

Recent au and dark-sector results at Belle II

Zuzana Gruberová (on behalf of the Belle II collaboration) 34th Rencontres de Blois on "Particle Physics and Cosmology", May 14–19, 2023

Light dark sector

Searches for dark matter at particle colliders

- » Existence of dark matter had been established in astrophysics
- rotation curves of galaxies
- » No dark matter candidate in the Standard Model
- searches for dark matter is one of the efforts of particle physics

- » Sub-GeV scale dark sector scenario
 - dark sector weakly coupled to Standard Model through a light mediator particle
- » Mediator portals
- scalar portal: Dark Higgs, Dark Scalar
- pseudo-scalar portal: Axion Like Particle (ALP)
- vector portal: Dark photon
- fermion portal: Sterile neutrinos
- $\rightarrow\,$ B-factories can access the mass range favored by light dark sectors!

The au leptons

Why study τ leptons

» 3rd generation particle

- the heaviest known lepton
- can decay to lighter leptons but also hadrons
- some NP scenarios predict enhanced au couplings to NP
- \rightarrow The τ properties are known with much worse precision compared to e and $\mu!$

- » Searches for forbidden au decays
- lepton flavour violation
- lepton number violation
- → Any sign of LFV or LNV would be exciting!
- » Possible au physics probes
- lepton universality
- CKM unitarity
- new sources of CP violation
- ...m or e
- → The key is precision measurement!

Dark sector and au physics at B-factories

B-factories are well-suited for light dark sector and au studies

- » Collision energy at $m(\Upsilon(4S))) = 10.58$ GeV
- $\sigma(e^+e^-
 ightarrow Bar{B}) = 1.05$ nb
- $\sigma(e^+e^-
 ightarrow \tau^+ au^-) = 0.92 \text{ nb}$
- \rightarrow B-factories are also au-factories!

- » Advantages of B-factories
- well-defined kinematics of initial state
- hermetic detector
 - \rightarrow good missing energy reconstruction
- excellent vertexing and tracking capabilities
- sophisticated trigger system and particle ID \rightarrow ability to trigger low-multiplicity event
- → Great environment for the precision measurements and detection of low-multiplicity processes!

Belle II at SuperKEKB

B-factory of the next generation

» SuperKEKB accelerator

- located in Tsukuba, Japan
- asymmetric beam energies of 7.0 GeV (e^{-}) and 4.0 GeV (e^{+}), running at the energy of $\Upsilon(4S)$
- world record inst. luminosity of 4.7 imes 10³⁴ cm⁻²s⁻¹
- » Belle II detector
- successor of Belle
- special triggers for low-multiplicity events (single track/muon/photon triggers)
- $\rightarrow\,$ allows for the selection of signals that were not possible to trigger at Belle
 - excellent tracking efficiency and improved vertex resolution
- → enables new measurement approaches

» Status

- collected 428 ${
 m fb}^{-1}$ data sample since 2019
- currently on first shutdown
- expected to resume operation by the end of 2023

S

- Dark scalar S
- S could mix with SM Higgs with mixing angle θ_{ς} (naturally long-lived for $\theta_{\varsigma} \ll 1$)
- First Belle II long-lived particle (LLP) search >
- model independent search in eight exclusive visible channels

 $B^+ \to K^+S$ and $B^0 \to [K^{*0} \to K^+\pi^-]S$

with $S \rightarrow x^+ x^-$, where $x = e, \mu, \pi, K$

- signal B meson fully reconstructed
- Bump hunt in LLP mass distribution M_{s} using unbinned maximum likelihood fits
- >
- **Backgrounds** combinatorial $ee \rightarrow q\bar{q}$ reduced by requiring kinematics similar to *B* meson expectations K_S^0 mass window vetoed in $M_{\pi\pi}$ further peaking backgrounds suppressed by tighter displacement selections
- selections
- Using K_s^0 as control sample studies to derive corrections »
- reconstruction efficiency
- Ms shape
- particle identification

Limit on $B \to K^{(*)}S$

- » First model-independent 95% CL upper limits on $BR(B → K^{(*)}S) × BR(S → x^+x^-)$
- no significant excess found in 189 ${\rm fb}^{-1}$
- result as a functions of c au and mass
- probing lifetimes between 0.001 < c au < 400 ${
 m cm}$
- first limit set on S decaying to hadrons

» Translate into model-dependent limits

- Dark Higgs-like scalar S model interpretation [1]

Search for invisibly decaying Z' boson

- » New massive gauge boson Z'
- coupling only to the 2nd and 3rd generation of leptons (L_ $\mu-L_{\tau}$ model) [1]
- may explain the long-standing $(g-2)_{\mu}$ anomaly, dark matter abundance and B anomalies
- » Search for the process $e^+e^-
 ightarrow \mu^+\mu^- Z'$
- $\mathcal{BR}(Z' \rightarrow \nu \bar{\nu}) \sim 33 100\%$, $\mathcal{BR}(Z' \rightarrow \chi \bar{\chi}) \sim 100\%$ if this decay is kinematically accessible
- » Study system recoiling against $\mu^+\mu^-$ pair
- 2D fit in $M^2_{
 m recoil}$ and $heta^{
 m CMS}_{
 m recoil}$
- look for a narrow peak in events where nothing else is detected
- » Dominant background from radiative QED processes

$$e^+e^- \to \mu^+\mu^-(\gamma)$$

$$e^+e^- \to \tau^+\tau^-(\gamma)$$

$$e^+e^- \to e^+e^-\mu^+\mu^-$$

- challenging $\tau\tau$ background tackled with neural network simultaneously trained for all Z' masses [2]
- systematics and corrections estimated from $\textit{ee, e}\mu$ and $\mu\mu\gamma$ control samples

 [1] B.Shuve and I.Yavin (2014) Phys. Rev. D 89, 113004; Altmannshofer et al JHEP 1612 (2016) 106

[2] Punzi-net, F. Abudinén et al., Eur.Phys.J.C 82 (2022)

Limits on invisible Z'

- » 90% CL upper limits on the cross section $\sigma(e^+e^- \to \mu^+\mu^- Z', Z' \to \text{invisible})$ and on the coupling constant g'
- no significant excess observed in 79.7 $\rm fb^{-1}$
- $(g-2)_{\mu}$ preferred region excluded for $m_{Z'} \in (0.8, 4.0) \text{GeV/c}^2$
- conclusion is under the negligible Z' width approximation [2]
- » Analysis ongoing
- presented result is an update of previous Belle II measurement [1], with 300× larger dataset
- further improvement of the result with more data, new triggers and variables is in progress

Belle II Collaboration, Phys. Rev. Lett. 124, 141801 (2020)

[2] D. Curtin, R. Essig, S. Gori, J. SHelton, JHEP 157 (2015)

- Any LFV signature would imply physics beyond the SM >
- the α boson could be any invisible spin-0 boson, light ALP, etc. [1]
- Belle II strategy ≫
- split event into hemispheres: signal and tag (common taupair analysis strategy), use 3×1 -prong decays signal side: $\tau \to \ell \alpha, \ell = e, \mu$
- tag side: $\tau \rightarrow \pi \pi \pi \nu_{\tau}$
- irreducible background: $\tau \rightarrow \ell \nu_{\tau} \nu_{\ell}$
- Exploit the shape differences between 3-body vs. 2-body > decay
- pseudo-rest-frame: approximate the τ_{sig} rest-frame as

$$E_{
m sig} pprox \sqrt{s}/2, \hat{p_{ au}} pprox - rac{p_{
m tag}}{|p_{
m tag}|}$$

search for a bump in normalized lepton energy spectrum

$$\mathbf{x}_\ell = rac{\mathbf{E}_\ell^*}{\mathbf{m}_ au \mathbf{c}^2/2}, \ \ \mathbf{E}_\ell^* = \mathsf{pseudo-rest-frame} \ \mathsf{energy}$$

- No signal observed in 62.8 fb^{-1} >>>
- setting 95% CL upper limits on $\mathcal{BR}(\tau \to \ell \alpha) / \mathcal{BR}(\tau \to \ell \nu \nu)$
- most stringent limits in these channels to date
- 2-14× more constraining than Argus [2]

[1] M. Bauer, et al. Phys. Rev. Lett. 124, 211803 (2020).

[2] ARGUS Collaboration, Z. Phys. C 68, 25 (1995)

Search for LFV decay $au ightarrow \ell \phi$

- » Highly suppressed decay in SM ($\sim 10^{-50})$
- new mediators (vector leptoquark [1]) may enhance such decay (predict \mathcal{BR} of up to $10^{-10} 10^{-8}$)
- accommodates for flavour anomalies in LFU tests
- » Belle II approach
- signal side: $\tau \to \ell \phi$ with $\ell = e, \mu$ and $\phi \to K^+ K^-$
- tag side: inclusive; everything except for the signal event ("Rest of Event" RoE)
- RoE and signal kinematics in BDT classifier to suppress the continuum backgrounds

- » Challenging to keep high signal efficiency while suppressing the background
- signal efficiency of 6.1% (6.5%) for $e(\mu)$ channel
- Poisson counting in signal regions in $M_{ au}$ and $\Delta E_{
 m sig} = E_{
 m sig}^* \sqrt{s}/2$ plane
- expected background evaluated from data sidebands with scaling from simulation
- » No significant excess found in 190 ${\rm fb}^{-1}$
- 90% CL upper limits: $\mathcal{BR}_{UL}(\tau \to e\phi) = 2.3 \times 10^{-7}$, $\mathcal{BR}_{UL}(\tau \to \mu\phi) = 9.7 \times 10^{-8}$
- not competitive yet, but successful first application of untagged approach in τ -pair analysis at Belle II (previous searches at Belle [2] used tagged approach ($\tau_{tag} \rightarrow \ell/h(\nu_{\ell})\nu_{\tau}$))

[1] Andrei Angelescu, et al., Phys. Rev. D 104, 055017 (2021), [2] Y. Miyazaki et al., Belle, Phys. Lett. B 699 (2011)

e, µ

Measurement of the au lepton mass

» Lepton masses are fundamental parameters of the SM

 $m_{e} = (0.5109989461 \pm 0.000000031) \; {
m MeV}$

 $m_{\mu} = (105.6583745 \pm 0.0000024) \; {
m MeV}$

 $m_{ au} = (1776.86 \pm 0.12) \text{ MeV} (\text{PDG avg. 2022})$

- the $m_{ au}$ precision impacts LFU tests!
- » Pseudomass measurement at Belle II
- method developed by ARGUS collaboration
- exploit the kinematics of the 3π system in $\tau \rightarrow \pi\pi\pi\nu_{\tau}$
- signal side: $au
 ightarrow 3\pi
 u_{ au}$
- tag side: $au
 ightarrow \ell
 u_\ell
 u_ au / \pi(\pi^0)
 u_ au$
- pseudomass M_{\min} is defined as

$$M_{\min}^2 = 2E_h(E_{\tau} - E_h) + m_h^2 - 2|\vec{p_h}|(E_{\tau} - E_h) < m_{\tau}^2$$

e, µ, л

1-2v.

 $\max 1\pi^0$

- the position of the cutoff indicates the value of the τ mass \rightarrow cutoff position smeared due to a large tail from ISR/FSR and detector resolution

Fit of $M_{ m min}$ distribution

» Challenges of the measurement

- precise understanding of the kinematics of the decay products and the beam energy
- find the most accurate empirical fitting function
- correctly extract the mass from the threshold position (estimator bias)
- reducing the main systematics, dominant in previous τ mass measurements

- estimated using B-meson hadronic decays method and $\Upsilon(4S)$ lineshape measurement to get \sqrt{s}
- » Momentum scale factor
- cures the bias due to imperfect magnetic field
- corrections dependent on $\cos\theta_{\rm track}$, extracted by comparing $D^0 o K\pi$ mass peak w.r.t PDG mass

		(·	7	
$M_{\min} =$	$\sqrt{M_{2\pi}^2} +$	$2(\sqrt{s/2} -$	$E_{2\pi}^{*})(E_{2\pi}^{*})$	$-P_{2\pi}^{*}$
	V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 377 (- 37	37

The au mass result

- » World's most precise measurement of $m_{ au}$
- thanks to excellent control of systematic uncertainties through precise understanding of beam energies and tracking
- proof of high precision capability of Belle II

Source	$\frac{\rm Uncertainty}{[{\rm MeV}/c^2]}$
Knowledge of the colliding beams:	
Beam energy correction	0.07
Boost vector	≤ 0.01
Reconstruction of charged particles:	
Charged particle momentum correction	0.06
Detector misalignment	0.03
Fitting procedure:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	≤ 0.01
Imperfections of the simulation:	
Detector material budget	0.03
Modeling of ISR and FSR	0.02
Momentum resolution	≤ 0.01
Neutral particle reconstruction efficiency	≤ 0.01
Tracking efficiency correction	≤ 0.01
Trigger efficiency	≤ 0.01
Background processes	≤ 0.01
Total	0.11

 $m_{ au} = 1777.09 \pm 0.08_{
m stat} \pm 0.11_{
m sys} \ {
m MeV/c}^2$

Summary

- Belle II has a unique sensitivity to light dark sectors searches and confirms its world leading precision capabilities
- results are complementary to higher-energy collider and beam-dump experiments

- » Presented recent dark sector and au physics highlights
 - Search for a long-lived (pseudo-)scalar in $b \rightarrow s$ transitions to be submitted to journal (PRL)
 - Search for invisible Z' in $ee \rightarrow \mu\mu Z'$ accepted for publication (PRL)
 - Search for an invisible boson in LFV au decays Phys. Rev. Lett. 130, 181803 (2023)
 - Search for LFV decay $\tau \rightarrow \ell \phi$ conference paper (Moriond 23)
 - Measurement of the τ lepton mass to be submitted to journal (PRD)

With 428 fb^{-1} data sample collected, more exciting results on larger statistics and impoved analysis methods are coming!

Backup

(cartoon characters © Particle Boys, Tabi Kaeru, Otasaku)

Belle II lumonisty and LS plans

» Belle II integrated luminosity

- » long shutdown plans
- » currently testing and installing new PXD detector

Belle II stopped taking data in Summer 2022 for a long shutdown

- o replacement of beam-pipe
- o replacement of photomultipliers of the central PID detector (TOP)
- o installation of 2-layered pixel vertex detector
- o improved data-quality monitoring and alarm system
- o complete transition to new DAQ boards (PCle40)
- replacement of aging components
- o additional shielding and increased resilience against beam backgrounds

Currently working on pixel detector installation:

- > shipping to KEK in mid March
- > final test at KEK scheduled in April

τ events selection at Belle II

- » Divide the space into two hemispheres
- wrt thrust axis
- signal and tag side (example)

- » Require specific number of tracks
- originating from the vertex (short au lifetime)
- 1-prong/3-prong τ decays one/three charged track
- (5-prong...)

- » Thrust value
- "back-to-back" topology
 - ightarrow high value for au events

thrust value
$$\stackrel{\text{max}}{=} \sum_{i} \frac{|\vec{P}_i \cdot \hat{T}|}{|P_i|}$$

- » Visible energy
- (at least) two neutrinos
 - → always less than the collision energy

visible energy
$$=\sum_{i} E_{i}$$

$au ightarrow \ell lpha - e$ and μ channel

M(a) [GeV/c2]

- » Belle II results for e and μ channel
- » ARGUS results

$\tau \to \ell \phi$ — upper limit plots

$^{\circ 0.1}_{ m CI}{ m CI}^{ m s}$ $^{\circ 0.1}_{ m CI}{ m cr}^{ m s}_{ m CI}$ Belle II (Preliminary) $CL_{s,obs}$ Belle II (Preliminary) - CL_{s,obs} $\int \mathcal{L} dt = 190 \, \text{fb}^{-1}$ ---- CL_{s,exp} $\int \mathcal{L} dt = 190 \, \text{fb}^{-1}$ ---- CL_{s,exp} $\pm 2\sigma \operatorname{CL}_{s,\exp}$ $\pm 2\sigma \operatorname{CL}_{s, exp}$ 0.75 0.75 $\pm 1\sigma CL_{s.exp}$ $\pm 1\sigma \operatorname{CL}_{s, exp}$ $\alpha = 10\%$ $--- \alpha = 10\%$ muon channel: $\tau \rightarrow \mu \phi$ electron channel: $\tau \rightarrow e \phi$ 0.50 0.50 observed: 9.7×10^{-8} observed: 2.3 x 10⁻⁷ expected: 9.9 x 10⁻⁸ expected: 1.5 x 10⁻⁷ 0.25 0.25 $\times 10^{-7}$ $\times 10^{-7}$ 0.00 0.00 0 2 0 2 Upper limit on $\mathcal{B}(\tau \to e\phi)$ Upper limit on $\mathcal{B}(\tau \to \mu \phi)$

» Measured 90% CL upper limits

Belle II trigger

- » Belle II trigger performance
- » dedicated low-multiplicity triggers

essential for dark-sector and tau physics

- typical signatures include low-multiplicity of tracks, and energy deposits in EM calorimeter
- large background from radiative Bhabha and two-photon processes

some of the dedicated low-multiplicity triggers:

- single muon
 - combine drift chamber and muon detector information
- single track:
 - neural-net based hardware trigger
- single photon:
 - high efficiency for E(γ) > 1 GeV

