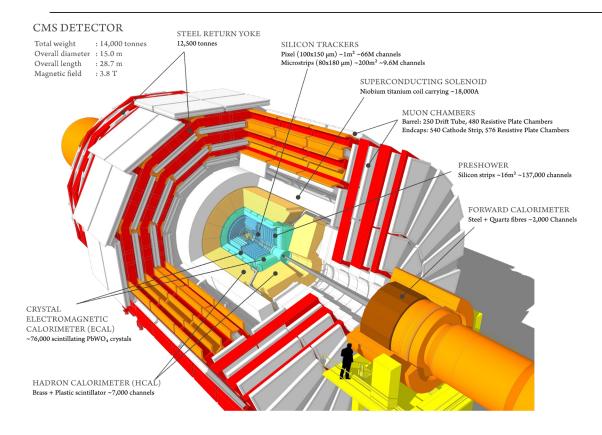


Blois 2023: 34th Rencontres de Blois on "Particle Physics and Cosmology"

Blois - May 17th, 2023

Rare decays and flavour anomalies at CMS


Luca Guzzi – INFN Milano-Bicocca

Overview

results from rare decays and flavour anomalies searched in B-physics at CMS

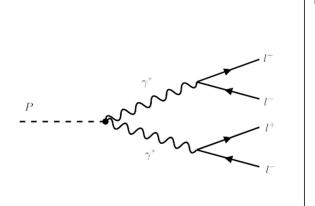
- observation of the rare $\eta \rightarrow 4\mu$ decay at CMS in Run2 scouting data
- search for $B^0_{(s)} \rightarrow \mu^+ \mu^-$ events at CMS and B^0_s life-time measurement in Run2 data
- search for the LFV $\tau \rightarrow 3\mu$ decays in CMS in 2016 data
- angular analysis $B0 \rightarrow K^{0*}\mu^+\mu^-$ at CMS in Run1 data

The CMS detector

collected luminosity:

- Run1: X 25 /fb pp @ 7 and 8 TeV
- Run2: X 140 /fb pp @ 13 TeV
- Run3 ongoing, 37 /fb collected in 2022

- cylindric compact (15m x 21m) detector
- high granularity pixel + strip silicon tracker for excellent track, PV and SV measurements
- PbWO₄ crystal ECAL and brass+plastic HCAL to achieve hermeticity and for jet+EG shower measurement
- 3.8T solenoid for pT measurement
- external muon chambers outside steel return yoke for a clean muon detection and pT measurement
- two level trigger system (hardware + software)

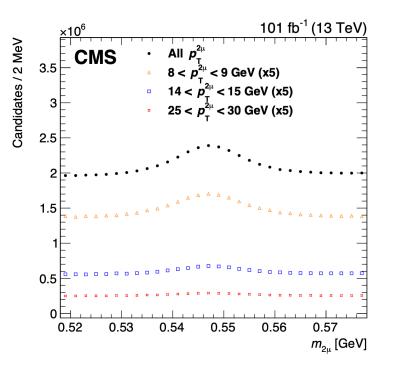


motivation

- η→4µ decay predicted with a very low branching fraction (3.9x10⁻⁹)
 - never observed so far: precision test of the Standard Model (SM)

result

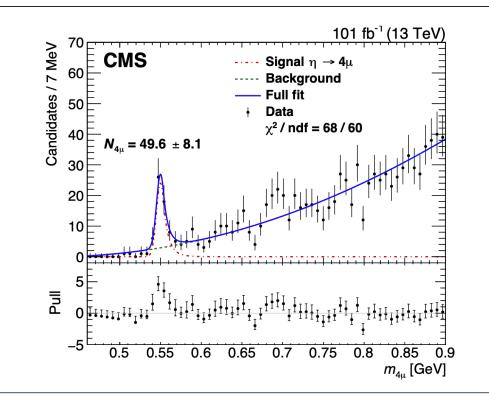
- first observation of the rare $\eta \rightarrow 4\mu$ decay
- sensible to new physics scenarios <u>doi.org/10.1016/j.physreb.2021.11.001</u>


data scouting

- trigger thresholds limited by the computing power and bandwidth of the experiment
- reduce event size and fasten data acquisition
 - limit the amount of information to muon tracks
 - save HLT reconstruction and skip *prompt* event processing
 - event size reduced to ~kB (from ~MB)

 \rightarrow can use looser muon thresholds \rightarrow allow for low transverse momentum (pT) rare decays searches

$\begin{array}{l} \eta {\rightarrow} 4 \mu \\ \text{event selection} \end{array}$


- pp collisions @ 13 TeV 101 /fb collected in 2017 and 2018
- CMS trigger system
 - L1 trigger: di-muon patterns select low-pT collimated muons (pT>~4 GeV)
 - HLT trigger: di-muon pattern with mild pT selection (pT>3 GeV)
 - di-muon triggers select both 4μ (signal) and 2μ (control channel) η decays
- trigger scouting for low pT analysis
 - higher trigger rate possible (2 kHz vs. 30 Hz of standard di-muon triggers)
 - size reduction: 4 (8) kB per event in 2017 (2018)
 - 4.5 M of $\eta \rightarrow 2\mu$ events recorded \rightarrow several billions η mesons produced in the CMS acceptance
- further signal skimming: charge-zero 4µ events with common vertex

invariant mass of di-muon events in the eta range, collected by 2017 and 2018 CMS parking triggers

η→4μ results

- $\eta \rightarrow 4\mu$ yield is normalized to the $\eta \rightarrow 2\mu$ yield
 - relatively precise normalization strategy (13.8% uncertainty)
- efficiency and acceptance corrections from MC samples
 - MC correction for 2μ - 4μ differences
- $\eta \rightarrow 4\mu$ yield fit with CB function + polynomial
 - ~50 η→4µ events observed: 5 sigma excess from background (estimated with LLR)
 - resonant backgrounds faking 4µ in the signal region excluded by MC studies (see backup)

$$\mathcal{B}(\eta
ightarrow 4\mu) = 5.0 \pm 0.8(stat) \pm 0.7(syst) \pm 0.7(\mathcal{B}) imes 10^{-9}$$

• in agreement with SM prediction 3.98 ± 0.15 x 10⁻⁹

Bo **(s)**

the physics case

motivations

- B⁰_(s)→µ⁺µ⁻ strongly suppressed in the SM (FCNC and helicity)
- connected to $b \rightarrow sl^+l^-$ transitions via the

EFT operators can help understand

b→s anomalies <u>doi.org/10.1140/epjc/s10052-</u> 021-09725-1

probe SM though lifetime

measurements

• clear final state and

experimental signature at CM\$-

result

- pp @ 13 TeV Run2 data (2016-2018) 140 /fb
 - updates the published result on 2016
 data (30 /fb)
- 12.5 sigma observation of the B⁰_(s)→µ⁺µ⁻
 decay, upper limit on the B(B⁰→µ⁺µ⁻) and
 life time measurement of B⁰_(s)→µ⁺µ⁻

Blois 2023 Rare decays and flavour anomalies at CMS Ζ

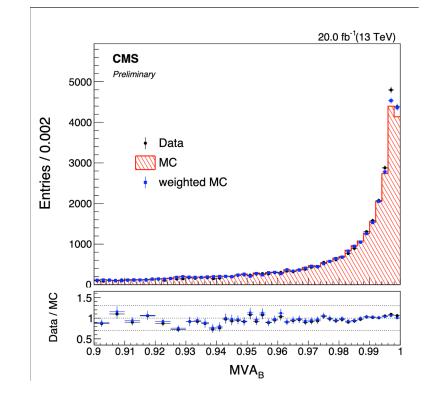
$B^{0}(s) \rightarrow \mu^{+}\mu^{-}$

event selection

Data collection

- trigger selection: di-muon triggers with tight quality tracks and a valid secondary vertex (SV)
- similar selection for the control channels $B \rightarrow J/\Psi K^+$ and $B \rightarrow J/\Psi \varphi$

signal selection


- two opposite-sign muons with pT > 4 GeV and |η|
 < 1.4
- decay vertex of B meson→ kinematic re-fit of the muon tracks with additional SV constraint
- 16 categories: 4 years x 2 BDT bins x 2 detector
 |η| regions

Background contamination

- combinatorial from $b\overline{b}$ events \rightarrow MVA reduction
- partially reconstructed semi-leptonic b \rightarrow hµv and b \rightarrow hhX decays \rightarrow MVA reduction
- charmless hadronic two-body decays $B \rightarrow hh \rightarrow negligible$ after tight muon track selection

B⁰_(s)→μ⁺μ⁻ MVA analysis

- exploit several weak discrimination variables with a BDT (XGBoost)
 - \circ features: pointing angles (2D and 3D) \rightarrow effective vs. all non-two-body backgrounds
 - \circ features: SV (quality and displacement) \rightarrow effective vs. combinatorial
 - features: isolation (sum of pT surrounding the signal)
 - \rightarrow effective vs. semi-leptonic decays
- trained on data from the signal mass sidebands and MC signal samples
 o validate on B⁺→J/Ψ K⁺ events

MVA score distribution for data (black dots), MC (bars) and re-weighted MC (blue dots) for 2016a $B^+ \rightarrow J/\Psi K^+$ events

$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$

signal extraction

• 2D UML fit to the $\mu\mu$ mass x mass-resolution to extract the B $\rightarrow\mu\mu$ signal yields. Two strategies for B_s^0 normalization:

 \circ B⁺ \rightarrow J/ $\Psi(\rightarrow \mu^{+}\mu^{-})$ K⁺ normalization \rightarrow rely on the knowledge of fs / fu

 $\circ B_s^0 \rightarrow J/\Psi(\rightarrow \mu^+\mu^-) \phi(\rightarrow K^+K^-)$ normalization \rightarrow higher systematic (additional kaon)

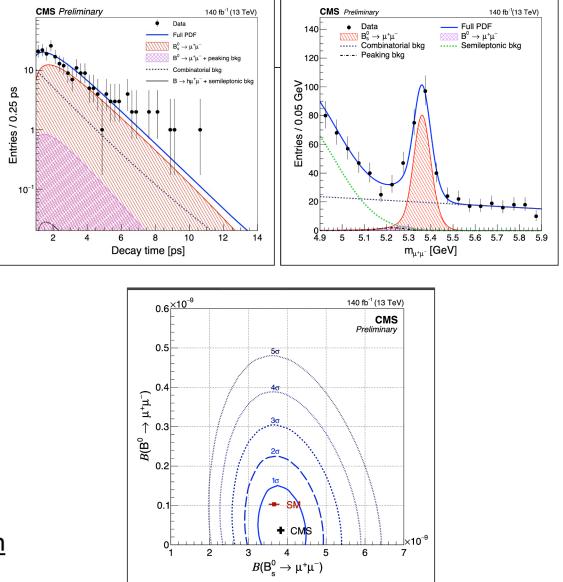
UML fit to the decay time to extract τ (3D fit: decay time, its uncertainty and μμ mass)

 $B^{0}(s) \rightarrow \mu^{+}\mu^{-}$ results

```
\mathcal{B}(\mathbf{B}^{0}_{s} \rightarrow \mu^{+}\mu^{-}) = 3.83^{+0.38}_{-0.36}(stat)^{+0.14}_{-0.13}(syst) \stackrel{+0.14}{_{-0.13}}(fs/fu)
```

x 10⁻⁹ (from J/Ψ K⁺)

```
\mathcal{B}(\mathbf{B}_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = 3.95^{+0.39}_{-0.37}(stat)^{+0.27}_{-0.22}(syst) \stackrel{+0.21}{_{-0.19}}(BF)
```

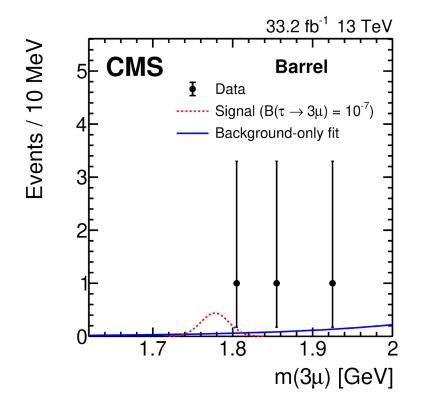

x 10⁻⁹ (from J/Ψφ)

```
\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) < 1.5 \times 10^{-10} @ 90\% CL
```

𝔅(B⁰→μ⁺μ⁻) < 1.9 x 10⁻¹⁰ @ 95% CL

 $\tau(\mathbf{B_s^0}) = 1.83^{+0.23}_{-0.20}(stat)^{+0.04}_{-0.04} (syst) \text{ ps}$

- All UML fit results are compatible with the SM prediction within 1 sigma
- most precise measurement of $B_s^0 \rightarrow \mu^+\mu^-$ branching fraction and lifetime to date

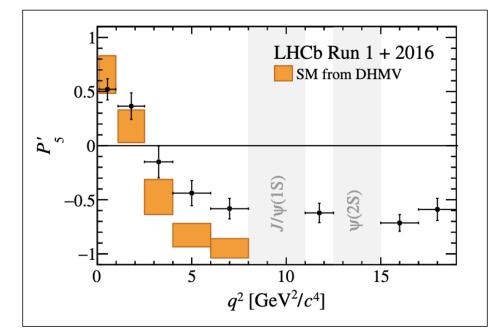


$\tau^+ \rightarrow \mu^+ \mu^+ \mu^-$

- $\tau \rightarrow 3\mu$ excellent candidate for new physics searches
 - LFV process, strongly suppressed in the SM (~10⁻⁵⁵), but predicted at the level of 10⁻⁸ 10⁻¹⁰
 by some BSM models
 Bordone et al. 10.1007/JHEP10(2018)148
 - o clear final state signature
 - o fairly abundant in pp collisions (per /fb)
- CMS targets τ leptons produced via D/B mesons and via W bosons
- analysis on 2016 pp data @ 13 TeV (30 /fb)
- select three-muon events and reduce the background contamination via BDT
- observed (expected) UL from three-muon invariant mass distribution

 \odot BHF(t {\rightarrow} 3\mu) < 9.2 (10.0) x 10^{-8} @ 90\% CL

- \circ B^W(τ→3µ) < 20.0 (13.0) x 10⁻⁸ @ 90% CL
- B(τ→3µ) < 8.0 (6.9) x 10⁻⁸ @ 90% CL

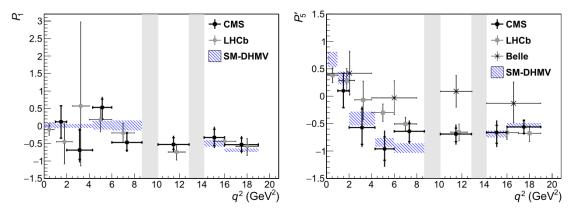


doi.org/10.1016/j.physletb.2018.04.030

$B^0 \longrightarrow K^{0*} \mu^+ \mu^-$

the physics case

- FCNC strongly suppressed in the SM
- angular analysis
- study the deviation from the SM of the angular parameters describing the decay
 - P5' most interesting following 2–3 sigmas deviation from SM observed by LHCb in the 4<q²<6 and 6<q²<8 GeV² bins in Run1



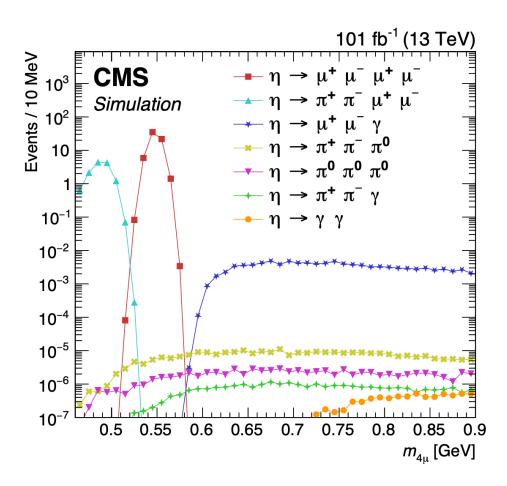
result

- pp @ 8 TeV Run1 data 20.5 /fb
- P5' distributions compatible with the SM

B⁰→K^{0*}µ⁺µ⁻ analysis results

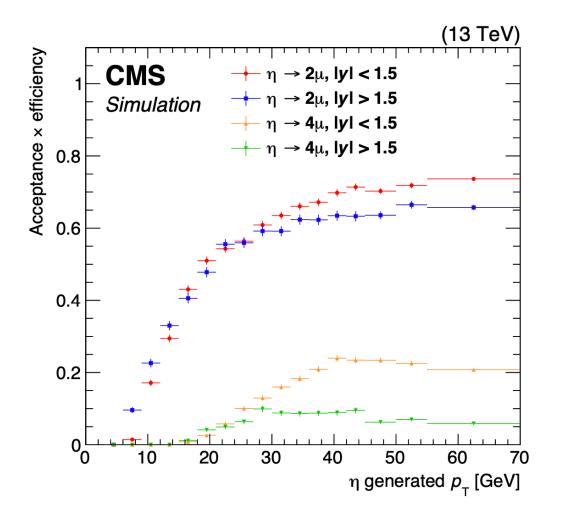
- q² binned
- trigger di-muon events with displaced vertex
- build signal candidates by requiring two muons and two tracks (K* candidate) from the same vertex
 - $\circ\,$ resolve PID ambiguity by selecting the K π hypothesis closest to the K* mass (misid: 12-14%)
- background mainly from combinatorial
 - $\circ~$ negligible contamination from peaking B and Λ_b decays and b—cX decays
- UML fit to the B0 mass x angular distributions to extract the POIs (P₁ and P₅')
 - $\circ~B{\rightarrow}JPsi/\Psi'~K^*$ for fit validation and systematic assessment

 both the angular parameters are compatible with the SM


Summary of the talk

- First $\eta \rightarrow 4\mu$ observation in CMS Run2 scouting data @ 13 TeV (101 /fb)
 - $B(\eta \rightarrow 4\mu) = 5.0 \pm 0.8$ (stat) ± 0.7 (syst) ± 0.7 (B) · 10⁻⁹
- $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ at CMS on pp collisions @ 13 TeV (140 /fb)
 - $\circ \quad \mathsf{B}(\mathsf{B}^{0}{}_{\mathsf{s}} \rightarrow \mathsf{K}^{0^{*}}\mu^{+}\mu^{-}) = 3.83^{+0.38}_{-0.36} \text{ (stat) } ^{+0.14}_{-0.13} \text{ (syst) } ^{+0.14}_{-0.13} \text{ (fs/fu) } \cdot 10^{-9} \text{ (*)}$
 - $B(B^0 \rightarrow \mu^+ \mu^-) < 1.5 (1.9) \cdot 10^{-10} @ 90\% (95\%) CL$
 - $\circ \quad \tau(B^0{}_{s}) = 1.83^{+0.23}_{-0.20}(\text{stat})^{+0.04}_{-0.04} \text{ ps} \ ^{(*)}$
- $\tau \rightarrow 3\mu$ (W and D/B channels) at CMS in pp collisions @ 13 TeV (30 /fb)
 - \circ B(τ→3µ) < 8.0 x 10⁻⁸ @ 90% CL
- $B^0 \rightarrow K^{0^*} \mu^+ \mu^-$ at CMS in pp collisions @ 8 TeV (20.5 /fb)
 - angular analysis: all angular parameters compatible with the SM, no deviation observed in the P5' parameter

(*) most precise up to date



$\eta {\rightarrow} 4 \mu \\ \text{resonsnat background contamination}$

- no peaking decay under the η peak
- note: unobserved decays are normalized to their upper limit

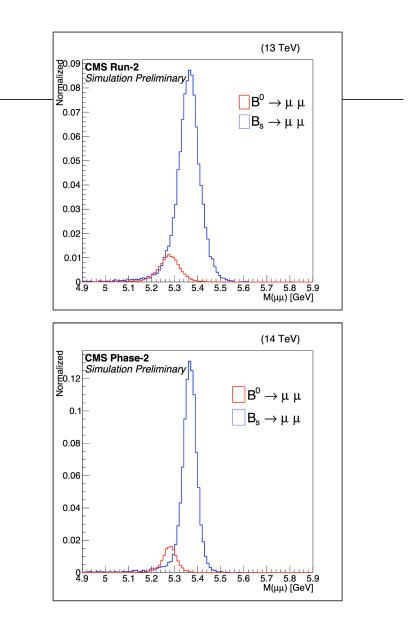
$\eta \rightarrow 4\mu$ acceptance correction

• 4µ and 2µ efficiencies in bins of pT and rapidity

$\begin{array}{l} \eta {\rightarrow} 4 \mu \\ \text{systematic uncertainties} \end{array}$

track pT threshold uncertainty [9%]: imperfect modeling of turn-on

behaviour of single-muon reconstruction efficiency in simulated data


- trigger pT threshold uncertainty [8.4%]: imperfect modeling of turn-on behaviour of single-muon reconstruction efficiency at HLT in simulated data
- plateau efficiency uncertainty [3.2%]: mismodeling of trigger efficiency plateau
- fit bias: subdominant
- $\eta \rightarrow 2\mu$ branching fraction [13.8%]

cds.cern.ch/record/2650545

$B^{0}(s) \rightarrow \mu^{+}\mu^{-}$

perspectives at the HL-LHC

- CMS prediction for <u>HL-LHC (Phase 2) starting in 2029</u>
 - $\circ~$ 14 TeV pp collision \rightarrow ~ same b production
 - $\circ\,$ x5 collision rate (200 PU) $\,\rightarrow$ no large impact from 200PU is expected
 - $_{\odot}$ 3 /ab of luminosity \rightarrow x20 Run-2
- extrapolation via MC simulation (full Phase2 detector) + toys from Run-1 results
 - reasonable projection of most of the systematic uncertainties (x0.5)
- much better mass resolution following tracker upgrade
 - $_{\odot}\,$ less contamination from semi-leptonic fakes
 - $\,\circ\,$ better B^0_s B^0 hypothesis separation
- ➤ Time resolution on lifetime: 0.05 ps
- \succ observation of B0 $\!\!\!\!\!\rightarrow \mu\mu$ at more than 5 sigmas

CMS: $B^0_{(s)} \rightarrow \mu^+ \mu^-$

SYSTEMATIC UNCERTAINTIES

Table 3: Summary of the systematic uncertainties for the $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ branching fraction measurements.

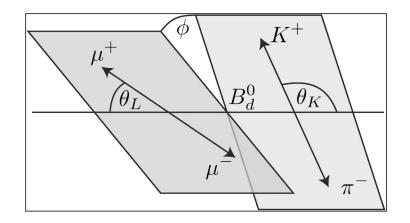
Effect	${ m B_s^0} ightarrow \mu^+\mu^-$	$\mathrm{B}^{0} ightarrow \mu^{+}$
Trigger efficiency	2-4%	
Pileup	1%	
Vertex quality requirement	1%	
MVA _B correction	2–3%	
Tracking efficiency (per kaon)	2.3%	
$B^+ \rightarrow J/\psi K^+$ shape uncertainty	1%	
Fit bias	2.2%	4.5%
$f_{\rm s}/f_{\rm u}$ - ratio of the B meson production fractions	3.5%	-

Table 4: Summary of the systematic uncertainties in the $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime measurement (ps).

2016a	2016b	2017	2018
	0.01		
	0.01		
0.10	0.06	0.02	0.02
0.04	0.04	0.05	0.04
0.11	0.07	0.05	0.04
	0.10 0.04	0.0 0.0 0.10 0.06 0.04 0.04	0.01 0.01 0.10 0.06 0.02 0.04 0.04 0.05

- **trigger:** data-MC comparison of control channels
- pileup: by means of reweighing
- **vertex:** the control channel triggers require a tighter selection. Evaluated the difference of the two selections.
- **MVA:** difference between data and MC efficiencies evaluated after an MVA reweight of the control channel
- **tracking:** comparing $D^0 \rightarrow K\pi$ and $D^0 \rightarrow K\pi\pi\pi$ ratio with world average
- $B \rightarrow J/\Psi K$ shape: evaluating different shapes
- fit bias: with pseudo-experiments
- fs/fu: from external measurement
- lifetime fit bias: correlation of the BDT to the life-time. Measured by comparing the B→J/ΨK fit to the SM prediction after the BDT cut
- decay time distribution mismodeling: the lifetime distribution of simulated signal events is corrected using scale factors from B→J/ΨK events taken after BDT>.9 over BDT>.99. The fit difference introduced by data- or MCderived corrections is taken as uncertainty.
- efficiency modelling: evaluated using different efficiency functions
- **lifetime fit bias:** measured with pseudo-experiments with different lifetimes

$B^0 \longrightarrow K^{0*} \mu^+ \mu^-$ systematic uncertainties


Source	$P_1(imes 10^{-3})$	$P_5'(\times 10^{-3})$
Simulation mismodeling	1–33	10–23
Fit bias	5–78	10–120
Finite size of simulated samples	29–73	31–110
Efficiency	17–100	5–65
K π mistagging	8–110	6–66
Background distribution	12–70	10–51
Mass distribution	12	19
Feed-through background	4–12	3–24
$F_{\rm L}$, $F_{\rm S}$, $A_{\rm S}$ uncertainty propagation	0–210	0–210
Angular resolution	2–68	0.1–12
Total	100–230	70–250

- **simulation mismodeling:** fit a simulated signal sample with 400x data and see the fit difference wrt to the input
- **fit bias:** use 200 simulated signal samples + simulated data (~data size) to estimate the fit bias
- **finite size of simulated samples:** due to the finite size of the MC used to derive the efficiency shape. Generate 100 numerator and denominator shapes from the original ones and refit them to estimate the difference due to the statistical uncertainty.
- efficiency: fit the control channels to extrapolate fixed parameters (FL) and cross check with PDG
- Kn mistagging: fit the mistag rate on the control channel $B \rightarrow J/\Psi K^*$ and take the difference wrt the simulation as systematics
- background shape: fit the data 200 times varying the shape of the background distributions within their error (fixed in these test fits) and evaluating the POIs distribution RMS
- **signal mass shape:** fit the control channels letting their width vary alternately and see the effect on the POIs
- **background feed-through:** see the difference in the POIs after counting for an additional systematic uncertainty describing the feed-through from $B \rightarrow J/\Psi / \Psi'$ K* events
- **F_L, F_s, A_s uncertainties propagation:** fit pseudo-experiments allowing these parameters to change and compare the POIs values with the nominal procedure
- angular resolution: fit a siulated sample using generated or reconstructed values of the angular parameters and see the difference

$B^0 \rightarrow K^{0*} \mu^+ \mu^-$ fit strategy

- simplify the angular pdf by considering symmetries in the ϕ =0 and θ I= π /2 angles
 - reduce the POIs that can be extracted to P_1 and P_5 '
- UML fit to the mass and angular distributions
 - signal mass shape: double-gaussian different for correct- and wrong-tagged events, with paramters obtained from simulated samples
 - angular pdf for background: polynomials (factorizing)
 - o mass pdf for background: exponential
 - angular efficiencies: obtained from kernel-density estimators, different for correct- and wrong-tagged events
- Fit run in two steps:
 - 1. fit the sidebands and fix the background shapes
 - 2. fit the full distribution and obtain the POIs

$$\begin{split} \frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_K d\phi} &= \frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(F_{\rm S} + A_{\rm S}\cos\theta_K \right) \left(1 - \cos^2\theta_l \right) + A_{\rm S}^5 \sqrt{1 - \cos^2\theta_K} \right. \\ \left. \sqrt{1 - \cos^2\theta_l}\cos\phi \right] + \left(1 - F_{\rm S} \right) \left[2F_{\rm L}\cos^2\theta_K \left(1 - \cos^2\theta_l \right) \right. \\ \left. + \frac{1}{2} \left(1 - F_{\rm L} \right) \left(1 - \cos^2\theta_K \right) \left(1 + \cos^2\theta_l \right) + \frac{1}{2}P_1(1 - F_{\rm L}) \right. \\ \left. \left(1 - \cos^2\theta_K \right) (1 - \cos^2\theta_l) \cos 2\phi + 2P_5'\cos\theta_K \sqrt{F_{\rm L}} \left(1 - F_{\rm L} \right) \right. \\ \left. \sqrt{1 - \cos^2\theta_K} \sqrt{1 - \cos^2\theta_l} \cos\phi \right] \right\}. \end{split}$$

 $B^0 {\longrightarrow} K^{0*} \mu^+ \mu^$ results

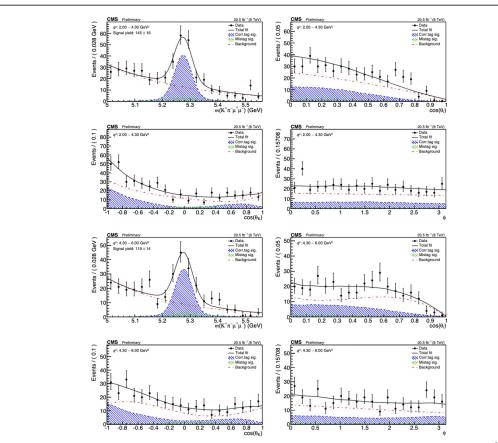
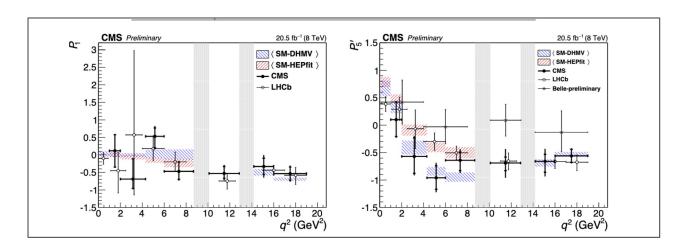



Figure 2: $K^+\pi^-\mu^+\mu^-$ invariant mass and angular distributions for the second and third q^2 bin (top four plots) 2.00 < q^2 < 4.30 GeV², and (bottom four plots) 4.30 < q^2 < 6.00 GeV². Overlaid on each plot is the projection of the results for the total fit, as well as for the three components: correctly tagged signal, mistagged signal, and background. The vertical bars indicate the statistical uncertainties.

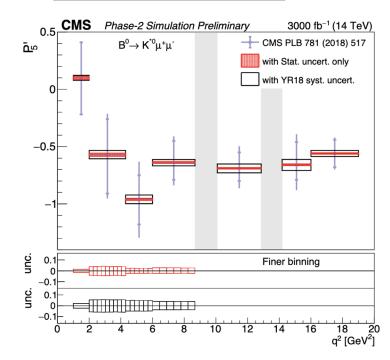
Blois 2023 Rare decays and flavour anomalies at CMS

Luca Guzzi – INFN Milano-Bicocca

T⁺→μ⁺μ⁺μ⁻systematic uncertainties

W channel

HF channel


Uncerta		ainty (%)
Source	Barrel	Endcap
Signal efficiency	7.9	32
Limited size of simulated samples	4.3	6.2
Integrated luminosity	2.5	2.5
$pp \rightarrow W$ cross section	2.9	2.9
$\mathcal{B}(W \rightarrow \mu \nu)$	0.2	0.2
$\mathcal{B}(W \! ightarrow \! au u)$	0.2	0.2
Total	9.8	33

Source of uncertainty	Uncertainty (%)	Yield (%)
D _s ⁺ normalization	10	10
$\mathcal{B}(\mathrm{D}_{\mathrm{s}}^{+}\! ightarrow\! au^{+} u)$	4	3
$\mathcal{B}(D_s^+ \rightarrow \phi \pi^+ \rightarrow \mu^+ \mu^- \pi^+)$	8	8
$\mathcal{B}(B \rightarrow D_s^+ + X)$	16	5
$\mathcal{B}(B \to \tau + X)$	11	3
B/D ratio f	11	3
Number of events from L1 trimuon trigger	12	3
Acceptance ratio $A_{3\mu}/A_{\mu\mu\pi}$	1	1
Muon reconstruction efficiency	1	1
BDT requirement efficiency	5	5
Total		16

$B^0 \rightarrow K^{0*} \mu^+ \mu^-$ at the HL-LHC

- MC study to address the precision reached by ATLAS at the HL-LHC (3 /ab)
- analysis strategy same as Run1
 - reduce fit-related systematics by 1/sqrt(L)
 - $\circ\;$ reduce most of uncertainties (signal shape, efficiency shape, mis-tag, detector-related) by a factor 2
- precision increase up to x15 better \rightarrow also explore possibilities of finer binning

cds.cern.ch/record/2651298

$\tau{\rightarrow}3\mu$ at the HL-LHC

 Iuminosity-scaled projections based on the HF results place CMS sensitivity at 3.7 x 10⁻⁹ @ 90% CL <u>arXiv:1812.07638</u>