Angela Burger LPC On behalf of the ATLAS collaboration 34th Rencontres de Blois 2023 17/05/2023

Probing the nature of electroweak symmetry breaking with Higgs boson pairs in ATLAS

Motivation - The Higgs boson

- After discovery of the Higgs boson, measure properties of the Higgs boson, like (self-)coupling(s)
- Higgs boson self-coupling measurement probes Higgs potential shape

$$V(h) = \frac{1}{2}m_h^2h^2 + \frac{\lambda_3}{\nu}h^3 + \frac{1}{4}\lambda_4h^4$$

• Measurement of HH production sensitive to Higgs self-coupling λ_3 (coupling modifier κ_{λ}) $\kappa_{\lambda} = \frac{\lambda_3}{\lambda_3^{SM}}$

50

75

HH production at pp colliders at NLO in QCD Mu=125 GeV, MSTW2008 NLO pdf (68%cl

10

10

σ_{NLO}[fb]

Motivation - HH Production & Couplings

- Current HH searches consider two production modes:
 - gluon-gluon fusion (ggF) & vector-boson fusion (VBF) 0
 - Different couplings involved (κ_{λ} : HHH, κ_{t} : Htt, κ_{V} : HVV, 0

destructive interference between two diagrams \Rightarrow cross-section ~1000x lower than single H production (out of reach for Run-2 assuming Standard Model (SM))

Motivation - HH Production & Couplings

 Production cross-sections and kinematic distributions, like m_{HH}, sensitive to self-coupling

 Additional constraints on the Higgs self-coupling from single-Higgs production through NLO EW corrections

Introduction

- Huge effort in ATLAS to constrain di-Higgs production and self-coupling with many signatures to increase sensitivity in combination
- $HH \rightarrow bb\gamma\gamma$, $HH \rightarrow bb\tau\tau$, $HH \rightarrow bbbb$ most sensitive channels
- Present latest results in these three channels using full Run-2 ATLAS data (2015-2018):
 - HH production cross section limits
 - Constraints on Higgs self-coupling
 - Interpretations in terms of effective field theory parameterisations (SMEFT and HEFT)
 - Extrapolation to HL-LHC
 - 139fb⁻¹ of data, for HH \rightarrow bbbb: 126fb⁻¹

$HH \rightarrow bb\tau\tau$: Analysis strategy

- Events with 2 hadronic taus $(T_{had} + T_{had})$ and hadronic+ leptonic tau: $T_{had} + T_{lep}$
- Main features of selection:
 - ==2 b-tagged jets
 - \circ **T**_{had}+**T**_{had}
 - ==2 oppositely charged T_{had}
 - No leptons
 - T_{had}+T_{lep}:
 - ==1 electron (e) OR muon (mu)
 - ==1 T_{had} opposite charge to e, mu
- Background
 - fake T_{had} background (ttbar and multijet): semi-data driven methods
 - True T_{had} background: simulation
 - Normalization of ttbar and Z+jets constrained in combined fit in Z+heavy flavour (HF) control region

arXiv:2209.10910

arXiv:2209.10910

$HH \rightarrow bbtt$: Analysis strategy

- Analysis strategy:
 - Multivariate discriminant:
 - T_{had}+T_{had}: BDT
 T_{had}+T_{lep}: Neural Network
 Simultaneous binned maximum likelihood fit to all analysis category signal regions and Z+HF CR
- Analysis limited by statistical uncertainty of data in signal region

$HH \rightarrow bbtt$: Results

Observed & expected 95% CL upper limits for non-resonant HH production cross-section

Final	l state	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
			1	
	Combined	4.7	$3.9^{+1.5}_{-1.1}$	
	$ au_{lep} au_{had}$	9.7	$7.8^{+3.2}_{-2.2}$	
	$ au_{had} au_{had}$	5.0	$4.4^{+1.7}_{-1.2}$	
	Channel	$\mid \sigma_{ggF+VBF} / \sigma_{ggF+VBF}^{SM}$ (Observe	d) $\mid \sigma_{ggF+VBF} / \sigma_{ggF+VB}^{SM}$	$_F$ (Expected)

 $HH \to b\bar{b}\tau^+\tau^ -2.7 < \kappa_\lambda < 9.5$ $-3.1 < \kappa_\lambda < 10.2$ $\kappa_\lambda = 1.5^{+5.9}_{-2.5}$

Previous ATLAS results with 36fb⁻¹: <u>Phys. Rev. Lett. 121,</u> 191801

arXiv:2209.10910

arXiv:2211.01216

Limits on non-resonant HH cross section improves w.r.t previous ATLAS result by factor of 4: increased data set (factor 2) and improvements in **T** and b-jet reconstruction & identification

$HH \rightarrow bb\gamma\gamma$: Event display

$HH \rightarrow bb\gamma\gamma$: Analysis strategy

- Low branching ratio but low background and good H $\rightarrow \gamma\gamma$ mass resolution
- Main features of selection:
 - No leptons
 - N(jets)<=6 (reject ttH with ttbar to hadrons)
 - N(b-tagged) ==2
 - N(γ) >= 2
 - 105 < m(γγ) < 160 GeV
 - Signal Region: 120 < m(γγ) < 130 GeV
 - data sideband to constrain background
 - BDT to enhance signal over background
 - \circ Two regions in corrected m(yybb) (m_{_{vybb}}*)

$$m_{bb\gamma\gamma}^* = m_{bb\gamma\gamma} - m_{bb} - m_{\gamma\gamma} + 250 \text{ GeV}$$

$HH \rightarrow bb\gamma\gamma$: Analysis strategy

- Analysis strategy:
 - Determine functional form in highly Ο populated MC template and normalize in m(yy) data sideband
 - Model HH and single Higgs background 0 with Crystal Ball function (fixed width, floating normalization)
 - Combined maximum likelihood fit to 0 $m(\gamma\gamma)$ to all regions
- Analysis sensitivity limited by statistical precision
- Largest systematic uncertainties on choice of functional form for continuum background (spurious signal)

(2022) 052001

		Relative impact of the systematic uncertainties [%]			
Source	Туре	Nonresonant analysis HH	Resonant analysis $m_X = 300 \text{ GeV}$		
Experimental					
Photon energy resolution	Norm. + Shape	0.4	0.6		
Jet energy scale and resolution	Normalization	< 0.2	0.3		
Flavor tagging	Normalization	< 0.2	0.2		
Theoretical					
Factorization and renormalization scale	Normalization	0.3	< 0.2		
Parton showering model	Norm. + Shape	0.6	2.6		
Heavy-flavor content	Normalization	0.3	< 0.2		
$\mathcal{B}(H \to \gamma \gamma, b\bar{b})$	Normalization	0.2	< 0.2		
Spurious signal	Normalization	3.0	3.3		

$HH \rightarrow bb\gamma\gamma$: Results

Phys. Rev. D 106 (2022) 052001

Previous ATLAS results (36fb⁻¹): <u>JHEP11(2018)040</u>

- Observed (expected) 95% CL limit on signal strength of $4.2 (5.7) \times SM$
- Observed limit on coupling modifier $\kappa_{\lambda} \in [-1.5, 6.7]$
- Categorization in m_{γγbb}*, multivariate event selection, better object reconstruction and calibration ⇒ increase sensitivity beyond expected by increase of dataset
- Non-resonant HH cross-section limits w.r.t partial Run-2 result improved by factor 5

$HH \rightarrow bbbb$: Analysis strategy

Br(HH \rightarrow bbbb) ~ $\frac{1}{3}$, large background from QCD production

arXiv:2301.03212

large mjj &

separation

ATLAS

Events 009

400

200

√s = 13 TeV, 126 fb⁻¹

Δη_{HH} < 0.5, X_{HH} > 0.95

ggF Signal Region

- Regions specialized to ggF and VBF
- Main features of selection
 - >= 4 b-tagged jets \Rightarrow Higgs candidates 0
 - Additional cuts reject top quarks and enrich in HH signal (e.g. $X_{\mu\mu}$) 0
 - Additional selection for VBF region: 0

 $+ \ge 2$ (non-btagged) jets (largest invariant mass mjj)

- Background estimation:
 - Reweight distributions in a N(b-tagged)==2 0 region to 4 b-jet region using Neural Network
 - Nominal and systematics of reweighting 0 determined in Higgs candidates mass plane $(m_{H1} vs. m_{H2})$ in sidebands
- Combined maximum likelihood fit combined fit to $m_{\mu\mu}$

mнн [GeV]

$HH \rightarrow bbbb$: Results

Laboratoire de Physique de Clermont

 ggF production limits improved by factor 2 ⇒ 20% from advances in analysis techniques (background estimation) and object reconstruction (jets & b-tagging)

arXiv:2301.03212

• VBF production cross section limit over 75% lower, entirely from analysis strategy and object reconstruction

HH couplings in SMEFT and HEFT

- Constraints derived in terms if Effective Field theory (EFT) parameterization:
- SM EFT (SMEFT):

 $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{c_H}{(H^{\dagger}H)^3} + c_{H\Box}(H^{\dagger}H)\Box(H^{\dagger}H) + \frac{c_{tH}}{(H^{\dagger}H)(\bar{Q}\tilde{H}t)} + \frac{c_{HG}}{(H^{\dagger}H)}G^A_{\mu\nu}G^{\mu\nu}_A + \frac{c_{tG}}{(\bar{Q}\sigma^{\mu\nu}T^At)}\tilde{H}G^A_{\mu\nu}G^A_{\mu\nu} + \frac{c_{tG}}{(\bar{Q}\sigma^{\mu\nu}T^At)}\tilde{H}G^A_{\mu\nu}G^$

HH couplings in SMEFT and HEFT

- Constraints derived in terms if Effective Field theory (EFT) parameterization:
- Higgs EFT (HEFT):
 - 5 Wilson coefficients describe ggF HH: $c_{hhh} = \kappa_{\lambda}$ and $c_{tth} = \kappa_{t}$, others BSM ($c_{i} = 0$ in SM)
 - Separate treatment of H and HH couplings
 - Change in couplings change diagram contribution and interference ⇒ modify di-Higgs invariant mass spectrum m_{HH}
 - Set limits on benchmark models and c_{tthh} and c_{gghh}

arXiv:2301.03212

BSM (6 dim.)

Benchmark Model		c_{HHH}	c_{ttH}	c_{ggH}	c_{ggHH}	c_{ttHH}
	\mathbf{SM}	1	1	0	0	0
	BM1	3.94	0.94	1/2	1/3	-1/3
	BM2	6.84	0.61	0.0	-1/3	1/3
	BM3	2.21	1.05	1/2	1/2	-1/3
	BM4	2.79	0.61	-1/2	1/6	1/3
	BM5	3.95	1.17	1/6	-1/2	-1/3
	BM6	5.68	0.83	-1/2	1/3	1/3
	BM7	-0.10	0.94	1/6	-1/6	1

HEFT interpretations of HH \rightarrow bbyy and HH \rightarrow bbtt &

combination

HEFT Benchmark Models limits:

	$b\bar{b}\gamma\gamma$		$bar{b} au^+ au^-$		Combination	
Wilson coefficient	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
C _{gghh} C _{tthh}	$\begin{bmatrix} -0.4, 0.5 \\ [-0.3, 0.8] \end{bmatrix}$	[-0.5, 0.7] [-0.4, 0.9]	[-0.4, 0.4] [-0.3, 0.7]	[-0.4, 0.4] [-0.2, 0.6]	[-0.3, 0.4] [-0.2, 0.6]	[-0.3, 0.3] [-0.2, 0.6]

- Limits on HEFT benchmark models and c_{gghh} and c_{tthh} Wilson coefficients ($c_{gghh} = c_{tthh} = 0$ in SM)
- Separately for $HH \rightarrow bb\gamma\gamma$ and $HH \rightarrow bb\tau\tau$ and combination

ATL-PHYS-PUB-2022-019

HH \rightarrow bbbb: SMEFT & HEFT interpretation

HEFT benchmark models

arXiv:2301.03212

SMEFT:

Parameter	Expected Constraint		Observed Constraint		
	Lower	ower Upper		Upper	
c _H	-20	11	-22	11	
c_{HG}	-0.056	0.049	-0.067	0.060	
$c_{H\square}$	-9.3	13.9	-8.9	14.5	
c_{tH}	-10.0	6.4	-10.7	6.2	
c_{tG}	-0.97	0.94	-1.12	1.15	

- 95% CL exclusion limits on SMEFT parameters
 - one parameter varied at a time, 2D limits also derived (not shown)
- Limits on HEFT:
 - Benchmark scenarios: BM3, BM5, BM7 observed to be excluded with more than 95% confidence
 - \circ Limits on c_{gghh} and c_{tthh}

Wilson coefficient	Observed	Expected
$c_{gghh} \ c_{tthh}$	$\left \begin{array}{c} [-0.36, 0.78] \\ [-0.55, 0.51] \end{array}\right $	$\left \begin{array}{c} [-0.42, 0.75]\\ [-0.46, 0.40]\end{array}\right $

Constraints on Higgs boson self-coupling from HH and H production - Methodology

- Combine H and HH analyses to obtain upper limit on κ_{λ} , relaxing assumptions on Higgs boson couplings (κ_{m}) \Rightarrow more generic model
 - $\circ~$ up-type quark ($\kappa_{\rm t}$), down-type quark ($\kappa_{\rm b}$), T lepton ($\kappa_{\rm T}$) and W or Z ($\kappa_{\rm V}$)
- Use STXS framework: corrections to differential distribution expressed with coupling modifiers

Channel	Integrated luminosity [fb ⁻¹]			
$HH \rightarrow b\bar{b}\gamma\gamma$	139			
$HH \rightarrow b\bar{b}\tau^+\tau^-$	139			
$HH \rightarrow b\bar{b}b\bar{b}$	126			
$H \rightarrow \gamma \gamma$	139			
$H \to ZZ^* \to 4\ell$	139			
$H \rightarrow \tau^+ \tau^-$	139			
$H \rightarrow WW^* \rightarrow ev\mu v \text{ (ggF,VBF)}$	139			
$H \rightarrow b\bar{b}$ (VH)	139			
$H \rightarrow b\bar{b}$ (VBF)	126			
$H \rightarrow b\bar{b}$ $(t\bar{t}H)$	139			

• Combine limits of HH (bbbb, bbττ, bbγγ) on

 ${\bf K}_{\rm \lambda'}\,{\bf K}_{\rm 2V}$ and cross section (${\bf \kappa}_{\rm m}$ fixed to SM)

• HH + H analyses: gradually release

assumptions on $\kappa_{\rm m}$ and fit κ_{λ} , $\kappa_{\rm t}$

Constraints on Higgs boson self-coupling - HH Combination²⁰

- Use only HH channels in combination
- Observed (expected) cross section limit: 2.4×SM (2.9×SM)
- Observed (expected) 95% CL limit on κ_{λ} : -0.6 < κ_{λ} < 6.6 (-2.1 < κ_{λ} < 7.8)
- VBF HH process constraints κ_{2V} in combination to 0.1 < κ_{2V} <2.0 at 95% CL

Only HH \rightarrow bbbb search contains dedicated analysis regions optimized for VBF \Rightarrow limits on κ_{2V} driven by HH \rightarrow bbbb

arXiv:2211.01216

Constraints on Higgs boson self-coupling from HH and H production - H+HH Results and κ_{λ} arXiv:2211.01216

Combination assumption	Obs. 95% CL	Exp. 95% CL
HH combination	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$
Single-H combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_\lambda < 11.5$
HH+H combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_\lambda < 7.6$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.4 < \kappa_\lambda < 6.1$	$-2.2 < \kappa_\lambda < 7.7$

- HH channels: κ_λ considered in H decay and H background through NLO EW correction (negligible impact)
- Limits on κ_{λ} : only HH, H+HH gradually release parameters

Most stringent constraints on Higgs boson self-interaction to date

HL-LHC prospects: Methodology

- High-luminosity phase of LHC (HL-LHC) with • increased instantaneous luminosity starts in 2029
- Collect 3000fb⁻¹ of data at center of mass energy of 14 TeV
- Extrapolate Run-2 results of HH \rightarrow bbbb search to • HL-LHC luminosity and collision energy
- Combination of extrapolation with extrapolated HH • \rightarrow bbyy and HH \rightarrow bbtt

Systematic uncertainties	Scale factors for HL-LHC baseline scenario
Theoretical uncertainty	0.5
b-jet tagging efficiency	0.5
c-jet tagging efficiency	0.5
Light-jet tagging efficiency	1.0
Jet energy scale and resolution	1.0
Luminosity	0.6
Background bootstrap uncertainty	0.5
Background shape uncertainty	1.0

Assume equal detector performance

Peak luminosity [10³⁴cm⁻²s⁻¹]

7

6

5

3

2

2028

2030

2032

- Four systematic uncertainty scenarios:
 - No systematics (statistical unc. only) 0
 - Baseline: scale down relevant systematics 0 according to expected improvements

ATL-PHYS-PUB-2022-053

S4

2034 2036

Year

YETS 15 weeks YETS 19 week

2038

- Theory uncertainties halved Ο
- **Run-2** systematics 0

500

0

2042

2040

_aboratoire de Physique de Clermont

HL-LHC prospects: Results of HH \rightarrow bbbb extrapolation

Improved results can be obtained when reducing the background estimation uncertainty and increasing the b-tagging performance (higher b-jet efficiency at same light and charm rejection)

HL-LHC prospects: Prospects of HH \rightarrow bbbb, bbyy, bbtt combination ATL-PHYS-PUB-2022-053

	Signit			ד]	Combined signal	
Uncertainty scenario	b̄bγγ	$b\bar{b}\tau^{+}\tau^{-}$	bbbb	Combin	nation	strength precision [%
No syst. unc.	2.3	4.0	1.8	4.9)	-21/+22
Baseline	2.2	2.8	0.99	0.99 3.4		-30/+33
Theoretical unc. halved	1.1	1.7	0.65	2.1		-47/+48
Run 2 syst. unc.	1.1	1.5	0.65	1.9)	-53/+65
Uncertain	Uncertainty scenario No syst. unc. Baseline		к _л 68	3% CI	кл	95% CI
No syst. u			[0.7, 1.4] [0 [0.5, 1.6] [0		[0.	.3, 1.9]
Baseline					[0.	0.0, 2.5]
Theoretica	al unc.	halved	[0.3	2.2]	[-0	0.3, 5.5]
Run 2 syst	. unc.		[0.1.	,2.4]	[-0	0.6, 5.6]

- Significance of 3.4σ assuming baseline scenario
- Signal strength measured with +33/-30% uncertainty
- κ_{λ} constrained to [0.5,1.6] in 1σ confidence interval

Conclusion

- Competitive limits on HH production cross section and Higgs self-couplings derived in HH → bbbb, bbTT, bbγγ decay channels using full Run-2 ATLAS data
- Combination with single Higgs analyses and interpretations in HEFT and SMEFT frameworks
- Combination H+HH provides the most stringent limits on Higgs boson self-coupling to date: -0.4 < κ_{λ} < 6.3
- Expect evidence for HH production with 3000fb⁻¹ of HL-LHC data
- Further improvements in object reconstruction and analysis techniques will help to constrain HH production further towards discovery of non-resonant HH production at the HL-LHC

Backup

Resonance searches

- Resonant searches in HH \rightarrow bb $\gamma\gamma$ and HH \rightarrow bb $\tau\tau$ final states
- Exclusion limit on narrow width HH resonance

Summary of HH results from CMS (Status: March 23)

