

Recent Belle II results on time-dependent CP violation and charm physics

Rencontres de Blois 17/05/2023

Jakub Kandra

(INFN Padova)
on behalf of Belle II collaboration

Recent Belle II results

- Belle II detector at SuperKEKB
- Time-dependent CP violation
 - \circ B⁰ $\rightarrow \phi K_S$
 - $\circ \quad \mathsf{B}^0 {\to} \mathsf{K}_{\mathsf{S}} \mathsf{K}_{\mathsf{S}} \mathsf{K}_{\mathsf{S}}$
 - \circ B⁰ \rightarrow K_S π^0
- Charm physics
 - Charm lifetime measurements
 - D⁺_s lifetime measurement
 - Charm flavor tagger

Recent Belle II results

- Belle II detector at SuperKEKB
- Time-dependent CP violation
 - \circ $B^0 \rightarrow \phi K_S$
 - $\circ \quad \mathsf{B}^0 {\to} \mathsf{K}_{\mathsf{S}} \mathsf{K}_{\mathsf{S}} \mathsf{K}_{\mathsf{S}}$
 - \circ B⁰ \rightarrow K_S π ⁰
- Charm physics
 - Charm lifetime measurements
 - D⁺_s lifetime measurement
 - Charm flavor tagger

Time-dependent CP violation

Belle II

- Measurements of sin2φ₁ in b→qqs transitions as a probe of beyond SM physics
 - Clean theory prediction (~few %)
 - Loop-suppressed, potentially affected by competing BSM amplitudes
- Experimentally challenging, due to
 - Small BF (~10⁻⁶) and neutrals in the final state (K_S , $π^0$)
 - \circ Sophisticated analysis techniques (tagging and Δt resolution)
- Validated with benchmark mixing and CPV analyses (B→D(*)π and B→J/ψK_s)

Δm and sin2φ₁

HFLAV: $\tau = 1.519 \pm 0.004 \text{ ps},$ $\Delta m = 0.5065 \pm 0.0019 \text{ ps}^{-1}$

HFLAV:
$$S_{CP} = 0.699 \pm 0.017$$
, $A_{CP} = 0.005 \pm 0.015$

- Simultaneous Δt fit to extract the CP asymmetries
 - B→K⁺KK_e fixed from HFLAV
 - Validated on the B⁺ control sample (null asymmetry)
- Mostly unique to Belle II
 - On par with most precise determinations of A_{CP}
 - 10-20% improvement on S_{CP} for the same signal yield wrt Belle/BaBar determinations

$$S_{CP} = 0.54 \pm 0.26^{+0.06}_{-0.08}$$

HFLAV:
$$S_{CP} = 0.74^{+0.11}_{-0.13}$$

 $A_{CP} = -0.01 \pm 0.14$

Control channel ($B^+ \rightarrow \phi K^+$)

$$A_{CP} = 0.12 \pm 0.10 \text{ (stat.)}$$

$$S_{CP} = -0.09 \pm 0.12 \text{ (stat.)}$$

$B^0 \rightarrow K_S K_S K_S$

- Simultaneous fit events with and without vertex information and B⁺→K_eK_eK⁺
 - Events with vertex information used in the Δt fit for the determination of A_{CP} and S_{CP}
 - Events without vertex information used only to constrain the time integrated asymmetry A_{CP}
 - ∘ B⁺→K_SK_SK⁺ control sample to constrain background shapes and Δt resolution function
- On par with most precise determination of A_{CP} and unique to Belle II

$$A_{CP} = 0.07_{-0.20}^{+0.15} \pm 0.02$$
$$S_{CP} = -1.37_{-0.45}^{+0.35} \pm 0.03$$

HFLAV:
$$S_{CP} = -0.83 \pm 0.17$$
, $A_{CP} = 0.15 \pm 0.12$

- Sensitive to effective value of sin2φ₁ and providing inputs to isospin sum-rule
- Simultaneous fit events with and without vertex information to maximize the sensitivity on A_{CP}
- Competitive with world's best results with much less luminosity

$$A_{CP} = 0.04 \pm 0.15 \pm 0.05$$

$$S_{CP} = 0.75^{+0.20}_{-0.23} \pm 0.04$$

HFLAV:
$$S_{CP} = 0.57 \pm 0.17$$
, $A_{CP} = -0.01 \pm 0.10$

Recent Belle II results

- Belle II detector at SuperKEKB
- Time-dependent CP violation
 - \circ B⁰ $\rightarrow \phi K_S$
 - $\circ \quad B^0 {\longrightarrow} K_S^{} K_S^{} K_S^{}$
 - \circ $B^0 \rightarrow K_S \pi^0$
- Charm physics
 - Charm lifetime measurements
 - D⁺_s lifetime measurement
 - Charm flavor tagger

Charm lifetime measurements

- Beauty and charm hadron lifetimes predicted by heavy quark expansion (HQE)
 - Charm is challenging (higher-order corrections + QCD contributions)
 - Improvements important for reliable predictions in flavor physics
- Charm lifetime hierarchy recently reshuffled by LHCb
 - The $\Omega_{\rm C}^{0}$ is not the shortest-living charm baryon.
 - All lifetimes relative to D⁺
- Belle II reach is unique!
 - Can save and reconstruct large samples of exclusive charm decays without the need to use lifetime-biasing triggers and selections
 - Better vertexing performance than Belle/BaBar

$$\tau(\Omega_c^0) < \tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Xi_c^+)$$

$$\tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Omega_c^0) < \tau(\Xi_c^+)$$

Possible reasons why HQE has initially failed are being debated (Science Bulletin 67 (2022) 445-447, arXiv:2204.11935)

D⁺_s lifetime measurement - New for Blois!

$$au_{D_s^+} = (498.7 \pm 1.7^{+1.1}_{-0.8}) ext{ fs}$$

- Our sample consists of 116×10³ D⁺_s $\rightarrow \phi \pi^+$ ($\phi \rightarrow K^+K^-$) decays
- This is the most precise measurement to date and consistent with approximately twice the precision of current world-average value of (504 ± 4) fs.
- It is also consistent with theory predictions ($au_{D_s^+} \sim au_{D^0}$)

Charm flavor tagger

- reconstruct particles most collinear with signal meson
- $\bullet \quad$ uses kinematic features (ΔR , recoiling mass) and PID of tagging particles
- based on BDT, predicts (tagging decision *q* and dilution *r*)
- trained using simulation and calibrated with Belle II data

$$\epsilon_{\text{tag}}^{\text{eff}} = \epsilon_{\text{tag}} \langle r^2 \rangle = (47.91 \pm 0.07(\text{stat.}) \pm 0.51(\text{syst.})) \%$$

- Double the effective sample size w.r.t D*+-tagged events (with larger background level)
- provide discrimination between signal and background
- CFT will increase sensitivity for many charm decays:

Conclusions and outlook

Time-dependent CP Violation

- a. Results on time-dependent CP observables with penguins
- b. Precision on par with world's best determinations in spite of much less luminosity
- c. These measurements are essential to probe generic BSM physics in loops
- d. Belle II is in a unique position to improve our current experimental knowledge on these modes

Charm physics:

- a. Charm Flavor Tagger
 - new inclusive algorithm that exploits correlation between signal flavor and charge of tagging particles
 - significantly enlarge the available sample size
- b. D⁺_s lifetime measurement New!
 - The most precise measurement and consistent with twice the precision of current world-average value
 - It is also consistent with theory predictions.

Backup

B-factory analysis

- High resolution (~2-10 MeV) high-level analysis variables (M_{bc} , ΔE), separating signal from backgrounds, using to the knowledge of beam energy
- Several event shape variables exploiting the correlations in e⁺e⁻ collision

High-precision vertexing

Tag side vertex

- Measuring the time difference Δt of coherently produced BB pairs from the decay of a Y(4S), boosted along z
- Improved vertex resolution from pixel in spite of lower boost
 - \circ Belle: βγ = 0.43, Δz ≈ 200μm
 - \circ Belle II: βγ = 0.29, Δz ≈ 130μm
- Enhanced Δt resolution from the beam spot profile in combination with the new nano-beam scheme
- Two times better impact parameter resolution than Belle/BaBar shows up in decay-time distribution

Pixel detector ~ radius 1.3 cm

Δm and sin2φ₁

- High-yield, low-background modes used for benchmark measurements of time-dependent observables
- Main challenge: accurate understanding of vertex resolution (Δt resolution ~1 ps) and tagging (ϵ_{tag} ~30%)

$B^0 \rightarrow \phi K_S$

- Clean experimental signature with similar Δt resolution as B→J/ψK_s
- Main challenge: dilution from nonresonant decays with opposite CP
- Quasi-two body analysis of resonant B→ψK_s decays
 - Non-resonant B→K+KKs component disentangled in cosθ
 - Effect of neglecting interference estimated with inputs from previous Dalitz measurements

Beam constraint mass

Cosine of the helicity angle

162 ± 17 B \rightarrow ψ K_S signal events with 387M B $\overline{\text{B}}$ pairs

$B^0 \rightarrow K_S K_S K_S$

- Same underlying quark transition as B→ψK_S, w/o contributions from opposite-CP backgrounds
- Main challenge: no prompt tracks to form a vertex
 - Decay vertex reconstruction relies on the Ks trajectory and profile of the interaction point
 - Dataset divided into events with and without vertexing information
- 2 BDTs to suppress fake K_S (kinematic/hits π[±] tracks) and continuum (event shape variables)

158⁺¹⁴₋₁₃ (TD) + 62 ± 9 (TI) B→ $K_SK_SK_S$ signal events with 387M B \overline{B} pairs

- Main challenge: no prompt tracks to form a vertex
 - Decay vertex reconstruction relies on the Ks trajectory and profile of the interaction point
 - Poor decay time resolution, need good performance with neutrals
- Validate on $B^0 \rightarrow J/\psi K_S$ with K_S only vertex

 $415 \pm 25 \text{ B}^0 \rightarrow \text{K}_S \pi^0 \text{ signal events with } 387 \text{M B} \overline{\text{B}} \text{ pairs}$

Charm flavor tagger

- e⁺e⁻ → two charm hadrons + fragmentation
 - o no entanglement, inaccessible strong phase
- one of main ingredients to any CPV/mixing measurement is flavor tagging
 - standard approach: exclusive reconstruction of strong decay D*+→D⁰π+
 - o a new more inclusive method is desirable to exploit correlation between signal flavor and charge of tagging particles

Charm lifetime measurements

- Beauty and charm hadron lifetimes predicted by heavy quark expansion (HQE)
 - Charm is challenging (higher-order corrections + QCD contributions)
 - Improvements important for reliable predictions in flavor physics
- Charm lifetime hierarchy recently reshuffled by LHCb
 - The Ω_{C}^{0} is not the shortest-living charm baryon.
 - All lifetimes relative to D⁺
- Belle II reach is unique!
 - Can save and reconstruct large samples of exclusive charm decays without the need to use lifetime-biasing triggers and selections
 - Better vertexing performance than Belle/BaBar

Jakub Kandra, INFN Padova