of ATLAS, shielded with 100m of rock and concrete

The FASER Detector

scintillator system

Front Scintillator

veto system

- 10 cm active radius 7 m long
- FASER 2 x 20 mm thick **Scintillator** arXiv:2207.11427 **Tracking spectrometer stations** 35 x 30 cm area veto system TO ATLAS IP 3 x 3 layers of ATLAS SCT strip modules 3 x 20 mm thick 30 x 30 cm area Electromagnetic Calorimeter Decay volume **4 LHCb Outer** ECAL modules **FASERv** emulsion Interface detector Tracker (IFT) 730 layers of 1.1 mm **Trigger / timing** tungsten + emulsion (8 interaction lengths) scintillator station 10mm thick + dual PMT Magnets readout ($\sigma = 400 \text{ ps}$) **Trigger / pre-shower**

0.57 T Dipoles

1.5 m decay volume

FASER

ATLAS

FASERv

Detector installation between March – Nov 2021, ready for LHC Run 3

21

Calo.

FASER Operations

FASER CERN

- Successful operation throughout 2022
 - Continuous and largely automatic data taking
 - Up to 1.3 kHz trigger rate
- Recorded 96.1% of delivered luminosity
 - DAQ deadtime 1.3%
 - A couple of DAQ crashes
- Emulsion detector exchanged twice
 - To manage occupancy
 - First box only partially filled
- Calorimeter gain optimised for:
 - Low energy (< 300 GeV) before second exchange
 - High energy (up to 3 TeV) after this exchange

FASER Operations: Example Collision Event

Electronic Neutrino Analysis

- Neutrinos are produced copiously in decays of forward hadrons
 - Highly energetic (TeV scale), relatively high interaction cross section
- Extends FASER physics program into SM measurements
 - Targets measurement of highest energy man-made neutrinos
 - Energy range complementary to existing neutrino experiments

PRD 104, 113008

Study at colliders originally proposed by Rújula and Rückl in 1984!

Observing Neutrino Candidates in FASER

- Possible to make a first observation of neutrinos
 - Using just spectrometer and veto systems
 - Search for charged-current v_{μ} events with no signal in two front vetos and one high momentum track in the rest of detector

Neutrino Analysis: Event Selection

Can detect CC v_{μ} using just spectrometer and veto systems!

Expected event yield from simulation:

- Forward hadron production modelled with DPMJET or SIBYLL generator
- Neutrino interaction simulated with GENIE
- Expect 151 ± 41 events (average between DPMJET/SIBYLL with error from difference)
- No experimental errors included
- Current aim is not to measure cross section

- Collision event with good data quality
 - Runs during good physics data periods, 35.4 fb-1
- No signal (< 40 pC) in 2 front vetos
- Signal (> 40 pC) in other 3 vetos
- Exactly 1 good fiducial track (r < 95 mm) track
 - p > 100 GeV, theta < 25 mrad
 - Extrapolating to r < 120 mm in front veto
- Timing and preshower consistent with ≥ 1 MIP

Neutrino Analysis: Background Estimate

- 1. Neutral hadrons estimated from 2-step simulation
 - Expect O(300) neutral hadrons with E>100 GeV reaching FASERv
 - Most accompanied by muon, but conservatively assume it misses veto system
 - Most neutral hadrons absorbed in tungsten without producing high-momentum track
 - Expect 0.11 ± 0.06 events
- 2. Scattered muons estimated from control regions of events with single track segment in front tracker station at large radius (90 < r < 95 mm) $\mathcal{L} = 35.4$
 - Expect: 0.08 ± 1.83 events
- 3. Veto inefficiency estimated from events with just one veto scintillator firing
 - Veto efficiencies fitted in final fit of events with 0, 1 or 2 veto layers firing
 - Negligible background due to very high veto efficiency

Neutrino Analysis: Results

- Unblinded results show 153 events in our signal region!
 - 10 events have one veto signal
- This is the first *direct* detection of collider neutrinos!
 - Signal significance of 16σ, to appear in PRL: <u>arXiv:2303.14185</u>

Neutrino Distributions

- High occupancy in front track station
- More v_{μ} than anti- v_{μ}
- Most events at high momentum

Track momentum distribution

Note: Plots are not acceptance-corrected and do not show systematic uncertainties

Neutrinos in FASERv

- Analysis of FASERv emulsion detector is underway
 - Multiple candidates, including highly v_e like CC event

Dark Photon Search

- The dark photon is a common feature of hidden sector models
 - Weakly coupling to SM via kinetic mixing (ϵ) with SM γ

$$\mathcal{L} \supset \frac{1}{2} m_{A'}^2 A'^2 - \epsilon e \sum_f q_f \bar{f} \mathcal{A}' f$$

• MeV A's produced mainly in meson decays at the LHC

$$B(\pi^0 \to A'\gamma) = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 B(\pi^0 \to \gamma\gamma)$$

- FASER targets small $\varepsilon \rightarrow \log A'$ decay length
 - $m_{A'} < 2 m_{\mu}$, A' decays 100% to e^+e^- pairs

$$L = c\beta\tau\gamma \approx (80 \text{ m}) \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \left[\frac{100 \text{ MeV}}{m_{A'}}\right]^2$$

- A' -> e^+e^- simulated with FORESEE <u>arXiv:2105.07077</u>
 - π^0 and η via EPOS-LHC generator
 - Subdominant dark brem. via FWW

- Dominant uncertainty from forward hadron production (generator uncertainty)
 - Difference to QGSJET/SIBYLL
 - Parameterised based on A' energy

Dark Photon Analysis: Event Selection

- Simple and robust A' -> e⁺e⁻ event selection optimised for discovery
 - Blind events with no veto signal and calo E > 100 GeV
 - Efficiency ~40% across sensitive region
- Collision event with good data quality
- No signal (< 40 pC) in any veto scintillator
- Exactly 2 good fiducial tracks
 - p > 20 GeV and r < 95 mm
 - Extrapolating to r < 95 mm at vetos
- Timing and pre-shower consistent with at least 2 MIPs
- Calo E > 500 GeV

Calorimeter, top row, left module

Dark Photon Analysis: Background Estimates

- Largest background: neutrino interactions estimated from simulation
 - Mainly from trigger/timing scintillator
 - Estimated using GENIE simulation (300 ab⁻¹) – uncertainties from neutrino flux and mismodelling

 $N = (1.8 \pm 2.4) \times 10^{-3}$

- Veto inefficiency
 - Veto layer efficiency > 99.998%
 - Measured layer-by-layer using muon tracks in spectrometer that point back to vetos
 - 5 scintillator layers reduce expected 10⁸
 background muons to negligible level

Dark Photon Analysis: Background Estimates

- Neutral hadrons (eg K_s) from upstream muon interacting in rock before FASER
 - Heavily suppressed since:
 - Muon nearly always continues after interacting
 - Must pass through the 8 interaction lengths of FASERv
 - Decay products must have calo E > 500 GeV
 - Estimated from lower energy events with 2 or 3 tracks and different veto conditions

 $N = (2.2 \pm 3.1) \times 10^{-4}$

Total background prediction: N = $(2.02 \pm 2.4) \times 10^{-3}$

- Non-collision background: cosmics and nearby beam debris
 - Studied in runs without beams and in non-colliding bunches
 - No events observed with \geq 1 track or calo E > 500 GeV

Dark Photon Analysis: Results

- No events in unblinded signal region
 - Not even with ≥ 1 fiducial tracks

Public conf note:

٠

CERN-FASER-CONF-2023-001

- Based on this null result, FASER is able to set limits in previously unexplored parameter space!
 - Extends exclusion into region motivated by dark matter
 - Taking into account NA62 preliminary result 18

Summary

Neutrino candidate

Operations

- FASER successfully took data in first year of Run 3
 - Running with fully functional detector and very good efficiency
 - Operating well for the start-up of 2023 LHC running

Electronic Neutrino Analysis

- Reconstructed ~150 v_{μ} CC interactions in spectrometer
 - First *direct* detection of collider neutrinos!
 - Opens new window for high energy neutrino studies

Dark Photon Analysis

- Excluded A' in region of low mass and kinetic mixing
 - Probes new territory in interesting thermal relic region

Longer term

 For HL-LHC, larger versions of FASER and FASERv with significant gains in physics sensitivity are being studied in the context of the Forward Physics Facility: <u>https://arxiv.org/abs/2203.05090</u>

• FASER is supported by:

- Additional thanks to:
 - LHC for the excellent performance in 2022
 - ATLAS for providing luminosity information
 - ATLAS for use of ATHENA s/w framework
 - ATLAS SCT for spare tracker modules
 - LHCb for spare ECAL modules
 - CERN FLUKA team for background sim
 - CERN PBC and technical infrastructure groups for excellent support during design construction and installation

Backup Slides

Detector Performance: Trigger + DAQ

- DAQ running smoothly up to 1.3 kHz with deadtime only 1.3%
 - Only two stops in data-taking due to DAQ failures

Detector Performance: Trigger + DAQ (2)

- Total trigger rate falls off faster than luminosity profile during run
 - But coincidence trigger rate flat wrt lumi

Detector Performance: Veto Scintillators

- Veto efficiency measured extrapolating tracks triggered by timing scint. to corresponding layer
 - No requirement on other scintillator layers
 - Layer efficiencies found to be uncorrelated
 - All layers found to have inefficiencies < 2 x 10⁻⁵

Normalised # of events

10

10⁻²

10⁻³

 10^{-4}

 10^{-5}

10⁻⁶

=2Ser

50

100

Detector Performance: Tracker

Hit efficiency 99.64% @ 150 V bias and 1 fC threshold

• Tracker fully timed in wrt LHC clock

• <0.5% dead/noisy strips (inefficiency at edges expected)

Detector Performance: Alignment

- Tracker aligned using iterative local χ^2 method
 - Validated using simulation with misalignment
- Currently only aligning two most sensitive parameters
 - Vertical shift and in-plane rotation
- Aligned residuals close to ideal geometry simulation

Module ID

Detector Perf.: Timing and Calo

- Calorimeter resolution measured in test beam
 - Better than 1% at high energy
- Precision timing of both scintillator and calorimeter
 - Not used in current analyses

Detector Performance: Emulsion

- Track multiplicity and angular distribution measured in initial partial FASERv emulsion
 - Consistent with FLUKA simulation
- Excellent hit resol (0.2 µm) after layer alignment

Neutrinos: Event Display

FIG. 1. Illustration of the FASER detector with a muon neutrino undergoing a CC interaction in the emulsion target.

Neutrinos: Geometric Background

- Measure geometric background by counting # events in SB and scale to SR
- SB defined to enhance muons missing FASERv veto that still give a track in the spectrometer
 - Single IFT segment in 90 < r < 95 mm anulus
 - Loosened momentum requirement
 - No FASERv veto radius requirement
 - Negligible neutrino background
- Fit mom. to extrapolate to p > 100 GeV
- Scale to rate of events with r_{VetoNu} < 120 mm
 - 0 events so use 5.9 events as 3σ upper limit
- Scale from anulus to full acceptance
 - Using large angle muon simulation
- Expect 0.08 ± 1.83 events

Neutrinos: Neutral Hadron Background

- Simulated 10⁹ μ^+ and μ^- events
 - Start from FLUKA Spectra
 - G4 propagation through last 8 m of rock
 - Number of hadrons with p > 100 GeV reaching FASER ≈ 300.

- Estimate fraction of these passing event selection
 - Simulate kaons (Ks/Kl) and neutrons with p > 100 GeV following expected spectra
 - Most are absorbed in tungsten with no high-momentum track → only small fraction pass

- Scale neutral hadrons produced by muons reaching FASER by fraction passing selection
 - Predicts N = 0.11 ± 0.06 events

Neutrinos: fit

- Fit to events with 0, 1 or 2 front veto hits
 - Splitting those were 1 hit is in 1st/2nd layer
- Construct likelihood as product of Poissions
 - With additional 3 Gaussian constraints for Neutral hadron background, Geometric

$$\mathcal{L} = \prod_{i}^{4} \mathcal{P}(n_{i} | \nu_{i}) \cdot \prod_{j}^{3} \mathcal{G}_{j}$$
Inefficiencies:
$$1 - p1 = 99.999994(3)\%$$

$$1 - p2 = 99.999991(4)\%$$

- Determine number in each category
 - Along with inefficiencies of 2 forward vetos, which are found to be close to expected vals.

- n_0 : A neutrino enriched category from events that pass all event selection steps.
- n_{10} : Events for which the first layer of the FASER ν scintillator produces a charge of >40 pC in the PMT, but no signal with sufficient charge is seen in the second layer.
- n_{01} : Analogous events for which more than 40 pC in the PMT was observed in the second layer, but not in the first layer.
- $n_2:$ Events for which both layers observe more than $40\,\mathrm{pC}$ of charge.

Category	Events	Expectation
n_0	153	$ u_ u + u_b \cdot p_1 \cdot p_2 + u_{ m had} + u_{ m geo} \cdot \eta_{ m geo}$
n_{10}	4	$\nu_b \cdot (1-p_1) \cdot p_2$
n_{01}	6	$ u_b \cdot p_1 \cdot (1-p_2)$
n_2	64014695	$\nu_b \cdot (1-p_1) \cdot (1-p_2)$

Neutrinos: Additional Distributions

- Number of clusters in IFT depends on interaction point
 - Further forward interactions have less clusters
- Neutrino tracks have larger angular range
 - Compared to n₂ background events

Dark Photon Search

- Several new physics models propose a hidden sector
 - With a mediator acting as a portal to the SM
- One of best motivated is extra U(1) symmetry
 - Gives rise to additional vector field: dark photon (A'), weakly coupling to SM via kinetic mixing (ϵ) with SM γ
- MeV A's produced mainly in meson decays at LHC

$${}_{\pi^0} \cdots {}_{\pi^0} = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 B(\pi^0 \to \gamma\gamma)$$

• FASER targets small ε, where A' has long decay length

$$\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'} \beta_{A'} \approx (80 \text{ m}) B_e \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right]$$

Below 2m_μ A⁺ nas 100% decay to e⁺e⁻ pair

$$\mathcal{L} \supset \frac{1}{2} m_{A'}^2 A'^2 - \epsilon e \sum_f q_f \bar{f} A' f$$

Dark Photon Signal

- A' \rightarrow e⁺e⁻ decays in FASER volume simulated with FORESEE
 - π^0 and η via EPOS-LHC generator
 - Subdominant dark bremstrahlung via FWW
- Generator uncertainty from difference to QGSJET/SIBYLL

0.4

ខ្ន 1.0

of

- Parameterised based on A' energy
- Experimental uncertainties
 - Tracking efficiency
 - 15% for close-by tracks
 - Estimated from overlay
 - Calo E scale
 - 6% at 500 GeV
 - Cross-checked with E/p
 - Momentum scale/resol.
 - 5% each
 - Negligible effect

10⁻³-

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-2}

ω

Kinetic Mixing

Expected Number of Signal Events

10³

10²

 10^{1}

100

 10^{-1}

 -10^{-2}

 10^{-3}

FASER Preliminary

L=26.8 fb⁻¹

 10^{-1}

N=3

Dark Photon: Event Display (1)

• Simulated dark photon event

Dark Photon: Event Display (2)

Dark Photon: Signal Acceptance x Efficiency

- Signal acceptance for A' produced in IP1
 - And decaying in FASER decay volume

- Efficiency of calorimeter E > 500 GeV
 - For A' decaying in FASER decay volume

38

Dark Photon: Timing Scintillator Selection

Timing cut of 70 pC is ~100% efficiency for signal

Supresses a large fraction of data, which are predominantly single-track events

Dark Photon: Cut Flow

Efficiency of analysis selection for data and example signal Note the data was preselected to have ≥ 1 track (no quality cuts) in the event

Overall signal efficiency ≈ 40 % While reducing background to 0

	Data		Signal ($\varepsilon = 3 \times 10^{-5}, m_{A'} = 25.1 \text{MeV}$)	
Cut	Events	Efficiency	Events	Efficiency
Good collision event	151750788		95.3	99.7%
No Veto Signal	1235830	0.814%	94.0	98.4%
Timing/Preshower Signal	313988	0.207%	93.0	97.3%
$\geq 1 \text{ good track}$	21329	0.014%	85.2	89.2%
= 2 good tracks	0	0.000%	44.5	46.6%
Track radius $< 95 \text{ mm}$	0	0.000%	40.4	42.3%
Calo energy $> 500 \text{ GeV}$	0	0.000%	39.7	41.6%

Dark Photon: Neutral Hadron Background

- Select 3-track events where muon produces two other particles
 - A minority of these are neutral hadrons (Ks) + continuing muon (assumed to have highest momentum)
- Look at number of 3 track events with 100 < Ecalo < 500 GeV
 - Compared to number of 2 track events (muon missed) that don't pass the veto with Ecalo < 100 GeV
- Use this to estimate # events with Ecalo > 500 GeV where muon is not seen
 - Assuming E spectrum of neutral hadron is same whether muon is seen or not
- However, most of these are γ conversions in veto material that would fail event selection
 - Removed by E/p < 0.5 for two-track system (i.e. without muon)
 - But this biases Ecalo \rightarrow use simulated two-track p_z to estimate events with Ecalo > 100 or 500 GeV
- From 3-track events in data strong evidence that most Ks decay in FASERv and fire veto
 - Hence scale the neutral hardon events with Ecal > 500 GeV by fraction of 3-track events decaying after veto → (2.2 ± 3.1) x 10⁻⁴

Dark Photon: Systematic Uncertainties Summary

- Complete list of systematic uncertainties and their impact on the signal yield
 - Numbers in parenthesis are the effect on signal in previous unexcluded FASER reach

Source	Value	Effect on signal yield			
Theory, Statistics and Luminosity					
Dark photon cross-section	$\frac{0.15{+}(E_{A'}/4{\rm TeV})^3}{1{+}(E_{A'}/4{\rm TeV})^3}$	15-65% (15-45%)			
Luminosity	2.2%	2.2%			
MC Statistics	$\sqrt{\sum W^2}$	1-3%~(1-2%)			
Tracking					
Momentum Scale	5%	< 0.5%			
Momentum Resolution	5%	< 0.5%			
Single Track Efficiency	3%	3%			
Two-track Efficiency	15%	15%			
Calorimetry					
Calo E scale	6%	0-8%~(<1%)			

Dark Photon: Calo Energy Scale

- Calorimeter energy scale and uncertainty evaluated based on test beam data and in-situ MIP calibration
 - Validated using conversion events (μ with e⁺e⁻ pair)
 - E/p in data and MC agrees within 6%

Dark Photon: Tracking Systematics

- Single track efficiency studies in muons events with track segments found in each station
 - 98.4% in data with data/MC agreement at 1.5% level
- Tracking efficiency lower for two close by tracks (~60%) \rightarrow studied in two ways:
 - Overlaying hits from 2 single track events in either data or MC and measuring efficiency to find 2 tracks
 - Correct MC by ~15% difference and conservatively apply full correction as a MC systematic
 - Conversions and delta-ray events where require 1 less track than needed (i.e. 3 or 2 respectively)
 - With additional track segments + preshower/calo signals consistent with additional EM signal

Dark Photon: Additional Limits

- Limits including recent prelim NA62 results
 - Partially overlaps with FASER exclusion

• Alternative limit plot showing individual previous limits available from DarkCast

Note FASER limits very similar at 95% CL and 90% CL

FASER Collaboration

• 87 members across 24 institutes from 10 countries

FASER Publications

- The FASER Detector: arXiv:2207.11427
- The FASER W-Si High Precision Preshower Technical Proposal: <u>CERN Document Server</u>
- The tracking detector of the FASER experiment: NIM 166825 (2022)
- The trigger and data acquisition system of the FASER experiment: JINST 16 P12028 (2021)
- First neutrino interaction candidates at the LHC: PRD 104 L091101 (2021)
- Technical Proposal of FASERv neutrino detector: <u>arXiv:2001.03073</u>
- Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC: EPJC 80 61 (2020)
- Input to the European Strategy for Particle Physics Update: arXiv:1901.04468
- FASER's Physics Reach for Long-Lived: PRD 99 090511 (2019)
- Letter of Intent: arXiv:1812.09139
- Technical Proposal: arXiv:1811.10243