Measurements of Higgs boson properties (mass, width, and Spin/CP) with the ATLAS detector

Stelios Angelidakis

on behalf of the ATLAS Collaboration

Blois2023 - 34th Rencontres de Blois on Particle Physics and Cosmology 14-19 May 2023

HELLENIC REPUBLIC

National & Kapodistrian

University of Athens

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers" (Project Number: 04612).

Introduction

Since its discovery in 2012, the Higgs boson has been scrutinized at the LHC...

- to test compliance with SM prediction,
- to look for possible deviations that could highlight BSM physics.

In this talk: Latest ATLAS measurements of:

- Higgs mass
- Higgs width
- Higgs spin/CP

using the full ATLAS dataset from LHC Run-2

More ATLAS studies of the Higgs boson today by:

- Maria Teresa Camerlingo (cross-sections, couplings)
- Angela Maria Burger (di-Higgs)

- Free parameter of the SM
- Important for theoretical predictions
- Studied with $H \rightarrow ZZ^* \rightarrow 4\ell \& H \rightarrow \gamma \gamma$ decays

Higgs mass (*H*→*ZZ*→4ℓ)

- 4 final states: 4μ , 4e, $2\mu 2e$, $2e2\mu$ (primary pair is the closest to m_z).
- **Kinematic fit** of primary pair to $m_Z \rightarrow$ improves $m_{4\ell}$ resolution.
- **2 observables**: $m_{4\ell}$, D_{NN} (additional separation from non-resonant $ZZ^* \rightarrow 4\ell$).
- Unbinned fit to the data with event-by-event $m_{4\ell}$ resolution estimates (QRNN trained on MC).

Higgs mass (*H*→*ZZ*→4ℓ)

arXiv: 2207.00320 (sub. to PLB)

Substantial improvement w.r.t. previous results Futher improvement expected with addition of $H \rightarrow yy$ study (and combination with CMS).

Combination of 7, 8 and 13 TeV data sets:

 $m_{\rm H} = 124.94 \pm 0.17(\text{stat.}) \pm 0.03(\text{syst.}) \text{ GeV}$

dominant

28 MeV from muon p_T scale, greatly benefitted by the improved muon momentum-scale calibration \rightarrow described in Marco's talk in this session

- Predicted by SM (4.1 MeV)
- Inaccessible via direct measurement due to experimental resolution
- Indirect methods exploit the relationship between Higgs coupling constants in the on-shell and off-shell regimes

Higgs width ($H \rightarrow ZZ \rightarrow 4\ell / 2\ell 2\nu$)

- According to SM: $\sigma_{gg \to H \to VV}^{\text{on-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_H \Gamma_H} \sigma_{gg \to H \to VV}^{\text{off-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_{ZZ}^2}$
- Assuming SM ratios of on-shell/off-shell couplings, we can obtain Γ_H from the ratio of the rates in the two regimes.
- Destructive interference: $gg \rightarrow (H^* \rightarrow) ZZ$ is less than $gg \rightarrow H^* \rightarrow ZZ + gg \rightarrow ZZ$.

 q_2'

q2

H→ZZ→4ℓ

- Final states: 4μ, 4e, 2μ2e, 2e2μ
- $m_{12} \in [50, 106] \text{ GeV}$ $m_{34} \in \text{variable window}$
- 3 SRs: ggF, VBF, mixed
- *m*_{4ℓ} > 220 GeV
- **Observable:** NN-based discriminant:
 - off-shell signal
 - interfering background
 - non-interfering background

H→ZZ→2ℓ2v

- Final states: $2\mu/2e + E_{T,miss}$
- *m*_{ℓℓ} ∈ [76, 106] GeV

Analysis strategy (outline)

• **Observable:** transverse mass of the Z-pair:

$$m_{\rm T}^{ZZ} \equiv \sqrt{\left[\sqrt{m_Z^2 + \left(p_{\rm T}^{\ell\ell}\right)^2} + \sqrt{m_Z^2 + \left(E_{\rm T}^{\rm miss}\right)^2}\right]^2 - \left|\vec{p_{\rm T}}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

Higgs width ($H \rightarrow ZZ \rightarrow 4\ell / 2\ell 2\nu$)

 $\Gamma_{H} = 4.5^{+3.3}_{-2.5} \text{MeV}$ $\Gamma_{SM} = 4.1^{+3.2}_{-3.5} \text{MeV}$ $\Gamma_{H}/\Gamma_{SM} = 1.1^{+0.7}_{-0.6}$

- Observed (expected) 95% CL limits:
 0.5(0.1) < Γ_H < 10.5(10.9) MeV
- Background-only hypothesis rejected with
 3.2σ (2.2σ) observed (expected) significance.
- Measurement of VBF off-shell signal strength.
- Alternative interpretation constrains the onshell / off-shell ratios of Higgs coupling (κ_g,κ_v).

Higgs spin - CP

- Predicted CP-violation is too small to explain the observed baryon asymmetry
- Sign of CP-violation in the Higgs sector \rightarrow indication of BSM phenomena
- ATLAS and CMS have excluded pure spin-parity states 0⁻, 1[±], 2[±] at over 99% CL
- Recent searches target CP-even / CP-odd admixtures in the Higgs couplings

CP: Higgs – vector boson $(H \rightarrow ZZ \rightarrow 4\ell)$

arXiv: 2304.09612 (sub. to JHEP)

- SMEFT introduces CP-odd HVV couplings: $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum \frac{c_i}{\Lambda^2} O_i^{(6)}$
- Matrix-Element-based Optimal Observables (OOs) defined to maximize sensitivity to coupling constants c_i (Wilson coefficients).
- Each OO is most sensitive to a specific coefficient.

HVV at decay and production (VBF)

 \rightarrow 3 independent analysis strategies: (optimize sensitivity to specific OOs)

- production-only (VBF),
- decay-only (VBF, ggF),
- combined (VBF)

CP: Higgs – vector boson $(H \rightarrow ZZ \rightarrow 4\ell)$

Parameter value

Best fit results - Wilson coefficients

Warsaw basis / Higgs Basis

No significant deviation from SM predictions.

Direct optimal-observable fits:

CP: Higgs – vector boson $(H \rightarrow \gamma \gamma)$

The VBF topology is sensitive to $c_{HW^{\sim}} \rightarrow$ single OO.

- Dominant backgrounds: ggF (MC), γγ (MC), γj/jj (data-driven)
- 2 BDTs to discriminate VBF / ggF and VBF / continuum
- 3 signal regions (excl. case where both BDT cuts fail)

12

CP: Higgs – \tau (H \rightarrow \tau \tau)

Probing the Yukawa coupling for CP-mixing: $\mathscr{L}_{H_{ttr}} = -\frac{m_t}{n} \kappa_{\tau} \overline{\tau} (\cos\varphi_{\tau} + i\gamma_5 \sin\varphi_{\tau}) \tau$

- Boosted topology: reconstructed $\tau^+\tau^-$ with small angular separation (rejects non-resonant $\tau\tau$ background).
- 110 < $m_{\tau\tau}^{MMC}$ < 150 GeV (sidebands used to control the normalization of $Z(\rightarrow \tau\tau)$ +jets background).
- Analysis channels: (a) $\tau_{\text{lep}} \tau_{\text{had}}$, (b) $\tau_{\text{had}} \tau_{\text{had}}$ + categorization according to τ_{had} final states.
- Signal regions: 2 x VBF (defined by BDT), 2 x ggF (defined by the Higgs-boson boost).

ised tp calculate the invariant mass of the τ -lepton-pair system

The pure CP-odd hypothesis is disfavoured at a level of 3.4σ .

arXiv: 2212.05833 (sub. to EPJC)

CP: Higgs – top quark (*ttH, H→bb*)

g 000000

·H

Pure CP-odd coupling has been excluded at 3σ .

Probing the Yukawa coupling for CP-mixing: $\mathscr{L}_{t\bar{t}H} = -\kappa'_t y_t \varphi \overline{\psi}_t (\cos\alpha + i\gamma_5 \sin\alpha) \psi_t$

Analysis Strategy exploiting the high jet and *b*-tagged jet multiplicity in the final state:

CP: Higgs – top quark (*ttH, H→bb*)

Post-fit distributions of CP-sensitive observables.

Conclusions

• Precision era for Higgs property measurements:

- Most precise measurement on the mass $m_H = 124.94 \pm 0.17$ (stat.) ± 0.03 (syst.) GeV (4l/2l2v channels).
- Evidence for off-shell Higgs production.
- Defined observed (expected) upper limit 10.5 (10.9) MeV on Γ_H, at 95% CL.
- Starting to probe the structure of Higgs interactions:
 - ▶ 95% CL upper limits defined for CP-odd contributions to Higgs-Vector Boson couplings.
 - CP-odd contributions to Higgs-fermion couplings are now being constrained too.
- No deviation from the SM observed so far.
- Run3 and HL-LHC will significantly increase the available dataset \rightarrow large boost to precision reach.

Backup Material

Higgs mass $(H \rightarrow ZZ \rightarrow 4\ell)$

Final state	Higgs	ZZ, tXX, VVV	Reducible backgrounds	Expected total yield	Observed yield	S/B
4μ $2e2\mu$ $2\mu 2e$	78 ± 5 53.4 ± 3.2 41.2 ± 2.0	38.7 ± 2.2 26.7 ± 1.4 17.0 ± 1.2	2.84 ± 0.17 3.02 ± 0.19 2.4 ± 0.5	120 ± 5 83.1 ± 3.5 62.5 ± 2.2	115 94 50	$ 1.89 \\ 1.80 \\ 1.02 $
$\frac{2\mu 2e}{4e}$ Total	$ \begin{array}{r} 41.2 \pm 3.0 \\ 36.2 \pm 2.7 \\ \hline 209 \pm 13 \end{array} $	$ \begin{array}{r} 17.9 \pm 1.3 \\ 15.7 \pm 1.6 \\ 99 \pm 6 \\ \end{array} $	$ \begin{array}{r} 3.4 \pm 0.3 \\ 2.83 \pm 0.35 \\ 12.2 \pm 0.9 \\ \end{array} $	$ \begin{array}{r} 62.5 \pm 3.3 \\ 54.8 \pm 3.2 \\ \overline{321 \pm 14} \end{array} $		$ 1.95 \\ 1.95 \\ 1.88 $

observed and expected (pre-fit) yields for the different decay final states in the region with $m_{4\ell}$ between 115 and 130 GeV.

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale	± 28
Electron energy scale	± 19
Signal-process theory	± 14

Largest contributions to the systematic uncertainty of m_H .

CP $(H \rightarrow ZZ \rightarrow 4\ell)$

EFT coupling	T coupling Expected		Observed		Best-fit	SM	Fit type
parameter	68% CL	95% CL	68% CL	95% CL	value	<i>p</i> -value	
$c_{H\widetilde{B}}$	[-0.18, 0.19]	[-0.37, 0.37]	[-0.42, 0.31]	[-0.61, 0.54]	-0.078	0.86	decay
$c_{H\widetilde{W}B}$	[-0.36, 0.36]	[-0.72, 0.72]	[-0.56, 0.53]	[-0.97, 0.98]	-0.017	0.99	decay
$c_{H\widetilde{W}}$	[-0.63, 0.63]	[-1.26, 1.28]	[-0.07, 1.09]	[-0.81, 1.54]	0.60	0.37	comb
\widetilde{d}	[-0.009, 0.009]	[-0.018, 0.018]	[-0.017, 0.014]	[-0.026, 0.025]	-0.003	0.86	decay
\widetilde{c}_{zz}	[-0.77, 0.79]	[-2.4, 2.4]	[0.37, 1.21]	[-1.20, 1.75]	0.78	0.11	prod
$\widetilde{c}_{z\gamma}$	[-0.47, 0.47]	[-0.76, 0.76]	[-0.54, 0.54]	[-0.84, 0.83]	0.083	0.93	decay
$\widetilde{c}_{\gamma\gamma}$	[-0.38, 0.38]	[-0.76, 0.77]	[-0.52, 0.48]	[-0.99, 0.93]	-0.01	0.99	decay

CP $(H \rightarrow \tau \tau)$

Classification of dominant (high) and sub-dominant (medium/low) final states

Channel	Signal region	Decay mode combination	Selection criteria	Channel	Signal region	Decay mode combination	Selection criteria
$ au_{ m lep} au_{ m had}$		<i>ℓ</i> −1p0n	$ d_0^{\text{sig}}(e) > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$	High		1p0n-1p0n	$\begin{aligned} d_0^{\rm sig}(\tau_1) &> 1.5\\ d_0^{\rm sig}(\tau_2) &> 1.5 \end{aligned}$
	High		$ d_0^{\rm sig}(\tau_{\rm 1p0n}) > 1.5$		1p0n-1p1n	$ d_0^{\rm sig}(\tau_{1\rm p0n}) > 1.5$ $ u^{ ho}(\tau_{1,r}, \cdot) > 0.1$	
		ℓ –1p1n	$\begin{split} d_0^{\rm sig}(e) &> 2.5 \text{ or } d_0^{\rm sig}(\mu) > 2.0 \\ & y^\rho(\tau_{\rm 1p1n}) > 0.1 \end{split}$			1p1n-1p1n	$ y^{\rho}(\tau_1)y^{\rho}(\tau_2) > 0.2$
	Medium -	ℓ –1pXn	$ d_0^{\text{sig}}(e) > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$ $ y^{\rho}(\tau_{1_{\text{D}}\text{X}\text{D}}) > 0.1$	$ au_{ m had} au_{ m had}$	Medium	1p0n-1pXn	$\begin{split} d_0^{\rm sig}(\tau_{\rm 1p0n}) > 1.5 \\ y^{\rho}(\tau_{\rm 1pXn}) > 0.1 \end{split}$
		ℓ –3p0n	$\begin{aligned} d_0^{\text{sig}}(e) &> 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0 \\ y^{a_1}(\tau_{3\text{p0n}}) &> 0.6 \end{aligned}$			1p1n–1pXn	$ y^{\rho}(\tau_{1p1n})y^{\rho}(\tau_{1pXn}) > 0.2$
						1p1n-3p0n	$\begin{aligned} y^{\rho}(\tau_{1\text{pln}}) &> 0.1 \\ y^{a_1}(\tau_{3\text{pln}}) &> 0.6 \end{aligned}$
	Low	All above	Not satisfying selection criteria		Low	All above	Not satisfying selection criteria

Other decay combinations are not considered in this analysis because their respective φ_{CP} observables perform relatively poorly in discriminating between different *CP* scenarios.

Notation	Decay mode	Branching fraction
ℓ	$\ell^\pm \bar\nu\nu$	35.2%
$1 \mathrm{p0n}$	$h^{\pm} u \; (\pi^{\pm} u)$	11.5%~(10.8%)
$1 \mathrm{p1n}$	$h^{\pm}\pi^{0}\nu~(\pi^{\pm}\pi^{0}\nu)$	25.9%~(25.5%)
1pXn	$h^{\pm} \ge 2\pi^{0}\nu \ (\pi^{\pm}2\pi^{0}\nu)$	10.8%~(9.3%)
3 p0 n	$3h^{\pm}\nu \; (3\pi^{\pm}\nu)$	$9.8\%\ (9.0\%)$

CP $(H \rightarrow \tau \tau)$

arXiv: 2212.05833 (sub. to EPJC)

Contributing uncertainties	Set of nuisance parameters	Impact on ϕ_{τ} [degrees]
	Jet energy scale	3.4
	Jet energy resolution	2.5
	Pile-up jet tagging	0.5
	Jet flavour tagging	0.2
	$E_{\mathrm{T}}^{\mathrm{miss}}$	0.4
	Electron	0.3
	Muon	0.9
	$\tau_{\rm had}$ reconstruction	1.0
	Misidentified τ	0.6
	$\tau_{\rm had}$ decay mode classification	0.3
	π^0 angular resolution and energy scale	0.2
	Track $(\pi^{\pm}, \text{ impact parameter})$	0.7
	Luminosity	0.1
	Theory uncertainty in $H \to \tau \tau$ processes	1.5
	Theory uncertainty in $Z \to \tau \tau$ processes	1.1
	Simulated background sample statistics	1.4
	Signal normalisation	1.4
	Background normalisation	0.6
	Total systematic uncertainty	5.2
	Data sample statistics	15.6
	Total	16.4

CP (*ttH*, $H \rightarrow bb$)

ATLAS

Contributing uncertainties

Uncertainty source	$\Delta \alpha$ [°]	
Process modelling		
Signal modelling	+8.8	-14
$t\bar{t} + \geq 1b$ modelling		
$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+23	-37
$t\bar{t} + \geq 1b$ NLO matching	+22	-33
$t\bar{t} + \ge 1b$ fractions	+14	-21
$t\bar{t} + \ge 1b$ FSR	+5.2	-9.9
$t\bar{t} + \ge 1b$ PS & hadronisation	+16	-24
$t\bar{t} + \geq 1b p_{\rm T}^{b\bar{b}}$ shape	+5.4	-4.6
$t\bar{t} + \ge 1b$ ISR	+14	-24
$t\bar{t} + \geq 1c$ modelling	+6.6	-11
$t\bar{t}$ + light modelling	+2.5	-4.7
b-tagging efficiency and mis-tag rates		
<i>b</i> -tagging efficiency	+8.7	-15
<i>c</i> -mis-tag rates	+6.7	-11
<i>l</i> -mis-tag rates	+2.3	-2.7
Jet energy scale and resolution		
<i>b</i> -jet energy scale	+1.6	-3.8
Jet energy scale (flavour)	+7.8	-11
Jet energy scale (pileup)	+5.2	-7.9
Jet energy scale (remaining)	+8.1	-13
Jet energy resolution	+5.7	-9.3
Luminosity	$\leq \pm 1$	
Other sources	+4.9	-8
Total systematic uncertainty	+41	-54
$t\bar{t} + \geq 1b$ normalisation	+8.2	-13
κ'_t	+17	-33
Total statistical uncertainty	+32	-49
Total uncertainty	+52	-73

arXiv: 2303.05974 (sub. to PLB)

CP (*ttH*, $H \rightarrow bb$)

Post-fit event yields in the analysis regions.

