

Searches for electroweak production of supersymmetric particles with the ATLAS detector

Tina Potter on behalf of the ATLAS Collaboration

Electroweak SUSY production

Searching for charginos, neutralinos, and sleptons is challenging!

Can be compatible with dark matter relic density.

Natural solution to control the Higgs mass corrections.

No evidence for SUSY particles at LHC so far.

Low-hanging fruit is ruled out. Plenty of uncovered parameter space and data to analyse.

Recent ATLAS results

Late Run2 search strategy aims to

m(NLSP)

2L <u>arXiv:2209.13935</u>

4

2L <u>arXiv:2209.13935</u>

6

Chargino neutralino production

chargino-neutralino2, pure-bino neutralino1

Target high mass scenarios using hadronic and leptonic boson decays. Search for $Z \rightarrow e^+e^-/\mu^+\mu^-$, $V \rightarrow qq$ and E_{τ}^{miss}

7 signal regions targeting **high/low mass** scenarios and **on/off-shell** boson decays $m_{T2} m_{\parallel} m_{jj}$ and E_{T}^{miss} significance main discriminating variables On-shell SRs binned in E_{T}^{miss} significance (& ΔR_{\parallel} for SR-High). Offshell binned in m_{\parallel}

2L2J

arXiv:2204.13072

FNP backgrounds from data (MM). Z+jets, Top, VV: MC normalised to data in CRs MC simulation otherwise

Chargino neutralino production

Target very high mass scenarios using all hadronic boson (W,Z,h) decays.
Large mass splittings Δm>400 GeV lead to **boosted topologies**.
Use large-R jets (R=1.0, p_T>200 GeV) with boson-tagging algorithms.
4Q: 2 large-R jets, no b-tagged jets inside
2B2Q: 2 large-R jets, one contains 2 b-tagged jets
High E_T^{miss} > 200 GeV (trigger), m_{eff}
Z→vv background from data, fake boson jets (2 collimated ISR jets faking large-R jet)
MC normalised to data in dedicated CR

All other backgrounds from MC simulation.

Chargino neutralino production

Traditionally the **3-lepton** final state is the "golden" channel for this signal.

Using hadronic decays of one or both intermediate bosons extends the reach to very high masses.

Higgsino GGM

XYbbATLAS-CONF-2023-009

Search using mix of common and rare decays of SM bosons

High E_T^{miss} from invisible gravitinos Two high p_T photons (trigger) + 2 b-tagged jets

Non-resonant backgrounds determined from a 2x2D sideband method & tested in VRs

- loosen photon isolation & id to "jets" \rightarrow 16 categories of $\gamma\gamma,\,\gamma$ -jet, jet- γ events
- parametrise category yields using photon efficiencies and fake factors
- fit performed in $|m_{yy} m_h| > 5$ GeV CRs to obtain category parameters applied to loose photon SRs.

Higgsino GGM

Higgsino GGM

Pure-higgsino, mass denegerate chargino1, neutralino2, neutralino1 Gravitino LSP

~2σ excess from 4b search left 200-300 GeV scenarios in question.

yybb result partially covers this gap.

High mass coverage from 2L2J and AllHadronic analyses.

Wino production decaying via WZ/Wh RPC Mass degenerate higgsino production RPV Bilinear RPV ρ± pW (and UDD models) χ_1 $\lambda_{323}^{\prime\prime}$ $\tilde{\chi}_2^0$ $\tilde{\chi}_2^0$ $ilde{\chi}^0_2$ $\lambda_{323}^{\prime\prime}$ Z2lepton OR E_{τ}^{miss} triggers, SS (3L SR for bRPV model), \geq 1 jet <u>Wh SRs</u> $e^{\pm}e^{\pm}$, $\mu^{\pm}\mu^{\pm}$, $e^{\pm}\mu^{\pm}$ > 10⁵ ອີ ເງິ 10⁴ GeV - low and high mass (E_{τ}^{miss} binned) scenarios ATLAS Preliminary Total SN ATLAS Preliminary Total SN Fake/Non-Prompt Events / 20 04 10⁴ vs = 13 TeV, 139 fb Charge Flip vs = 13 TeV, 139 fb Charge Flip Fake/Non-Prompt - using m_{ji} , m_{T2} , m_{T} , E_T^{imiss} , E_T^{miss} signf Events / SR^{bRPV} W[±]W[±] **bRPV SRs** m/H)-200 Go n_{⊤2} ≥ 100 GeV m_{π0} ≥ 60 GeV ATLAS Preliminary tī+V 10² - SS (4 jets) ស្ល 10 - 13 TeV 139 fb WZ SRs 10² Fake/Non-Prom Charge F 10² ---- Wh(300,100) 10 10 - or 3L (Zveto) - low and high mass 10 (E^{miss}signf, Spread, 10⁻¹ - high m_{τ_2} , E_{τ}^{miss} ΔR_{\parallel} binned) v 1.5 ≥^{10⁻¹} 0 1.5 10 Data / : Data / SN Data 0.0 0 - using m_{ii} , m_{T2} , m_{T} 0.5 13 $E_{T}^{miss}, m_{eff}^{"}, \Delta R_{\parallel}$ 50 100 150 200 250 300 40 60 80 100 120 140 50 150 250 100 200 300 m_{T2} [GeV] m_{T2} [GeV] E_T^{miss} [GeV]

SS/3L

ATLAS-CONF-2022-057

<u>Irreducible backgrounds</u> WZ, $W^{\pm}W^{\pm}$ dominate. MC normalised to data in dedicated CRs.

Significance

RPC Wino production decaying via WZ/Wh Mass degenerate higgsino production RPV Bilinear RPV l± pD W (and UDD models) p χ_1 χ_1 $\tilde{\chi}_1^0$ $\lambda_{323}^{\prime\prime}$ $\tilde{\chi}_2^0$ $ilde{\chi}^0_2$ $\tilde{\chi}_2^0$ $\lambda_{323}^{\prime\prime}$ Z0土 ℓ^{\pm} Events 10³ ATLAS Preliminary Data Here Total SM 10³ ATLAS Preliminary Data H Total SM W[±]W[±] WZ W[±]W[±] WZ √s=13 TeV, 139 fb⁻¹ Fake/Non-Prompt Charge Flip Fake/Non-Prompt Charge Flip tt+V Other tt+V Other 10² 10 10 10 Se อเป็นแหล่ SR^{WZ} SR^{bRPV} 2I-SS SR^{bRPV} SR^{WZ}_{high-m} - 1 SR^{WZ}_{high-m} - 2 SR^{WZ}_{high-m} - 3 SR^{WZ}low-m. 15 SRW

SS/3L

ATLAS-CONF-2022-057

SS/3L

ATLAS-CONF-2022-057

Summary

EWK SUSY searches are experimentally challenging.

Leaps in sensitivity using improved analysis techniques and hadronic final states.

Closing up some difficult parameter space.

Continue to push for our Run3 searches.

Backup: 2L0J SR selection

Signal region (SR)	SR-0J	SR-1J
$\left. \begin{array}{c} n_{b\text{-tagged jets}} \\ E_{\mathrm{T}}^{\mathrm{miss}} & \mathrm{significance} \end{array} \right $	= >'	0 7
$n_{\text{non-}b\text{-} ext{tagged jets}}$	= 0	= 1
$p_{\mathrm{T}}^{\ell_{1}}$ [GeV]	> 140	> 100
$p_{\mathrm{T}}^{\ell_2} [\mathrm{GeV}]$	> 20	> 50
$m_{\ell\ell} \; [{\rm GeV}]$	> 11	> 60
$p_{\rm T,boost}^{\ell\ell}$ [GeV]	< 5	-
$ \cos heta_{\ell\ell}^* $	< 0.2	< 0.1
$\Delta \phi_{\ell,\ell}$	> 2.2	> 2.8
$\Delta \phi_{p_{\mathrm{T}}^{\mathrm{miss}},\ell_{1}}$	> 2.2	-
Binned SRs		
	∈[100,	105)
	\in [105,	110)
	\in [110,	115)
m^{100} [GeV]	\in [115,	120)
	\in [120,	125)
	\in [125,	130)
	\in [130,	140)
	\in [140,	$\infty)$
Inclusive SRs		
	∈[100	,∞)
$m^{100} [C_{0}V]$	∈[110	$,\infty)$
$m_{\rm T2}$ [GeV]	€[120	$,\infty)$
	\in [130	$,\infty)$
	\in [140	$,\infty)$

Signal region (SR) $ $	$\operatorname{SR-DF}$	SR-SF
n _{b-tagged jets}		= 0
n _{non-b-tagged jets}	:	= 0
$E_{\rm T}^{\rm mas}$ significance		>8
$m_{\rm T2}^{\circ} [{\rm GeV}]$		>50
BD1-other		< 0.01
Binned SRs		
	\in (0.81, 0.8125]	$\in (0.77, 0.775]$
	$\in (0.8125, 0.815]$	$\in (0.775, 0.78]$
	$\in (0.815, 0.8175]$	$\in (0.78, 0.785]$
	$\in (0.8175, 0.82]$	$\in (0.785, 0.79]$
	$\in (0.82, 0.8225]$	$\in (0.79, 0.795]$
	$\in (0.8225, 0.825]$	$\in (0.795, 0.80]$
	$\in (0.825, 0.8275]$	$\in (0.80, 0.81]$
BDT-signal	$\in (0.8275, 0.83]$	$\in (0.81, 1]$
DD I bighter	$\in (0.83, 0.8325]$	
	$\in (0.8325, 0.835]$	
	$\in (0.835, 0.8375]$	
	$\in (0.8375, 0.84]$	
	$\in (0.84, 0.845]$	
	$\in (0.845, 0.85]$	
	$\in (0.85, 0.86]$	
	$\in (0.86, 1]$	
Inclusive SRs		
	$\in (0.81, 1]$ for DF	and $\in (0.77, 1]$ for SF
	$\in (0.81, 1]$	
	$\in (0.82, 1]$	
BDT-signal	$\in (0.83, 1]$	
	$\in (0.84, 1]$	
	$\in (0.85, 1]$	
		$\in (0.77, 1]$
		$\in (0.78, 1]$
		$\in (0.79, 1]$
		$\in (0.80, 1]$

charginos

sleptons

 e^+e^- , $\mu^+\mu^-$ (SF) Zero or one jet (0J or 1J) 8 bins in m_{T2}^{100} (>100 GeV) (5 for discovery)

Use DF events in data to estimate Flavour Symmetric Backgrounds (FSB): ttbar, single top, WW, Z→TT.

Common

2 e/ μ (single lep trigger) Veto Z & low mass resonances, bjets Moderate E_{τ}^{miss} significance (>7 or 8)

 m_{T2} and $\cos\theta_{\parallel}^{*} = \tanh(\Delta\eta_{\parallel}/2)$ main discriminating variables

Fake lepton backgrounds from data using Matrix Method (FNP)

Minor SM backgrounds from MC simulation.

Backgrounds validated in dedicated regions (VRs)

2L arXiv:2209.13935

 e^+e^- , $\mu^+\mu^-$, (SF) or $e^\pm\mu^\mp$ (DF) Zero jets

Train 2 BDTs for SF and DF. Gradient Boosted, multiclass classifier (signal, VV, top, other)

16 (8) bins in DF (SF) BDT score (reduced for discovery)

CRs used to normalise MC to data for VV (μ_{VV} = 1.38 ± 0.08) and top (μ_{top} = 1.09 ± 0.03)

Backup: Other slepton interpretations

Mass degenerate L,R selectrons and smuons

20

Split by flavour and handedness

Backup: 2L2J SR selection

	Region		<i>n</i> _{jets}	n ^{b-tag} jets	$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	<i>m_{ℓℓ}</i> [GeV]		<i>m</i> X [GeV]		<i>m</i> _{T2} [GeV]		ΔR_X	<i>p</i> ^{<i>j</i>_1} [GeV]
	SR-High-EWK		≥ 2	≤ 1	(18, 21, ∞) 71–111	60	$< m_{ii} < 1$	110	> 80	$\Delta R_{ii} \in$	(0, 0.8, 1.6)	-
high mass	VR-High-Sideband-E	WK	≥ 2	≤ 1	> 18	71–111	$20 < m_{ii}$	< 60 U n	n _{ii} > 110	> 80	ΔR	ii < 1.6	
ingri mass	VR-High-R-EWK		≥ 2	≤ 1	> 18	71–111	55	$m_{jj} > 20$	55	> 80	ΔR	$i_i > 1.6$	-
	SR-1J-High-EWK		1	≤ 1	> 12	71–111	60	$< m_{j_1} < 1$	110	> 80		-	-
	VR-1J-High-Sideband	l-EWK	1	≤ 1	> 12	71–111	$20 < m_{j_1}$	< 60 ∪ <i>n</i>	$n_{j_1} > 110$	> 80		_	-
	SR- <i>llbb</i> -EWK		≥ 2	≥ 2	> 18	71–111	60	$< m_{bb} <$	150	> 80		—	-
	VR- <i>llbb</i> -EWK		≥ 2	≥ 2	12-18	71-111	60	$< m_{bb} <$	150	> 80		-	
intermediate	SR-Int-EWK		≥ 2	0	(12, 15, 18	3) 81-101	60	$< m_{ii} < 1$	110	> 80		-	> 60
momoduto	VR-Int-EWK		≥ 2	0	12-18	81-101	60	$< m_{ii} < 1$	110	> 80		-	< 60
mass	CR-VZ-EWK		≥ 2	0	12-18	81-101	$20 < m_{jj}$	< 60 U n	$n_{jj} > 110$	> 80		-	_
mass	CR-tt-EWK		≥ 2	≥ 1	9–12	81-101		$m_{jj}>20$		> 80		_	> 60
	Region n	jets <i>N</i>	<i>b</i> -tag jets	$S(E_{\rm T}^{\rm miss})$	<i>m_{ℓℓ}</i> [GeV]		<i>m</i> _X [GeV]		т ₂ [GeV]	ΔR_X		$\Delta \phi(p_{\rm T}^{\ell \ell}, \vec{p}_{\rm T}^{\rm mi})$	<u>ss</u>)
	SR-Low-EWK	2	0	(6, 9, 12)	81-101	60	$< m_{ii} < 11$	0	> 80	$\Delta R_{\ell\ell} <$	1	_	
low mass	VR-Low-EWK	2	0	6-12	81-101	60	$< m_{ii} < 11$	0	> 80 1	$1 < \Delta R_{\ell\ell}$	< 1.4	-	
10 10 11 11 13 5	SR-Low-2-EWK	2	0	6–9	81-101	60	$< m_{ii} < 11$	0	< 80	$\Delta R_{\ell\ell} <$	1.6	< 0.6	
	VR-Low-2-EWK	2	0	6–9	81-101	$20 < m_{jj}$	$< 60 \cup m_j$	$_{j} > 110$	< 80	$\Delta R_{\ell\ell} <$	1.6	< 0.6	
	CR-Z-EWK	2	0	6–9	81-101	$20 < m_{jj}$	$< 60 \cup m_j$	_j > 110	> 80	-		-	
	Region	n _{jets}	n^{b-ta}_{jets}	^{ng} S(E	Z ^{miss}) T	<i>m_{ℓℓ}</i> [GeV]	m _{T2} [GeV]	<i>p</i> _T ^{<i>j</i>1} [GeV]	$\Delta \phi(p_{\rm T}^{j_1},$	$\vec{p}_{\rm T}^{\rm miss}$)			
ott-shell	SR-OffShell-EWK	≥ 2	0	>	• 9 (1	2, 40, 71)	> 100	> 100	> 2	2			
	VR-OffShell-EWK	≥ 2	0	>	. 9	12-71	80-100	> 100	> 2	2			
	CR-DY-EWK	≥ 2	0	6	_9	12-71	> 100	_	_				

h-tag

i.

Backup: AllHad SR selection

Kinematics

Boson-tagging categories

	$n(W_{qq})$	$n(Z_{qq})$	$n(V_{qq})$	$n(Z_{bb})$	$n(h_{bb})$
4Q-WW	= 2	-	= 2	= 0	= 0
4Q-WZ	≥ 1	≥ 1	= 2	= 0	= 0
4Q-ZZ	-	= 2	= 2	= 0	= 0
4Q-VV	-	-	= 2	= 0	= 0
2B2Q-WZ	= 1	-	= 1	= 1	= 0
2B2Q-ZZ	-	= 1	= 1	= 1	= 0
2B2Q-Wh	= 1	-	= 1	= 0	= 1
2B2Q-Zh	-	= 1	= 1	= 0	= 1
2B2Q-VZ	-	-	= 1	= 1	= 0
2B2Q-Vh	-	-	= 1	= 0	= 1

	S	R(CR0L)	VR(C	CR)1L		
	4Q	2B2Q	4Q	2B2Q		
$n_{\text{Large-}R}$ jets		≥ 2	≥ 2			
n _{lepton}		= 0	= 1			
$p_{\mathrm{T}}(\ell_1)$ [GeV]		-	> 30			
<i>n</i> _{photon}		-	-			
$n(V_{qq})$	= 2 (= 1)	= 1 (= 0)	= 2 (= 1)	= 1 (= 0)		
$n(!V_{qq})$	= 0 (= 1)	= 0 (= 1)	= 0 (= 1)	= 0 (= 1)		
$n(J_{bb})$	= 0	= 1	= 0	= 1		
$m(J_{bb})$ [GeV]	-	\in [70, 135 (150)]	-	\in [70, 150]		
$n_{b-\text{jet}}^{\text{unmatched}}$		= 0	= 0			
n _{b-jet}	≤ 1	-	= 0	-		
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 200	>	50		
$p_{\mathrm{T}}(W)$ [GeV]		-	> 200			
$p_{\rm T}(\gamma)$ [GeV]		-	-			
$m_{\rm eff}$ [GeV]	> 1300	> 1000 (> 900)	> 1000	> 900		
$\min \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, j)$		> 1.0	> 1.0			
m_{T2} [GeV]	-	> 250	-	> 250		

Backup: SS3L SR selection

RPC Wh

$\mathrm{SR}^{Wh}_{\mathrm{high}-m_{\mathrm{T2}}}$ $\mathrm{SR}^{Wh}_{\mathrm{low}-m_{\mathrm{T2}}}$ $\mathrm{SR}^{WZ}_{\mathrm{high}-m_{\mathrm{T2}}}$ $\mathrm{SR}^{WZ}_{\mathrm{low}-m_{\mathrm{T2}}}$ $e^{\pm}e^{\pm}$ $e^{\pm}\mu^{\pm}$ $\mu^{\pm}\mu^{\pm}$ $e^{\pm}e^{\pm}$ $e^{\pm}\mu^{\pm}$ $\mu^{\pm}\mu^{\pm}$ $N_{\rm BL}(\ell)$ = 2 $N_{\rm BL}(\ell)$ = 2= 2 $N_{\rm Sig}(\ell)$ $N_{\rm Sig}(\ell)$ = 2 $Charge(\ell)$ same-sign $Charge(\ell)$ same-sign $p_{\mathrm{T}}(\ell)$ $\geq 25\,{\rm GeV}$ $p_{\rm T}(\ell)$ $\geq 25\,{\rm GeV}$ $n_{\rm jets} \ (p_{\rm T} > 25 \ {\rm GeV})$ ≥ 1 $n_{\rm jets}~(p_{\rm T}>25~{\rm GeV})$ ≥ 1 = 0 $n_{b\text{-jets}}$ = 0 $n_{b-\text{jets}}$ < 350 GeV m_{jj} $< 350 \,\mathrm{GeV}$ m_{jj} > 100 GeV< 100 GeV m_{T2} $> 80 \, \mathrm{GeV}$ $< 80 \,\mathrm{GeV}$ m_{T2} $m_{\mathrm{T}}^{\mathrm{min}}$ > 100 GeV> 130 GeV $m_{\mathrm{T}}^{\mathrm{min}}$ $> 100 \, \text{GeV}$ $E_{\rm T}^{\rm miss}$ $\geq 100 \text{ GeV}$ > 140 GeV $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ > 7> 6< 600 GeV $m_{\rm eff}$ $E_{\mathrm{T}}^{\mathrm{miss}}$ $> 75 \,\mathrm{GeV}$ $> 50 \,\mathrm{GeV}$ $\Delta R(\ell^{\pm}, \ell^{\pm})$ ≤ 3 $\begin{array}{l} {\rm SR}_{\rm high-m_{T2}}^{Wh} \hbox{--}1: \in [75, 125) \\ {\rm SR}_{\rm high-m_{T2}}^{Wh} \hbox{-}2: \in [125, 175) \\ {\rm SR}_{\rm high-m_{T2}}^{Wh} \hbox{-}3: \in [175, +\infty) \end{array}$ $S(E_{\rm T}^{\rm miss}): \in [0, 10)$ $E_{\rm T}^{\rm miss}$ binning (GeV)^a $\text{Spread}(\Phi) \geq 2.2$ $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}): \in [10, 13)$ Bins ^a The $E_{\rm T}^{\rm miss}$ binning applies separately to each flavour channel of ${\rm SR}_{\rm high}^{Wh}$ $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}): \in [13, +\infty]$ $\Delta R(\ell^{\pm}, \ell^{\pm}) > 1$

RPC WZ

Backup: SS3L SR selection

bRPV

 $\mathrm{SR}_{2\ell-\mathrm{SS}}^{\mathrm{bRPV}}$ $\mathrm{SR}^{\mathrm{bRPV}}_{3\ell}$ $SR_{2\ell 1h}^{RPV}$ $\mathrm{SR}^{\mathrm{RPV}}_{2\ell 2b}$ $\mathrm{SR}^{\mathrm{RPV}}_{2\ell 3b}$ Μ Μ Η L Μ Η L L $N_{\rm BL}(\ell)$ = 2 $N_{\rm BL}(\ell)$ $N_{\rm Sig}(\ell)$ = 2 $\geq 20 \,\mathrm{GeV}$ for (sub)leading leptons $p_{\rm T}(\ell)$ $Charge(\ell)$ same-sign $n_{\rm jets}~(p_{\rm T}>25~{\rm GeV})$ ≥ 1 > 25 GeV $p_{\rm T}(\ell)$ $n_{\rm jets} \ (p_{\rm T} > 25 \ {\rm GeV})$ ≥ 1 $N_{\rm Sig}(\ell)$ = 2= 3= 1= 2= 3 $Charge(\ell)$ n_{b-jets} same-sign $> 100 \,\mathrm{GeV}$ $\sum p_{\rm T}(\ell)$ $> 60 \,\mathrm{GeV}$ $> 80 \,\mathrm{GeV}$ m_{T2} $E_{\rm T}^{\rm miss}$ $\geq 100 \, {\rm GeV}$ $> 20 \,\mathrm{GeV}$ $> 50 \,\mathrm{GeV}$ $\geq 80 \, {\rm GeV}$ $E_{\rm T}^{\rm miss}$ $> 100 \,\mathrm{GeV}$ $> 120 \, \mathrm{GeV}$ $n_{\rm iets} \ (p_{\rm T} > 25 {\rm ~GeV})$ > 5 and < 6< 2= 2 or = 3< 3=3 or = 4 ≤ 3 ≤ 3 ≤ 6 $\geq 350\,{\rm GeV}$ $\frac{\sum p_{\mathrm{T}}^{b\text{-jet}}}{\sum p_{\mathrm{T}}^{b\text{-jet}}} / \sum p_{\mathrm{T}}^{\mathrm{jet}}$ $m_{\rm eff}$ > 0.7> 0.45> 0.9> 0.75 ≥ 0.8 ≥ 0.8 > 0.5= 0 $n_{b-\text{iets}}$ $> 120 \,\mathrm{GeV}$ $> 400 \,\mathrm{GeV}$ $> 300 \, {\rm GeV}$ $> 420 \, \text{GeV}$ $> 420 \,\mathrm{GeV}$ $> 350 \,\mathrm{GeV}$ _ _ $\Delta R(\ell_1, \text{jet})_{\min}$ < 1.2 ≤ 1.0 < 1.0 ≤ 1.0 ≤ 1.5 ≤ 1.0 $n_{\rm jets} \ (p_{\rm T} > 40 \ {\rm GeV})$ ≤ 1.0 ≥ 4 $\Delta R(\ell^{\pm}, \ell^{\pm})$ ≥ 2.5 > 2.0> 2.5 ≥ 2.5 > 2.0 ≥ 2.0 ≥ 2.0 \notin [81, 101] GeV $m_{e^{\pm}e^{\mp}}, \ m_{\mu^{\pm}\mu^{\mp}}$ _

UDD