

HIGHLIGHTS ON TOP QUARK PHYSICS WITH THE ATLAS EXPERIMENT AT THE LHC

Lucio Cerrito University and INFN, Roma Tor Vergata

on behalf of the ATLAS Collaboration

PHYSICS OFTOP QUARKS

- Top quark does not hadronize: momentum and spin transferred to decay products
- Search for processes with similar signature (VLQ, Z'...)
- O Natural mass (y_t≈ I), top quark mass is a fundamental parameter of the SM, and crucial for SM constraints via loop diagrams

RED: new results (since Jan. 2023), discussed in this talk

L.. CERRITO - HIGHLIGHTS OF TOP QUARK PHYSICS WITH ATLAS

PART I: PRODUCTION

• Test of SM (production, decay, coupling....etc)

- Top quark does not hadronize: momentum and spin transferred to decay products
- Search for processes with similar signature (VLQ, Z'...)
- O Natural mass (y_t≈1), top quark mass is a fundamental parameter of the SM, and crucial for SM constraints via loop diagrams

RED: new results (since Jan. 2023), discussed in this talk

L.. CERRITO - HIGHLIGHTS OF TOP QUARK PHYSICS WITH ATLAS

Measurement of $t\bar{t}$ and Z-boson cross sections and their ratio using collisions at $\sqrt{s=13.6 \text{ TeV}}$

O Separate measurements for σ_{tt} , σ^{fid}_Z and $R_{tt/Z}$ O First Top measurement with 13.6 TeV collision energy

Signature: Electrons and Muons of opposite electric charges: ee, $\mu\mu$, $e\mu$

- Fiducial phase space for Z with leptons $p_T > 27$ GeV, $|\eta| < 2.5$ and $66 < m_{\parallel} < 116$ GeV (on-shell)
- I and 2 b-tagged jets for the tt production
- **Method**: Binned profile-likelihood technique, finding the cross sections and the *b*-tagging \mathcal{E}_b

Measurement Results

$$\sigma_{t\bar{t}} = 859 \pm 4(\text{stat.}) \pm 22(\text{syst.}) \pm 19(\text{lumi.})\text{pb},$$

$$\int_{Z \to \ell \ell}^{\text{fid.}} = 751 \pm 0.3(\text{stat.}) \pm 15(\text{syst.}) \pm 17(\text{lumi.})\text{pb},$$

$$\epsilon_b = 0.548 \pm 0.002(\text{stat.}) \pm 0.004(\text{syst.}) \pm 0.001(\text{lumi.}).$$

 $R_{t\bar{t}/Z} = 1.144 \pm 0.006(\text{stat.}) \pm 0.022(\text{syst.}) \pm 0.003(\text{lumi.}).$

The nominal $\varepsilon_b = 0.545$

Pre-fit comparison of data and prediction for the event yields in the three lepton channels

ATLAS-CONF-2023-006, March 2023. Follows a previous conf note, 1.2 fb⁻¹

Inclusive and differential cross-sections for dilepton $t\bar{t}$ production measured in $\sqrt{s=13}$ TeV

- **O**Top dilepton analysis both inclusive and 8-kinematic variables differential distributions, with wider range and finer granularity **O4** double-differential distributions
- OUses a revised luminosity uncertainty of only ±0.83%

hep-ex arXiv:2303.15340 submitted to JHEP, Mar. 2023 Updates a previous result with 36 fb⁻¹

13 TeV, 140 fb⁻¹

- **Signature**: Oppositely charged $e\mu$ pairs. Full and fiducial phase space at particle level with $pT^{\ell} > pT^{\ell}$
- 27 (25) GeV and $|\eta^{\ell}| < 2.5$; Exactly 1 or 2 *b*-tagged jets. The B.R. to signature is 3.26±0.06%

Method: Log-likelihood fit for cross-section and *b*-tagging efficiencies

Number of *b*-tagged jets in selected OS *eµ* events Data ATLAS 600 – 🗆 tī eµ opposite sign 💻 Ŝingle top Mis-ID leptons $\rightarrow \tau\tau + jets$ 7 $500 - \sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ Others 400 300 200 100 MC/Data 1.4 1.2 0.8 0.6 Number of b-tagged jets

Events

Selected data events with 1- and 2-b jets

$$\begin{split} N_1^i &= \mathcal{L}\sigma_{t\bar{t}}^i G_{e\mu}^i 2\epsilon_b^i (1 - \epsilon_b^i C_b^i) + N_{1,\text{bkg}}^i \\ N_2^i &= \mathcal{L}\sigma_{t\bar{t}}^i G_{e\mu}^i (\epsilon_b^i)^2 C_b^i + N_{2,\text{bkg}}^i \end{split}$$

Total inclusive cross-section

 $\sigma_{t\bar{t}} = 829 \pm 1 \text{ (stat)} \pm 13 \text{ (syst)} \pm 8 \text{ (lumi)} \pm 2 \text{ (beam) pb}$

OMost precise measurement of σ_{tt} (±1.8%) ODominant uncertainties from: luminosity (0.9%), modelling of top boost (0.6%), Wt background (0.5%), Electron ID (0.5%)

Inclusive and differential cross-sections for dilepton $t\bar{t}$ production in $\sqrt{s=13}$ TeV

Normalised differential cross-section as a function of $E^e + E^{\mu}$ Normalised double-differential cross-sections as a function of $|\Delta \phi^{e\mu}|$ in bins of $m^{e\mu}$ $1/\sigma d\sigma/d(E^{e} + E^{\mu}) [1/GeV]$ ATLAS Data $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ aMC@NLO+Her7.1.3 1/σ d²σ/d|Δφ^{eμ}|dm^{eμ} [1/rad/GeV] ATLAS Powheg+Herwig7.0.4 **√**s = 13 TeV, 140 fb⁻ aMC@NLO+Her7.1.3 aMC@NLO+Pythia8 Powheq+Pythia8 Powheg+Herwig7.0.4 Powheg+Pythia8 (rew.) Powheg+Pythia8 Powheg+Herwig7.1.3 Stat error 10^{-2} Powheg+Herwig7.1.3 aMC@NLO+Pythia8 Powheg+Pythia8 (rew.) Stat error Stat
 Syst error 10⁻³ 10^{-3} 10^{-4} 10^{-4} 10-MC/Data $70 \le m^{e\mu} < 100 \text{ GeV}$ | $100 \le m^{e\mu} < 130 \text{ GeV}$ | $130 \le m^{e\mu} < 200 \text{ GeV}$ | $200 \le m^{e\mu}$ < 800 GeV < 70 GeV 1.1 MC/Data 1.1 $\pi/2$ $\pi/2$ $|\Delta \phi^{e\mu}|:m^{e\mu}$ 0.9 900 800 100 200 300 500 600 700 $E^{e} + E^{\mu}$ [GeV]

O The results are compared with the predictions from different Monte Carlo NLO generators normalised to the NNLO (Top++) prediction
 O No model can describe **all** measured distributions within their uncertainties.

Measurement of total and differential cross-sections of *t*t̄W production

ATLAS-CONF-2023-019, March 2023 Updates earlier measurements with 3.2 fb⁻¹ and 36.1 fb⁻¹

13 TeV, 140 fb⁻¹

O Very rare process, O(1 pb), accessible with Run 2 data, and important background to rare 4-top and ttH processes
 O Recent measurements suggested ttW production yields slightly higher than SM (e.g. CMS: JHEP 08 (2018) 011)

• Rich phenomenology from charge-asymmetric production and QCD and EWK corrections

• We measure the inclusive and differential cross sections, and relative charge asymmetry • Theoretical prediction of $\sigma(t\bar{t}W) = 722^{+70} - 78(\text{scale}) \pm 7$ (PDF) fb [JHEP II (2021) 029]

Measurement of total and differential cross-sections of *t*t̄W production

Signature: Two same-sign lepton (2 ℓ SS) or three lepton (3 ℓ) final states

Method: Several Control (CR) and Signal Regions (SR); inclusive cross section measured in full phase space and in fiducial region. Combined likelihood fit to data under the signal plus background hypothesis

Summary of observed and predicted yields in the four signal region categories					Comparison between data and background prediction for the event yields in the 24 2ℓ SS++ SR categories
	$\ell^-\ell^-$ SR	$\ell^+\ell^+$ SR	$\ell^+\ell^-\ell^-$ SR	$\ell^-\ell^+\ell^+$ SR	
$t\bar{t}W$	261 ± 20	472 ± 30	64 ± 6	116 ± 10	$\mathbf{I}_{\text{T}} = \mathbf{I}_{\text{T}} = $
ttH	66 ± 9 05 ± 0	66 ± 9 100 ± 10	29 ± 4	28 ± 4 72 ± 8	2ℓSS(++) QMisID tītī Other 120 Post-Fit 2ℓCSC(++)
ttZ/γ $t\bar{t}\gamma^*(LM)$	95 ± 9 9+5	100 ± 10 9 + 5	$\begin{array}{c} 09 \pm 8 \\ 2.6 \pm 1.5 \end{array}$	2.6 ± 1.5	
Diboson	16 ± 5	22 ± 6	9.0 ± 2.7	12 ± 4	100-
Mat Conv	11.1 ± 3.3	19 ± 5	2.5 ± 0.8	3.9 ± 1.1	80
${ m HF}\mu$	35 ± 11	30 ± 10	6.2 ± 2.6	6.6 ± 2.6	60
HFel	14 ± 6	15 ± 6	2.9 ± 1.3	2.0 ± 0.8	
$\begin{array}{c} \text{QM1SID} \\ {}_{t\bar{t}t\bar{t}\bar{t}} \end{array}$	8.2 ± 2.7 0 ± 7	8.2 ± 2.7 0 + 7	0.69 ± 0.15 4.0 ± 3.2	0.00 ± 0.13	
Other	32 ± 5	3 ± 7 42 ± 6	4.0 ± 3.2 18.6 ± 3.1	4.2 ± 3.3 25.0 ± 3.3	
Total	557 ± 16	790 ± 24	208 ± 7	273 ± 9	
Data	546	803	225	269	- <u>1.2</u> - <u></u>

Measurement of total and differential cross-sections of *t*t̄W production

ATLAS-CONF-2023-019 13 TeV, 140 fb⁻¹

Measurement Results

 $\sigma(t\bar{t}W) = 890 \pm 50 \text{ (stat.)} \pm 70 \text{ (syst.)} = 890 \pm 80 \text{ (tot.) fb}$

 $\sigma_{\rm fid}(t\bar{t}W) = 21.7 \,^{+1.1}_{-1.1} \,(\text{stat.}) \,^{+2.1}_{-1.9} \,(\text{syst.}) = 21.7 \,^{+2.4}_{-2.2} \,(\text{tot.}) \,\,\text{fb}$

With leading systematics from $t\bar{t}W$ ME and PS modelling In agreement (1.5 σ) with NNLO prediction [arxiv 2108:07826]:

$$\sigma(t\bar{t}W) = 722 + 70 - 78$$
 (scale) ± 7 (PDF) fb

$$A_{\rm C}^{\rm rel} = \frac{\sigma(t\bar{t}W^+) - \sigma(t\bar{t}W^-)}{\sigma(t\bar{t}W^+) + \sigma(t\bar{t}W^-)}.$$

 $A_{\rm C}^{\rm rel} = 0.32 \pm 0.05 \text{ (stat.)} \pm 0.03 \text{ (syst.)} = 0.32 \pm 0.06 \text{ (tot.)}$

In agreement with Sherpa prediction:

 $A_C^{\rm rel} = 0.322 \pm 0.003({\rm scale}) \pm 0.007({\rm PDF})$

First differential distributions, 7 variables; in good agreement

Comparison of the measured *ttW*+/*ttW*- cross section ratio to the theoretical predictions

Unfolded distributions of the lepton charge-split normalised cross section as a function of $H_{T,jets}$

10/29

Observation of four-top-quark production in the multilepton final state

OProcess sensitive to top-Higgs Yukawa coupling and its CP properties

- O Sensitive to BSM, including gluino pair, scalar-gluon, heavy-scalar or pseudoscalar bosons in 2HDM or top compositeness
- Predicted NLO QCD+EW @ $\sqrt{s=13}$ TeV is $\sigma=12$ fb with ±20% (scale) [JHEP 02 (2018) 031]

hep-ex arXiv:2303.15061 accepted by EPJC, March 2023 Supersedes and improves a previous result with same dataset

13 TeV, 140 fb-1

Signature: Two leptons with same electric charge (2LSS) or \geq 3 leptons (e or μ , 3L) with high light-jet and *b*-jet multiplicity and high overall event energy

Method: Multivariate discriminant (Graph Neural Network) to separate signal and background

Tree-level Feynman diagrams for the SM $t\bar{t}t\bar{t}$ signal. The mediator connecting two top quarks can be a gluon, a neutral electroweak gauge boson (γ or Z), or a Higgs boson

Comparison between data and the predictions after a fit to data for the GNN distribution in the SR

Observation of four-top-quark production in the multilepton final state

Binned likelihood fit to the discriminant score for: σ_{tttt} , normalisation of backgrounds and $t\bar{t}W$

Measured *tttt* cross section:

$$\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}$$
(stat) $^{+4.6}_{-3.4}$ (syst) fb = 22.5 $^{+6.6}_{-5.5}$ fb

consistent (1.7σ) with the new calculation QCD+EW NLO prediction, incl. NLL threshold resummation [arXiv: 2212.03259 [hep-ph]]:

$$\sigma_{t\bar{t}t\bar{t}} = 13.4^{+1.0}_{-1.8} \text{ fb}$$

Largest systematic uncertainties from signal modelling (MC generator and PS and Hadronisation) and $t\bar{t}W$ background

hep-ex arXiv:2303.15061

13 TeV, 140 fb⁻¹

Likelihood contours for the top-Higgs Yukawa coupling

strength and CP-even/odd mixing angle

2.5

Observation of single-top-quark production in association with a photon

OProbes non-resonant contributions from BSM physics

OMeasurement in fiducial phase space at parton level with γ radiated from the top quark, and a fiducial cross section at particle level.

Signature: I γ , I e or μ , large MET, I *b*-jet, I forward jet identification, characteristic of *t*-channel. Two Signal Regions (SR) based on the presence or not of a forward jet.

Method: Trained Neutral Networks to separate signal from the background with 12 or 15 input variables, with top-mass the variable giving the largest S:B separation. Profile likelihood fit simultaneous in the CRs and SRs. NN output in the SR with at least 1 forward

NN output in the SR with at least 1 forward jet, in data and the expected contribution of the signal and background processes

hep-ex arXiv:2302.01283 submitted to PRL, Feb. 2023 First ATLAS observation of this process

13 TeV, 139 fb⁻¹

Observation of single-top-quark production in association with a photon

13 TeV, 139 fb⁻¹

Impact of systematic uncertainties by category in the **parton**-level measurement

Uncertainty	$\Delta\sigma/\sigma$
$t\bar{t}\gamma$ modeling	±5.5%
Background MC statistics	$\pm 3.5\%$
$tq\gamma$ MC statistics	±3.3%
<i>tī</i> modeling	±2.4%
$tq\gamma$ modeling	$\pm 2.0\%$
$t (\rightarrow \ell \nu b \gamma) q$ modeling	$\pm 1.9\%$
Additional background uncertainties	$\pm 1.9\%$
$t (\rightarrow \ell \nu b \gamma) q$ MC statistics	±0.3%
$h \rightarrow \gamma$ photon fakes	±2.0%
Lepton fakes	$\pm 1.9\%$
$e \rightarrow \gamma$ photon fakes	$\pm 0.6\%$
Luminosity	±2.2%
Pileup	±1.2%
Jets and $E_{\rm T}^{\rm miss}$	±3.6%
Photons	$\pm 2.5\%$
Leptons	$\pm 0.9\%$
<i>b</i> -tagging	±0.9%
Total systematic uncertainty	±10.6%

Measured fiducial parton-level cross section:

$$\sigma_{tq\gamma} \times \mathcal{B} \left(t \to \ell \nu b \right) = 688 \pm 23 \text{ (stat.)}^{+75}_{-71} \text{ (syst.) fb}$$

One photon with $p_T > 20$ GeV and $|\eta| < 2.37$, isolated

[Phys. Lett. B 429 (1998) 369] with $\Delta R < 0.2$

consistent (2.1 σ) with the QCD + EW NLO prediction, arXiv: 2106.02059 [hep-ph]

$$\sigma_{tq\gamma} \times \mathcal{B} \left(t \to \ell \nu b \right) = 515 ^{+36}_{-42} \text{ fb}$$

Measured fiducial **particle**-level cross section (see definition in the paper):

$$\sigma_{tq\gamma} \times \mathcal{B}\left(t \to \ell \nu b\right) + \sigma_{t(\to \ell \nu b\gamma)q} = 303$$

$$9 (\text{stat.}) + \frac{33}{-32} (\text{syst.}) \text{ fb}$$

±

consistent (2.0 σ) with the QCD + EW NLO prediction using the signal samples:

$$\sigma_{tq\gamma} \times \mathcal{B} \left(t \to \ell \nu b \right) + \sigma_{t(\to \ell \nu b \gamma)q} = 217 ^{+27}_{-15} \text{ fb}$$

Summary of Top Quark Production Measurements

Summary of several top-quark related production cross-section measurements, compared to the corresponding theoretical expectations. All theoretical expectations were calculated at NLO or higher. ATL-PHYS-PUB-2022-051

r: new, shown today

PART 2: PROPERTIES

- Test of SM (production, decay, coupling....etc)
- Top quark does not hadronize: momentum and spin transferred to decay products
- Search for processes with similar signature (VLQ, Z'...)
- Natural mass (y_t~I), top quark mass is a fundamental parameter of the SM, and crucial for SM constraints via loop diagrams

RED: new results (since Jan. 2023), discussed in this talk

L.. CERRITO - HIGHLIGHTS OF TOP QUARK PHYSICS WITH ATLAS

Search for leptonic charge asymmetry in *t*t̄W production in final states with 3 leptons

ORare SM process with large perturbative corrections and BSM sensitivity.

ORelative dominance of qq, initial state in $t\bar{t}W$ enhances the rapidity

charge asymmetry wrt standard *tt* events. Measurements oriented to the **leptonic** charge asymmetry: $A_{\rm c}^{\ell} = \frac{N\left(\Delta\eta^{\ell} > 0\right) - N\left(\Delta\eta^{\ell} < 0\right)}{N\left(\Delta\eta^{\ell} > 0\right) + N\left(\Delta\eta^{\ell} < 0\right)},$

Method: Profile likelihood fit to the event yields in pseudorapidities of the charged leptons from top and anti-top quark. BDT classifier for the lepton-top association, with ~71% efficiency

Measured leptonic charge asymmetry: $A_c^\ell (t\bar{t}W) = -0.123 \pm 0.136 (stat.) \pm 0.051 (syst.)$

 Consistent with the SM expectation of:
 $A_c^\ell (t\bar{t}W)_{SM} = -0.084 \substack{+0.005 \\ -0.003} (scale) \pm 0.006 (MC stat.)$ Measured A_c^ℓ at Particle Level: $A_c^\ell (t\bar{t}W)^{PL} = -0.112 \pm 0.170 (stat.) \pm 0.054 (syst.)$

 SM expectation from *ttW* Sherpa:
 $A_c^\ell (t\bar{t}W)^{PL}_{SM} = -0.063 \substack{+0.007 \\ -0.004} (scale) \pm 0.004 (MC stat.)$

hep-ex arXiv:2301.04245 submitted to JHEP, Jan. 2023 First measurement for $t\bar{t}W$

13 TeV, 139 fb⁻¹

Summary of Other Charge Asymmetry Measurements

Summary of the charge asymmetry measurements on ATLAS and CMS at **7 TeV** showing both the ttbar-based and lepton-based asymmetry measurements

Summary of the charge asymmetry measurements on ATLAS and CMS at **8 TeV** showing both inclusive measurements and the measurement using boosted events (2017)

Combination of inclusive and differential $t\bar{t}$ CA measurements, ATLAS and CMS at $\sqrt{s} = 7$ and 8 TeV:

 $A_{C}^{LHC7} = 0.005 \pm 0.007 \text{ (stat) } \pm 0.006 \text{ (syst) at 7 TeV and}$ JHI $A_{C}^{LHC8} = 0.0055 \pm 0.0023 \text{ (stat) } \pm 0.0025 \text{ (syst) at 8 TeV.}$

JHEP 04 (2018) 033, arXiv: 1709.05327 [hep-ex].

Evidence for charge asymmetry in $t\bar{t}$ production (13 TeV):

 $A_{\rm C}^{t\bar{t}} = 0.0068 \pm 0.0015$ [hep-ex] arXiv:2208.12095 accepted by JHEP, Aug. 2022

Charge asymmetry in $t\bar{t}\gamma$ (13 TeV):

 $A_{\rm C} = -0.003 \pm 0.029 = -0.003 \pm 0.024(\text{stat}) \pm 0.017(\text{syst})$

[hep-ex] arXiv:2212.10552 accepted by Phys. Lett. B, Dec. 2022

PART 3: DECAY

• Test of SM (production, decay, coupling....etc)

- Top quark does not hadronize: momentum and spin transferred to decay products
- Search for processes with similar signature (VLQ, Z'...)
- O Natural mass (y_t≈1), top quark mass is a fundamental parameter of the SM, and crucial for SM constraints via loop diagrams

RED: new results (since Jan. 2023), discussed in this talk

L.. CERRITO - HIGHLIGHTS OF TOP QUARK PHYSICS WITH ATLAS

20/29

Search for flavour-changing neutral-current couplings between the top quark and the Z boson

- OFCNC tZq forbidden at tree-level in SM, suppressed at higher orders, leading to BR of top FCNC decay $O(10^{-14})$
- OSeveral SM extensions enhance BR up to 10-4—10-7
- OSearch for FCNC in both production $(gq \rightarrow tZ)$ and decay of tops $(t \rightarrow Zq)$, with sensitivity to tZu and tZc

hep-ex arXiv:2301.11605 submitted to Phys. Rev. D, Jan. 2023 Supersedes previous analysis with 36.1 fb⁻¹

13 TeV, 139 fb⁻¹

Signature: Trileptonic final state, a *b*-tagged jet, possible additional jets and MET

Method: Multivariate technique (Gradient Boosted Decision Tree) to improve the separation Signal vs Background and binned profile likelihood fit to data. Two different optimised Signal Regions

verview of the requirements applied to select the events in the signal gions	
Common selections	

Exactly 3 leptons with $p_T(\ell_1) > 27 \text{ GeV}$ $\geq 1 \text{ OSSF pair, with } m_{\ell\ell} - m_Z < 15 \text{ GeV}$						
SR1 SR2						
≥ 2 jets	1 jet	2 jets				
1 <i>b</i> -jet	1 <i>b</i> -jet	1 <i>b</i> -jet				
_	$m_{\mathrm{T}}(\ell_W, \nu) > 40 \mathrm{GeV}$	$m_{\mathrm{T}}(\ell_W, \nu) > 40 \mathrm{GeV}$				
$ m_{j_a\ell\ell}^{\rm reco} - m_t < 2\sigma_{t_{\rm FCNC}}$	- $ -$	$ m_{j_a\ell\ell}^{\text{reco}} - m_t > 2\sigma_{t_{\text{FCNC}}}$				
$- m_{j_b \ell_W \nu} - m_t < 2\sigma_{t_{SM}} m_{j_b \ell_W \nu} - m_t < 2\sigma_{t_{SM}}$						

Search for FCNC couplings between the top quark and the Z boson

hep-ex arXiv:2301.11605

13 TeV, 139 fb⁻¹

Comparison between data and background prediction after the fit to data (Post-Fit) for the FCNC *tZu* LH coupling extraction for the fitted distributions in the SRs

Observed and expected 95% CL limits on FCNC $t \rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows).

Observable	Vertex	Coupling	Observed	Expected
	SRs+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	$4.9^{+2.1}_{-1.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10^{+4}_{-3} \times 10^{-5}$
$ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $	tZu	LH	0.15	$0.13 \stackrel{+0.03}{_{-0.02}}$
$ C_{\mu W}^{(31)} $ and $ C_{\mu B}^{(31)} $	tZu	RH	0.16	$0.14 \stackrel{+0.03}{_{-0.02}}$
$ C_{\mu W}^{(23)*} $ and $ C_{\mu B}^{(23)*} $	tZc	LH	0.22	$0.20 \stackrel{+0.04}{_{-0.03}}$
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	$0.19 \stackrel{+0.04}{_{-0.03}}$
	SR1+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	9.7×10^{-5}	$8.6^{+3.6}_{-2.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	9.5×10^{-5}	$8.2^{+3.4}_{-2.3} \times 10^{-5}$
	SR2+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	7.8×10^{-5}	$6.1^{+2.7}_{-1.7} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	9.0×10^{-5}	$6.6^{+2.9}_{-1.8} \times 10^{-5}$

Search for a new scalar resonance in FCNC top-quark decays $t \rightarrow qX$ (q=u,c), with $X \rightarrow b\bar{b}$

for example, $X \rightarrow b\overline{b}$ is the leading decay

hep-ex arXiv:2301.03902 accepted by JHEP, Jan. 2023 Extends searches with $H \rightarrow bb$

13 TeV, 139 fb⁻¹

Signature: Leptonic W decay from the SM top decay. Isolated e or μ and \geq 4 jets (3 *b*-tagged) **Method**: Neural Network discriminant between Signal and Background. 3 Signal Regions.

22/29

Search for a new scalar resonance in FCNC top-quark decays $t \rightarrow qX$ (q=u,c), with $X \rightarrow bb$

Binned maximum-likelihood fit to data for $t \rightarrow qX$ and the backgrounds

for the $t \rightarrow uX$ process after the S+B fit to data for the

23/29

Search for charged-lepton-flavour violating μTqt interactions in top-quark production and decay

- OcLFV would provide strong evidence for BSM physics
- OExtensions of the SM with leptoquarks, including SUSY and technicolor models provide cLFV with sizeable rates
- OSearching for production of a single top quark via $gq_k \rightarrow t\ell^{\pm}\ell^{\prime \mp}$
 - with $k = \{1, 2\}$ and $\ell \ell' = \{\mu \tau, \tau \mu\}$ and top decay in *tt via* $t \to \ell^{\pm} \ell'^{\mp} q_k$

Signature: 2 μ (SS), I τ -hadronic, and I or more jets one of which *b*-tagged (SRI, SR2)

Method: Binned profile-likelihood fit to event yields. $CRtt\mu$ is included in the fit, to determine the normalisation of the non-prompt muon background

Example Feynman diagrams of the process under study, where the hashed circle represents the cLFV vertex

denotes the lowest p_T lepton.

CRT only used to estimate the fake τ background, not in the fit

Requirements for each analysis region. The symbol ℓ_3

	SR1	SR2	$\mathrm{CR} au$	$ $ CR $tt\mu$
Lepton flavour		$ 2\mu 1e \ (\ell_3 = \mu)$		
$N_{ m jets}$	≥ 2	1	≥ 2	≥ 2
$N_{b-\mathrm{tags}}$	1	1	1	≤ 2
Muon p_T cut	$> 15 { m GeV}$	$> 15 { m GeV}$	$> 15 { m GeV}$	$> 10 { m GeV}$
Lowest p_T muon selection	Tight	Tight	Tight	Loose
Muon charges	SS	SS	OS	-
$ m_{\mu\mu}^{OS} - M_Z $	-	-	$< 10 { m GeV}$	$>10~{\rm GeV}$

ATLAS-CONF-2023-001, Jan. 2023 Complements earlier constraints on Wilson coefficients from FCNC tZq

13 TeV, 139 fb⁻¹

Search for cLFV $\mu \tau q t$ interactions in topquark production and decay

ATLAS-CONF-2023-001 13 TeV, 139 fb⁻¹

Observed event yields in SRs and $CRt\bar{t}\mu$ compared to post-fit expectations from Monte Carlo simulations

Expected and observed 95% CL upper limits on Wilson coefficients corresponding to 2Q2L EFT operators which could introduce cLFV top decay in the µT channel, and existing limits from analysis [22]: arXiv: 1809.09624 [hep-ph]

	95% CL upper limits on Wilson coefficients					$c/\Lambda^2~[{ m TeV}^{-2}]$		
	$c_{lq}^{-(ijk3)}$	$c_{eq}^{(ijk3)}$	$c_{lu}^{(ijk3)}$	$c_{eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{1(ij3k)}$	$c_{lequ}^{3(ijk3)}$	$c_{lequ}^{3(ij3k)}$
Previous (u) [22]	12	12	12	12	26	26	3.4	3.4
Expected (u)	0.47	0.44	0.43	0.46	0.49	0.49	0.11	0.11
Observed (u)	0.49	0.47	0.46	0.48	0.51	0.51	0.11	0.11
Previous (c) [22]	14	14	14	14	29	29	3.7	3.7
Expected (c)	1.6	1.6	1.5	1.6	1.8	1.8	0.35	0.35
Observed (c)	1.7	1.6	1.6	1.6	1.9	1.9	0.37	0.37

Expected and observed 95% CL upper limits on the inclusive branching ratio corresponding to the decay of a top quark to a muon and a τ lepton through a cLFV process.

	$\Big \ 95\% \ { m CL} \ { m upper} \ { m limits} \ { m on} \ { m BR}(t o \mu au q)$				
	Stat. only All systematics				
Expected	8×10^{-7}	10×10^{-7}			
Observed	9×10^{-7}	11×10^{-7}			

Summary of Other FCNC Measurements

Summary of the current 95% confidence level observed limits on the branching ratios of the top quark decays via flavour changing neutral currents (FCNC) to a quark and a neutral boson t \rightarrow Xq (X = g, Z, γ or H; q=u or c) ATL-PHYS-PUB-2022-049

SUMMARY

• I presented 9 new measurements from the last 5 months

- O 8 full Run 2 datasets and 1 Run 3
- Chance to study rare top processes

O Several other measurements in 2022, including:

- Measurement of tt production cross section using collisions at $\sqrt{s}=5.02$ TeV, hep-ex arXiv:2207.01354 (2022)
- Evidence for charge asymmetry in tt production, hep-ex arXiv:2208.12095 (2022)
- Measurement of the polarisation of W bosons produced in top-quark decays using dilepton events, hep-ex arXiv:2209.14903 (2022)
- Measurement of the top-quark mass using a leptonic invariant mass, hep-ex arXiv:2209.00583 (2022)
- Measurement of the top-quark mass in tt dilepton events, ATLAS-CONF-2022-058 (2022)
- Search for FCNC interactions of the top quark and the Higgs boson in events with a pair of τ -leptons, hep-ex arXiv:2208.11415 (2022)
- Measurement of the charge asymmetry in top-quark pair production with a photon, hep-ex arXiv:2212.10552 (2022)

Find out more at:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

L.. CERRITO - HIGHLIGHTS OF TOP QUARK PHYSICS WITH ATLAS

⁵ TeV, 257 pb⁻¹
13 TeV, 139 fb⁻¹
13 TeV, 139 fb⁻¹
13 TeV, 36.1 fb⁻¹
13 TeV, 139 fb⁻¹
13 TeV, 139 fb⁻¹
13 TeV, 139 fb⁻¹