

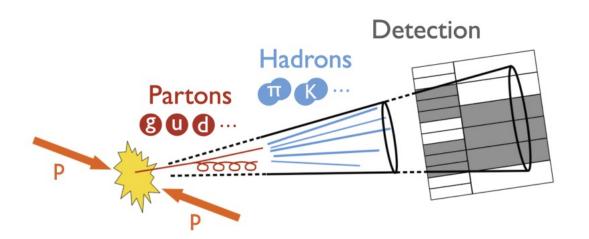
Improving ATLAS Hadronic Object Performance with ML/AI Algorithms

Xiang Chen

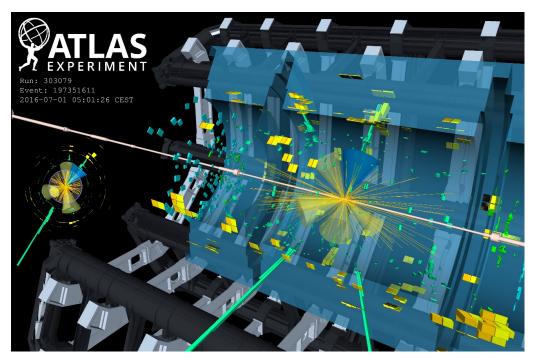
On behalf of ATLAS Collaboration

Introduction - Jets in High Energy Physics

- Jets are formed by showers of particles originating from the hadronization of quarks and gluons
- In ATLAS physics analyses, jets are typically reconstructed using anti-kT algorithm, using the combined information of tracks and energy deposits in calorimeters as inputs
- Jets are important for physics analyses for BSM searches and SM measurements in collider experiments
- Jets contains complex information and it is very suitable for the application of machine learning methods



https://cms.cern/news/jets-cms-anddetermination-their-energy-scale



https://atlas.cern/updates/press-statement/atlas-observes-tth-production

Introduction – Hadronic Objection in ATLAS

- There are several steps for building jets:
 - Inputs finding: to get the constituents as the 4-vector inputs from the tracker and/or calorimeters
 - Reconstruction: to group the constituents to form the 'cone', applying the grooming method and pile-ups removal at the same time
 - **Calibration**: to correct the jet energy scale
 - Tagging: to identify which particle the jet is coming from (such as W/Z, top quark, or gluon)
 - **Missing transverse momentum:** to derive the missing momenta from calibrated hadronic objects in events

Highlighted for today:

- 1. Jet reconstructions:
 - calorimeter signals reconstruction/ classification -

ATL-PHYS-PUB-2022-040

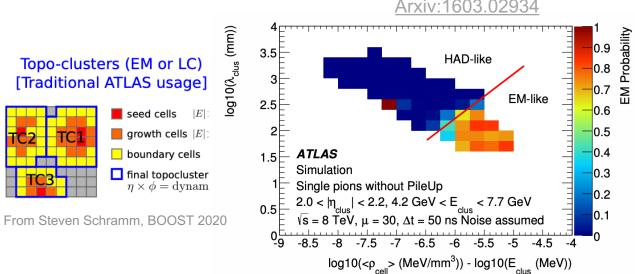
- 2. Boost jet tagging in UFO jets
 - W/Z tagging ATL-PHYS-PUB-2021-029
 - Top tagging <u>ATL-PHYS-PUB-2021-028</u>, <u>ATL-PHYS-PUB-2022-039</u>
- 3. Jet Calibration:
 - METNet <u>ATL-PHYS-PUB-2021-025</u> (More information from <u>Peter's talk</u>)
 - The Global Neural Network Calibration <u>arXiv:2303.17312</u>

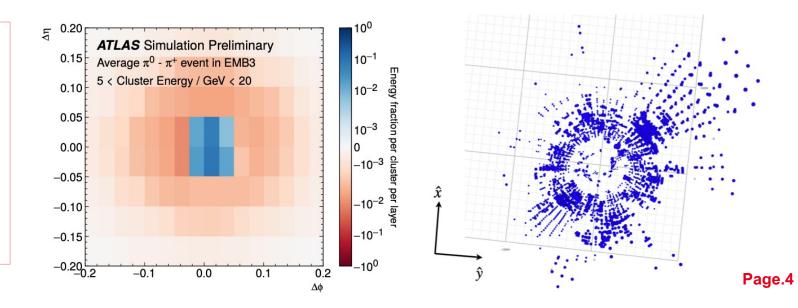
Pion Reconstruction

- The reconstruction and classification of π^0 and $\pi^{+/-}$ are important in reconstruction of hadronic signals
- Three-dimensional clusters of topologically-connected calorimeter cells called **topo-clusters** are the starting point of hadronic reconstructions
- Current approach:
 - Cluster classification
 - Local Cell Weighting(LCW)
- Use ML methods:
 - To classify π^0 and $\pi^{+/-}$ and reconstruct its energy
 - As an important step towards the upgraded low-level hadronic reconstruction scheme

ML methods:

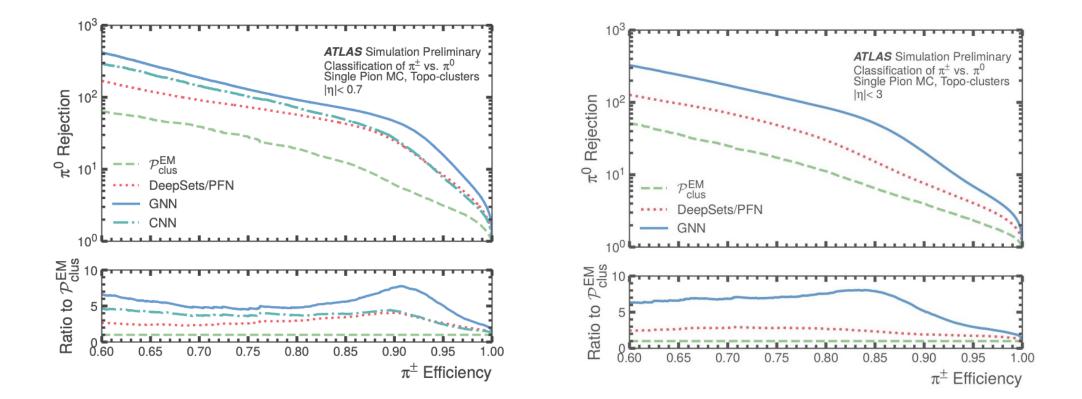
- Cell as pixels: CNN
- Cell as points: DeepSets(PFN), Transformer
- Cell as nodes: GNN





Pion Classification

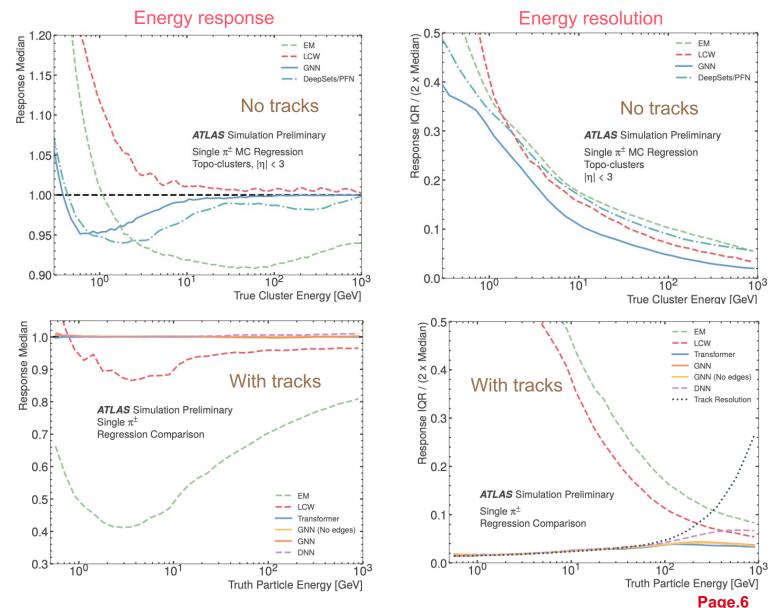
- Performance evaluated by comparing the rejection rate of π^0 with fixing of $\pi^{+/-}$ efficiency
- ML methods (PFN, CNN, GNN) all outperform the baseline method (\mathcal{P}_{clus}^{EM})
- GNN is the best in overall: improving ~5 times rejection in the full pseudo-rapidity range



ATL-PHYS-PUB-2022-040

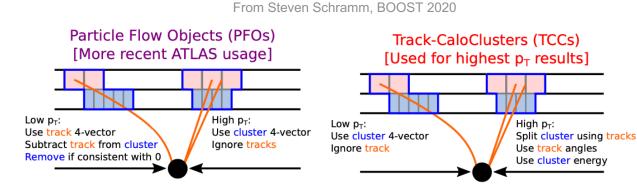
Pion Calibration Performance

- The performance of the models can be quantified by measuring the energy response
- Compared to LCW(calibrated) and EM(uncalibrated):
 - All machine learning-based methods perform better in energy calibration accuracy and resolution of energy measurement
- The model including track information (bottom plots) performs significantly better

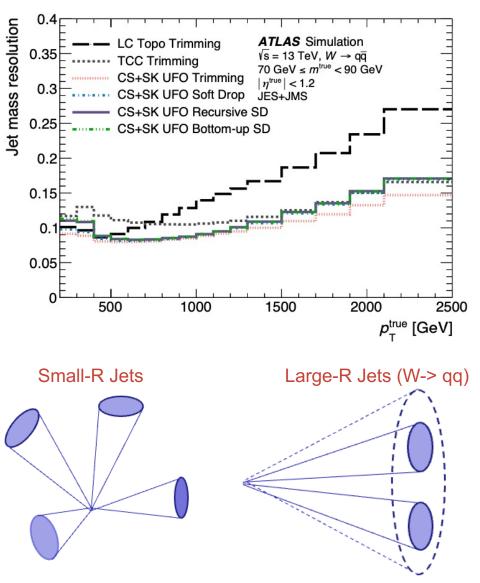


Boost Jet Tagging: UFO Jets

- For better reconstruction of jets in Run2, new jet reconstructions algorithms are introduced to build Unified Flow Objects(UFO) -<u>Eur. Phys. J. C 81, 334 (2021)</u>
- UFO combines good tracker resolution/low-pt resolution with calorimeter information
- UFOs can perform better on jet mass reconstruction and removing pile-up

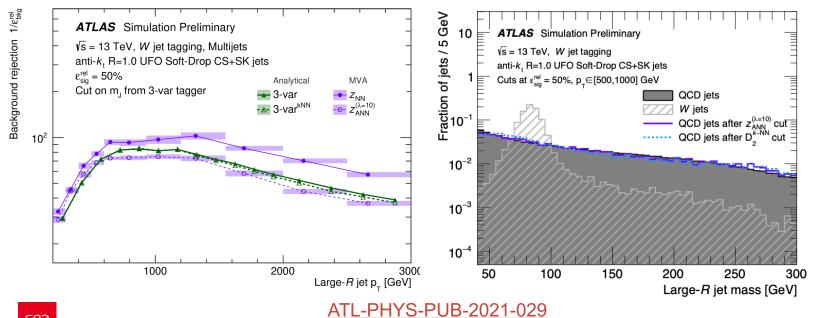


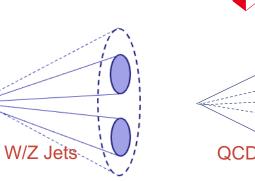
- Decay products from heavy particle decay can collimate into a single jet at high pT called Large-R jet (R = 2*pT/m)
- ML methods are applied for taggers identifying large–R jets from heavy particles (top, W/Z) with light QCD jets



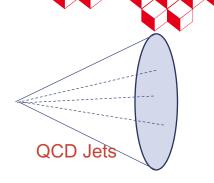
Boost Jet Tagging: W/Z tagging

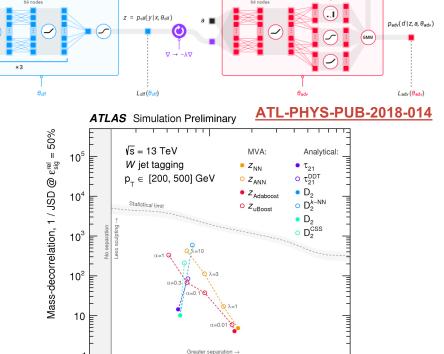
- Using UFO jets to construct taggers: two taggers are available
- 3 variable tagger: using 3 jet substructures for cuts
- DNN tagger: using substructure variables better performance (~3 times of 3-var tagger) but the unwanted mass shape
- ANN mass-decorrelated tagger: design adversarial NN based on DNN tagger for better background estimation





Classifie





Maximal sculpting

10

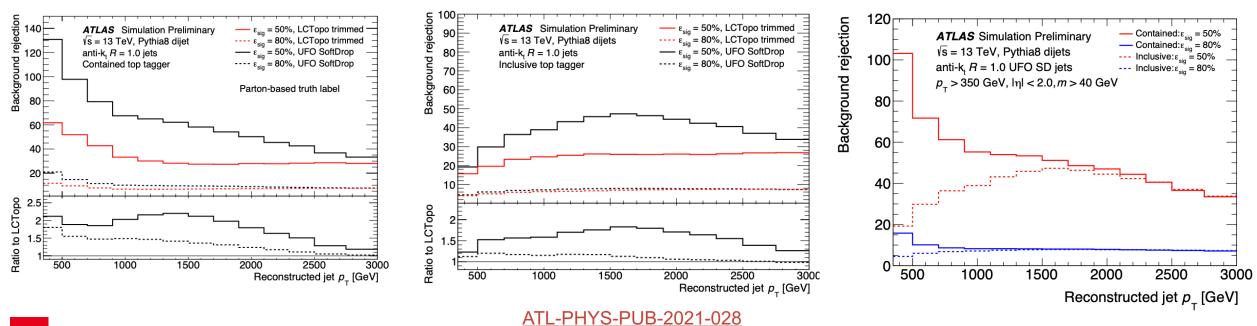
Background rejection, 1 / ε_{bka}^{rel} @ ε_{sig}^{rel} = 50%

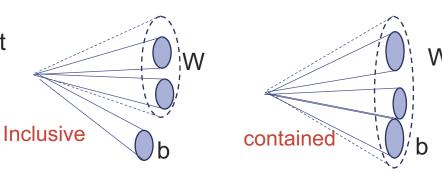
Page.8

 10^{2}

Boost Jet Tagging: Top tagging

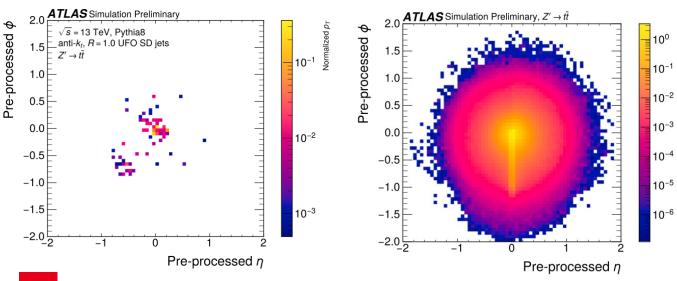
- Using UFO jets to construct taggers: two DNN taggers using jet substructure variables are available
- Two different scenarios: contained and inclusive tops
- Using 15 different variables as inputs
- Compared to previous results (previous ATLAS jet constituent algorithm), DNN tagger performance at 50%(80%) signal efficiency is better overall

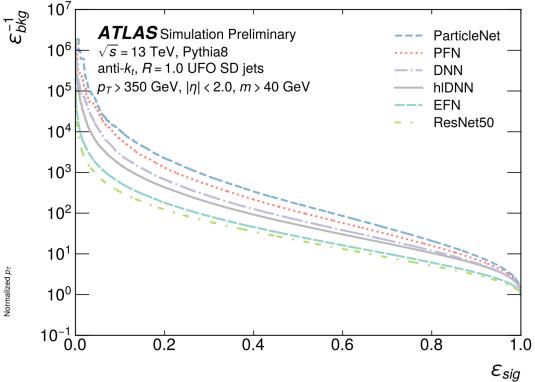




Boost Jet Tagging: Constituent Level Top Tagging

- Using 4-vector jet constituents as inputs: using lower level features for complex machine learning models
 - 1. Baseline DNN (hIDNN) : trained with jet substructure variables
 - 2. Constituent level DNN: jet constituent algorithm jets
 - 3. Energy Flow Network: DeepSet
 - 4. Particle Flow Network: EFN-like
 - 5. ResNet50: large-scale CNN network
 - 6. ParticleNet: graph neural network (GNN) which represents jets as a graph





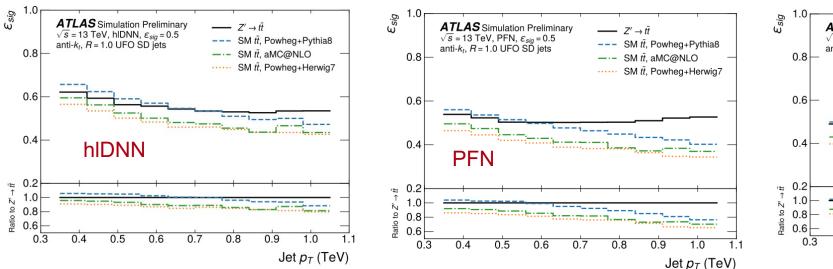
ATL-PHYS-PUB-2022-(

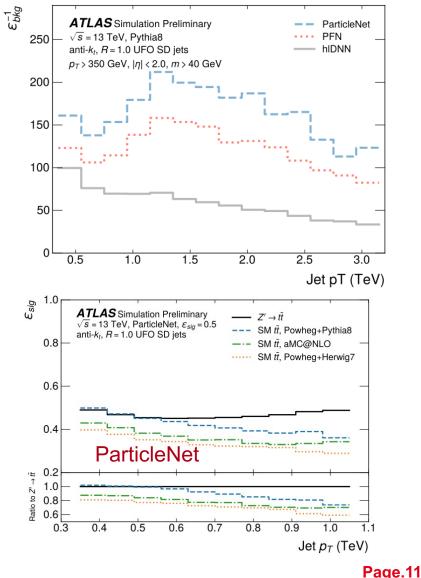
Three of the constituent-based taggers (**ParticleNet, PFN, DNN**) surpass the highlevel-quantity-based tagger's (hIDNN) performance.

Page.10

Boost Jet Tagging: Constituent Level Top tagging

- ParticleNet shows the best performance, ~2 times of hIDNN
- The constituent-based taggers' performance are better in the mid pT range of about 1-2 TeV compared to hIDNN
- Model dependence is also studied:
 - PFN and ParticleNet have sizeable dependence on QCD modelling
- Further study the impacts on modelling uncertainties for constituent level taggers planned



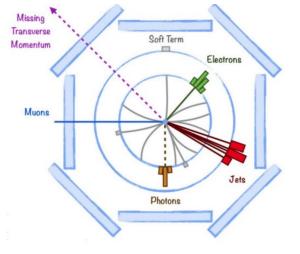


, ATL-PHYS-PUB-2022-039

p_T^{miss} in ATLAS

- Missing transverse momentum (p_T^{miss}) is a key observable in many physics analyses using data recorded by the ATLAS detector
 - $p_T^{miss\ true}$: the missing momentum caused by Standard Model (SM) neutrinos dark matter
 - Fake p_T^{miss} : the missing transverse momentum comes from reconstruction
- Traditionally, p_T^{miss} is calculated by negative sum of objects: providing some working points to meet analysis requirements but not flexible

$$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}} = -\sum_{\substack{\mathrm{selected}\\\mathrm{electrons}}} \mathbf{p}_{\mathrm{T}}^{e} - \sum_{\substack{\mathrm{accepted}\\\mathrm{photons}}} \mathbf{p}_{\mathrm{T}}^{\gamma} - \sum_{\substack{\mathrm{accepted}\\\tau\text{-leptons}}} \mathbf{p}_{\mathrm{T}}^{\tau_{\mathrm{had}}} - \sum_{\substack{\mathrm{selected}\\\mathrm{muons}}} \mathbf{p}_{\mathrm{T}}^{\mu} - \sum_{\substack{\mathrm{accepted}\\\mathrm{jets}}} \mathbf{p}_{\mathrm{T}}^{\mathrm{jet}} - \sum_{\substack{\mathrm{unused}\\\mathrm{tracks}}} \mathbf{p}_{\mathrm{T}}^{\mathrm{track}}$$

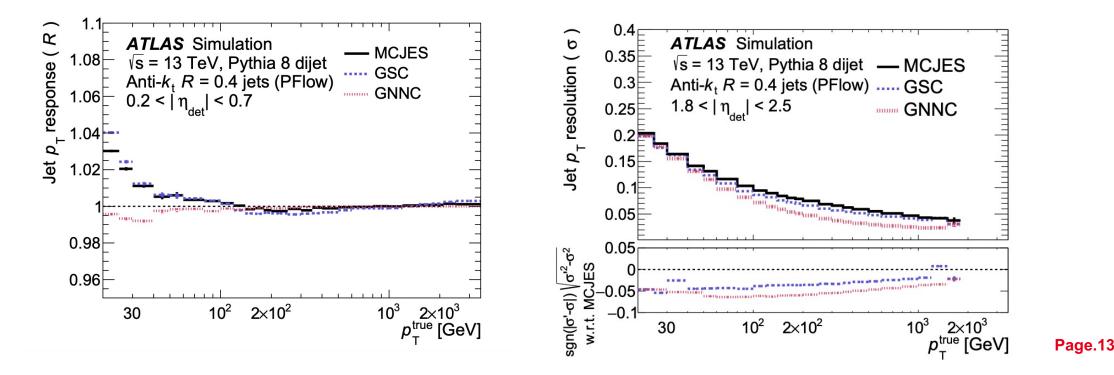


ATL-PHYS-PUB-2021-025

- METNet: the neural network to combine different working points and adjust them according to each event
 - To regress the $p_T^{miss\ true}$. Inputs are p_T^{miss} variables for each working point and variables which characterise the pile-up and topology of each event
 - Trained on ttbar and di-boson events such as WW, ZZ processes

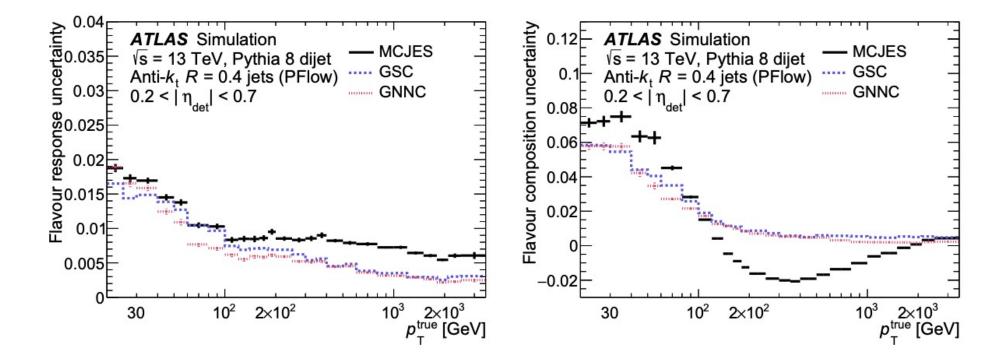
The Global Neural Network Calibration

- The jet energy is only partially observed in the detector so it needs to apply jet calibration to correct the jet energy response (more information about jet calibration in <u>Peter's talk</u>), typically using E and eta (MCJES)
- The global jet property calibration applies further corrections to jets
 - The global sequential calibration (GSC): using 6 observables to improve jet energy response
 - The global neural network calibration (GNNC): DNN trained with more variables
- Compared to GSC, GNNC has better jet pT closure and has over 15% improvements in jet pT resolution



The Global Neural Network Calibration

- arXiv:2303.17312
- The two flavour-dependence uncertainties in the JES are derived from simulation and account for relative flavour fractions and differing responses to quark- and gluon-initiated jets
- Comparing the flavour composition and flavour response uncertainties for the MCJES, GNNC and GSC.
- Both the GSC and GNNC can reduce these uncertainties
- GNNC provides a greater reduction, improvement ~15%-25% compared to GSC



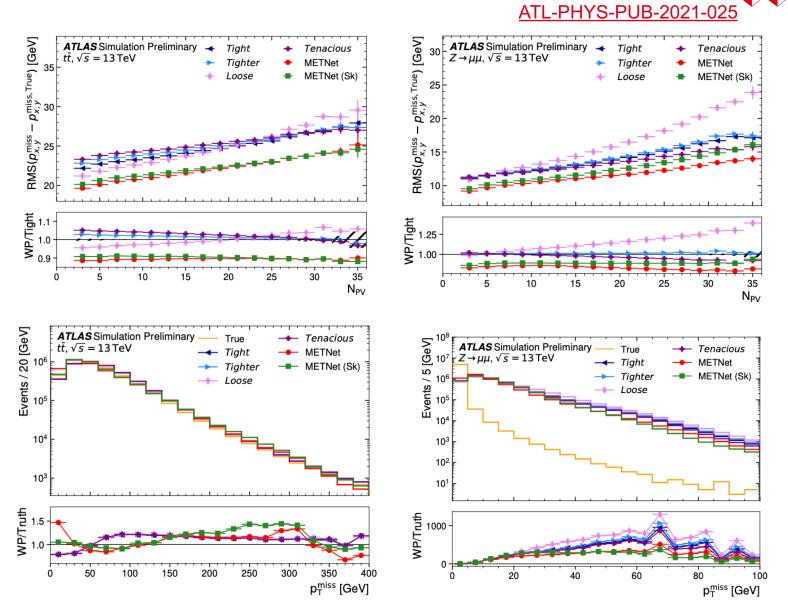
Summary

- Machine learning techniques are widely used in hadronic object studies in the ATLAS collaboration
 - Pion classification and calibration
 - Calibration and reconstruction:
 - METNet
 - The Global Neural Network Calibration
 - Tagging:
 - boost top and W/Z tagging
 - Constituent-level top tagging
- The progress in hadronic object study with machine learning/AI can greatly improve the performance for BSM searching and SM measurements
- Run3 has started and there is more chance to develop new machine learning techniques and test their performance in the ATLAS analyses

Backups

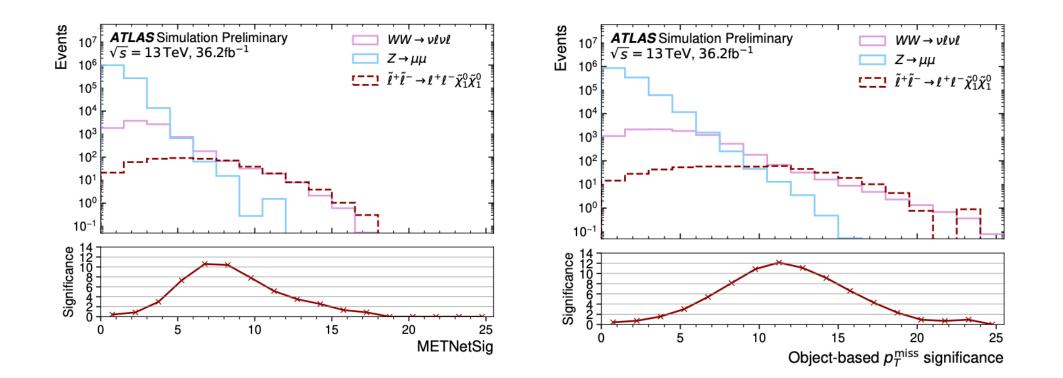
METNet Performance

- Compared to previous working points, the resolution is **improved** by METNet
- MET Net can handle different topologies: Good performance on Z->mu mu events which is not included in the training
- Good distribution bias: using a special loss function, Sinkorn loss can reduce the bias effect
- It shows the potential to improve p_T^{miss} resolution with ML methods



METNetSig Performance

- METNetSig: extending METNet to calculate p_T^{miss} significance in machine learning method and this is not limited by separate measurements of each object's resolution
- It can be used to discriminate real and fake p_T^{miss}
- Similar performance to ALTAS object-based p_T^{miss} significance



arXiv:2009.04986

Jet Reconstruction at ATLAS

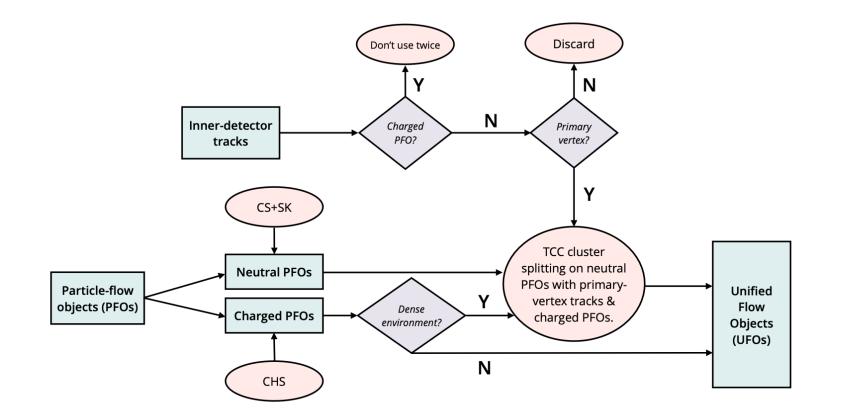
	Algorithm	Abbreviation	Settings		
Jet input objects	Topological Clusters	Topoclusters	N/A		
	Particle-Flow	PFlow	N/A		
	Track-CaloClusters	TCCs	N/A		
	Unified Flow Objects	UFOs	N/A		
Pile-up mitigation algorithms	Constituent Subtraction	CS	$A_g = 0.01$ $\Delta R_{\text{max}} = 0.25$ $\alpha = 0$		
	Voronoi Subtraction (*)	VS	N/A		
	SoftKiller	SK	$\ell = 0.6$		
	Pile-up Per Particle Identification	PUPPI	$R_{\min} = 0.001$ $R_0 = 0.3$ a = 200 MeV b = 14 MeV		
	Soft-Drop	SD	$z_{\text{cut}} = 0.1$ $\beta = 0, 1, 2(*)$		
Jet grooming algorithms	Bottom-up Soft-Drop	BUSD	$z_{\text{cut}} = 0.05, 0.1$ $\beta = 0, 1, 2(*)$		
	Recursive Soft-Drop	RSD	$z_{\text{cut}} = 0.05, 0.1$ $\beta = 0, 1, 2(*)$ $N = 3, 5(*), \infty$		
	Pruning	N/A	$z_{\rm cut} = 0.15$ $R_{\rm cut} = 0.25$		
	Trimming	N/A	$f_{\rm cut} = 5\%, 9\%$ $R_{\rm sub} = 0.1, 0.2$		

=		ATLAS S ¶S=13 TeV,	imulation W → qq				jets, no jet calil ^{ie} < 500 GeV,					
Soft Drop	$z_{\rm cut} = 0.1, \beta = 0.0$	0.74	0.02	0.24	0.06	0.12	-0.03	-0.27	0.23	0.06		
5	$z_{\rm cut} = 0.1, \beta = 1.0$	1.99	0.03	0.29	0.06	0.12	0.18	-0.27	0.28	0.06		0.4
	$z_{\rm cut} = 0.05, \beta = 0.0, N = \infty$	2.86	0.06	0.35	0.05	0.09	0.62	-0.22	0.33	0.04		
ר ת	$z_{\rm cut} = 0.1, \beta = 0.0, N = \infty$	0.37	0.01	0.08	0.02	0.05	-0.09	-0.20	0.08	0.02	_	0.3
	$z_{\rm cut}$ = 0.05, β = 1.0, $N = \infty$	3.35	0.16	0.95	0.11	0.14	0.86	-0.24	0.92	0.11		
Recursive SD	$z_{\rm cut} = 0.1, \beta = 1.0, N = \infty$	1.65	0.05	0.25	0.06	0.10	0.13	-0.25	0.24	0.05	-	0.2
5	$z_{\rm cut} = 0.05, \beta = 0.0, N = 3$	3.18	0.06	0.42	0.06	0.10	0.78	-0.23	0.39	0.05		
5	$z_{\rm cut} = 0.1, \beta = 0.0, N = 3$	0.47	0.01	0.10	0.03	0.07	-0.09	-0.22	0.09	0.02		0.1
5	$z_{\rm cut} = 0.05, \beta = 1.0, N = 3$	3.41	0.16	0.99	0.11	0.14	0.91	-0.24	0.97	0.11		
	$z_{\rm cut} = 0.1, \beta = 1.0, N = 3$	1.64	0.04	0.26	0.06	0.10	0.15	-0.25	0.26	0.05	21 <u></u>	0
	$z_{\rm cut} = 0.05, \beta = 0.0$	2.97	0.07	0.47	0.06	0.09	0.71	-0.22	0.43	0.05		
Bottom-up SD	$z_{\rm cut} = 0.1, \beta = 0.0$	0.46	0.02	0.10	0.03	0.05	-0.07	-0.20	0.09	0.02		-0.1
	$z_{\rm cut} = 0.05, \beta = 1.0$	3.37	0.17	0.96	0.11	0.14	0.89	-0.24	0.95	0.11		
Devening	$z_{\rm cut} = 0.1, \beta = 1.0$	1.74	0.04	_0.26_	0.06	0.10	0.15	-0.25	0.24	0.05		-0.2
Pruning	$\underline{R}_{cut} = 0.15, \ \underline{Z}_{cut} = 0.25$	0.27	0.00	0.11	0.02	0.04	0.11	-0.19	0.10	0.01		
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.1$	-0.03	-0.04	-0.01	-0.02	0.00	-0.16	-0.18	0.01	0.00		-0.3
Trimming	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.1$	-0.03	-0.05	-0.03	-0.04	-0.03	-0.13	-0.16	-0.01	-0.02		
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.2$	* 0.14	-0.01	0.07	0.02	0.06	-0.21	-0.25	0.06	0.02	_	-0.4
	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.2$	0.10	-0.03	0.05	0.01	0.05	-0.20	-0.25	0.05	0.00		
		Unmodified	CS+SK	Unmodified	CS+SK	PUPPI	Unmodified	CS+SK	Unmodified	CS+SK		
		LC	Торо		PFlow		тс	C	UF	0		

Jet Constituent Type

Unified Flow Object Reconstruction Algorithm

Arxiv:2009.04986



Substructure Variables

ATL-PHYS-PUB-2021-029

• Variables used in training for W/Z and top taggers in UFO jets

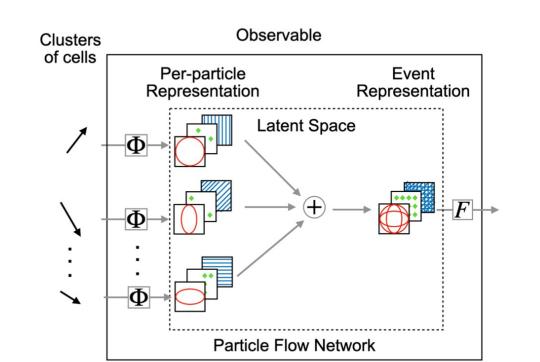
*n*_{trk} number of tracks

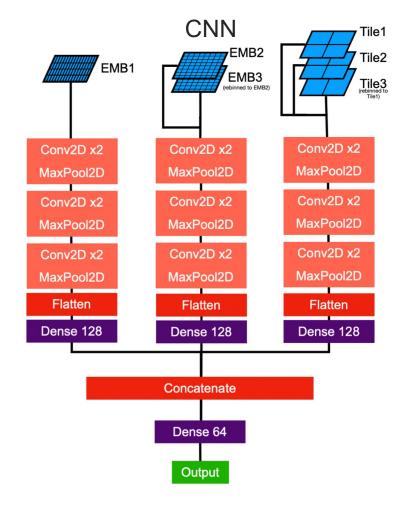
W/Z	tagger (NN/ANN)	Top tagger ((DNN)
D_2 , C_2	Energy correlation ratios	$ au_1, \ au_2, \ au_3, \ au_4$	N-subjettiness
$ au_{21}$	N-subjettiness	$\sqrt{d_{12}}, \ \sqrt{d_{23}}$	Splitting scales
$R_2^{ m FW}$	Fox-Wolfram moment	$ECF_1, \ ECF_2, \ ECF_3$	Energy correlation (EC) functions
${\cal P}$	Planar flow	C_2, D_2	EC ratios
a 3	Angularity	L_2, L_3	Generalised EC ratios
Α	Aplanarity	Q_{W}	Invariant mass / virtuality
$Z_{ m cut}$	Z-Splitting scales	T_{M}	Thrust major
$\sqrt{d_{12}}$	d-Splitting scales		
$Kt\Delta R$	k_t -subjet ΔR		

Constituent Level Top Tagger Tagging

Model	Hyper-parameters							
	Hidden Layers: 5 Nodes per Layer: 180	Model	AUC	ACC	ε_{bkg}^{-1} @ $\varepsilon_{sig} = 0.5$	ε_{bkg}^{-1} @ $\varepsilon_{sig} = 0.8$	# Params	Inference Time
hIDNN A	Activation Functions: ReLU	ResNet 50	0.885	0.803	21.4	5.13	1,486,209	9 ms
	Kernel Initialization: glorot uniform						1,400,209	9 1118
	Learning Rate: 4×10^{-5}	EFN	0.901	0.819	26.6	6.12	1,670,451	4 ms
	Batch Size: 250	hlDNN	0.938	0.863	51.5	10.5	93,151	3 ms
	Batch Normalization: not used	DNN	0.942	0.868	67.7	12.0	876,641	3 ms
	Hidden Layers: 5						070,041	5 1118
	Nodes per Layer: 400	PFN	0.954	0.882	108.0	15.9	689,801	4 ms
	Activation Functions: ReLU Kernel Initialization: glorot uniform	ParticleNet	0.961	0.894	153.7	20.4	764,887	38 ms
DNN	L1 Regularization: 2×10^{-4} , applied to all layers							
	Learning Rate: 1.2×10^{-5}							
	Batch Size: 250		Iodel	Hyper-parameters				
	Batch Normalization: applied before activation function for all	Bottom Layer: 7x7 2D convolution with strides (2, 2) and zero						
	layers except output layer			padding				
	Φ Hidden Layers: 5				er of Stages: 4			
	Φ Nodes per Layer: 350			Blocks per Stage: (3, 4, 6, 3)				
	Latent Dropout: 0.084			Block Type: bottleneck Block Output Filters: (64, 128, 256, 512)				
	F Hidden Layers: 5	Re	ResNet 50		tion Functions: ReLU			
EFN	F Nodes per Layer: 300			Kernel Initialization: he uniform				
LIN	F Dropout: 0.036			Batch Normalization Momentum: 0.1				
	Activation Functions: ReLU			Global Pooling: average				
	Kernel Initialization: glorot normal			Initial Learning Rate: 1×10^{-2}				
	Learning Rate: 6.3×10^{-5}			Scheduler: decrease learning rate by factor of 0.1 every 10 epochs				
	Batch Size: 350		Batch Size: 256 Φ Number of Stages: 3					
	Φ Hidden Layers: 5				per Stage: $(3, 3, 3)$			
DEN	Φ Nodes per Layer: 250			Block Output Features: (64, 224, 384)				
	Latent Dropout: 0.072			k Nearest Neighbors: 18				
	F Hidden Layers: 5				ayer Nodes: 125			
	F Nodes per Layer: 500	Par	ticleNet		tion Functions: ReLU			
	F Dropout: 0.022				$l \ Initialization: \ glorot$			
	Acitvation Functions: ReLU				Normalization Momen	ntum: 0.7		
	Kernel Initialization: glorot normal				Pooling: max 10^{-4}			
	Learning Rate: 7.9×10^{-5}				ng Rate: 4.2×10^{-4} Size: 250			_
	Batch Size: 250			Daten	SIZE, 200			P

ML Algorithm in Jet Tagging

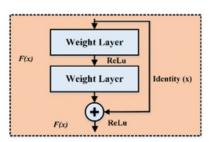




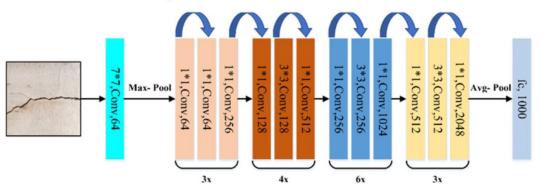
PFN

ML Algorithm in Jet Tagging

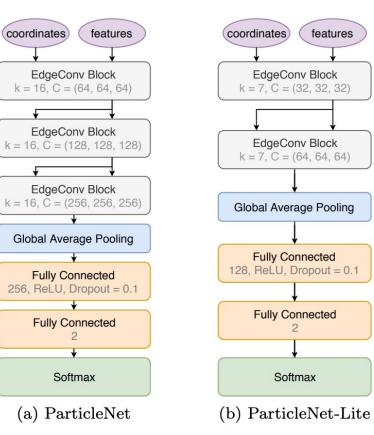
ResNet



Residual Learning Block



Particle Net



The Global Neural Network Calibration

Variables for training network

	-				
Calorimeter	$f_{\rm LAr0-3*}$	The E_{frac} measured in the 0th-3rd layer of the EM LAr calorimeter			
	$f_{\text{Tile0}*-2}$	The E_{frac} measured in the 0th-2nd layer of the hadronic tile calorimete			
	$f_{\rm HEC,0-3}$	The E_{frac} measured in the 0th-3rd layer of the hadronic end cap			
		calorimeter			
	$f_{\rm FCAL,0-2}$	The E_{frac} measured in the 0th-2nd layer of the forward calorimeter			
	$N_{90\%}$	The minimum number of clusters containing 90% of the jet energy			
Jet kinematics	$p_{\rm T}^{\rm JES}$ *	The jet $p_{\rm T}$ after the MCJES calibration			
	η^{det}	The detector η			
Tracking	W _{track} *	The average $p_{\rm T}$ -weighted transverse distance in the η - ϕ plane			
		between the jet axis and all tracks of $p_{\rm T} > 1$ GeV ghost-associated			
		with the jet			
	$N_{ m track}*$	The number of tracks with $p_{\rm T} > 1$ GeV ghost-associated with the jet			
	$f_{ m charged}*$	The fraction of the jet $p_{\rm T}$ measured from ghost-associated tracks			
Muon segments	$N_{\text{segments}}*$	The number of muon track segments ghost-associated with the jet			
Pile-up	μ	The average number of interactions per bunch crossing			
	$N_{\rm PV}$	The number of reconstructed primary vertices			

Table 1: List of variables used as input to the GNNC. Variables with a * correspond to those that are also used by the GSC.