SND@LHC

A new Scattering and Neutrino Detector at the LHC

Blois 2023: <u>34th Rencontres de Blois on "Particle Physics and Cosmology"</u> *Gaston d'Orléans - May 18th 2023*

Proposals for **studying high-energy neutrinos at LHC** date back to the early 90's

- Measure pp $\rightarrow \nu X$ in an uncovered energy domain
- Achievable with rather small-size detectors [*]
 Large ν fluxes from pp collisions at high η
 E_ν [10² − 10³] GeV, σ_ν ∝ E_ν
- Two experiments presently operating
 FASER ν on-axis (η > 9) [C. Cavanagh talk]
 SND@LHC slightly off-axis (7.2 < η < 8.4)

SND@LHC: Physics Programme

• Measure **charm production** at high **high** η (gg \rightarrow cc̄)

• Due to η acceptance, ν s mostly coming from charmed hadrons decay J. Phys. G 47 (2020) 125004

Probe gluon PDF low momentum fraction (x ~ 10⁻⁶)

► FCC detectors

• Extra-galactic ν observation (atmospheric ν background)

Test lepton flavour universality using ν s:
 SND@LHC is designed to distinguish all ν flavours

Direct search of feebly-interacting particles (FIPs)

• E.g.: Dark scalars, Heavy Neutral Leptons, Dark Photons

Run 3: 250 fb⁻¹

Flavour	$ $ Neutrinos i $\langle E \rangle$ [GeV]	n acceptance Yield	$ $ CC neutrino $\langle E \rangle$ [GeV]	interactions Yield
ν_{μ}	130	$3.0 imes 10^{12}$	452	910
$\bar{\nu}_{\mu}$	133	2.6×10^{12}	485	360
ν_e	339	$3.4 imes 10^{11}$	760	250
$ar{ u}_e$	363	$3.8 imes 10^{11}$	680	140
$ u_{ au}$	415	$2.4 imes 10^{10}$	740	20
$ar u_ au$	380	2.7×10^{10}	740	10
TOT		4.0×10^{12}		1690

SND@LHC is **located** in the **TI18** service tunnel (SPS to LEP transfer line, then dismissed)

- ~480 m away from ATLAS interaction point (IP1)
- Shielding:
 - ▶ ~ **100 m** of rock
 - LHC magnets (deflect charged particles)
- Angular acceptance: $7.2 < \eta < 8.4$

SND@LHC: Detector Location

SND@LHC is **located** in the **TI18** service tunnel (SPS to LEP transfer line, then dismissed)

Machine to IP1 (left) – SND@LHC in TI18 (right)

Angular acceptance: $7.2 < \eta < 8.4$

- Veto system

- Target, Vertex detector, EM CAL

- HAD CAL, MUON SYSTEM

VETO

- **Goal:** charged particle identification
- ▶ 2 planes of stacked **scintillator bars**

arXiv 2210.02784

► Target mass ~830 kg

8

SND@LHC: Detector Layout

• Goals:

- Timing information
- Muon tracking and isolation

▶ Geometry

- ▶ 3 stations of orthogonal scintillation bar layer pairs [*]
- Horizontal bars read out on both ends
- ▶ Vertical bars read out on one end (one additional layer in last station)

3x Downstream

planes

5x Upstream

planes

6 m

SND@LHC: Some Cornerstones

SND@LHC Event Display (6th of July 2022)

Data Acquisition and Event Reconstruction

Readout and DAQ

- Trigger-less acquisition system
- Timestamp-based event building from DAQ
- Multiple levels of noise filtering (FE thresholds, DAQ)

Two-staged Reconstruction

First phase: electronic detectors (event)

- **Tagging** of incoming charged particles (Veto, SciFi)
- Muon identification (Muon System)
- Calorimetric energy measurement (SciFi, HCAL)

Second phase: nuclear emulsions (~20 fb⁻¹)

- Extract, develop, scan, and analyse emulsion data
- Reconstruct v primary and secondary vertices
- Match emulsion and electronics reconstruction
 - ▶ Timestamp
 - Complement EM energy measurement

Discriminate between $\nu_{\mu,e,\tau}$ flavours

Overview of the 2022 Data-Taking

Performance studies with Run3 data (highlights)

- Results: beam 1 background < 1.0% beam 2 background < 1.5%</p>
- Can clearly tag events entering from the downstream detector end

Performance studies with Run3 data (highlights)

C LHC

2022 data also used to study detector performance and measure muon flux

SND@LHC Preliminary

Comparison of Emulsions/SciFi distributions with early data in good agreement, preliminary flux measurement agree within 10%
Input to target replacement strategy definition

SND@LHC Preliminary

SND@LHC Preliminary

Refined muon flux studies performed with later 2022 data:

- Using data from **SciFi** and **Muon system**
- Accounting for higher order corrections (e.g. efficiency)
 - SciFi: 2.06 · 10⁴ cm⁻² / fb⁻¹
 - Muon system: 2.35 · 10⁴ cm⁻² / fb⁻¹
 - Data/MC disagreement ~20 25%

Observation of ν_{μ} **using electronic detectors**

<u>arXiv 2305.09383</u>

Dataset: full 2022 run, 36.8 fb-1

Analysis strategy

- Look for ν_{μ} charged current interaction (CC) events
- Maximise S/B, counting-based approach
- ► Challenge

must reach negligible background out of ~10° μ events

▶ apply cuts with **strong rejection power**

Signal selection

Fiducial volume cuts

- require neutral vertex event from the 3rd or 4th target walls
- select x-y fiducial area (25 x 26 cm²) to reject background entering from edges
- ► Neutrino ID
 - require large hadronic activity in SciFi and HCAL
 - timing compatible with upstream event from IP1 collision
 - reconstructed and isolated muon track (muon system)

Background estimation

Muon-induced neutral interactions

assessment of systematics ongoing

$$N_{\text{neutrals}}^{\text{bkg}} = N_{\text{neutrals}} \times P_{\text{inel}} \times \epsilon_{\text{sel}}$$

= (7.6 ± 3.1) × 10⁻²

Observed candidates, analysis result

b Observed 8 ν_{μ} CC candidates

• Observation **significance** <u>**7.0**</u> **σ**

- After approval by the CERN Research Board in March 2021 the SND@LHC detector was built and installed in TI18 over just a one year span
- > Operating since the start of the LHC Run 3, has collected 36.8 fb⁻¹ (95% uptime efficiency)
- Incoming muon flux was measured using SciFi, Muon system and Emulsions
- Attempted the observation of incoming ν_{μ} solely based on electronics detectors
 - •Observed 8 ν_{μ} CC candidates against an expected background of (7.6 ± 3.1)×10⁻²
 - **•Observation significance 7.0** σ

Exciting times have started!

SND@LHC <u>Web Page</u>

Thank you!

Backup

Neutrino Physics Summary - Run3

Measurement	Uncertainty	
	Stat.	Sys.
$pp \rightarrow \nu_e X$ cross-section	5%	15%
Charmed hadron yield	5%	35%
ν_e/ν_τ ratio for LFU test	30%	20%
ν_e/ν_μ ratio for LFU test	10%	10%
Measurement of NC/CC ratio	5%	10%

Measure of $pp \rightarrow v_e X$ **cross-section**, then charm production

$pp \rightarrow \nu_e X$ cross section

Simulation prediction: ~90% of ν_{e} come from charm decays

LHCC-P-016

- Unfold detector response to get energy spectrum
- \blacktriangleright Assume SM σ_{e}

charm production

- ▶ Apply statistical subtraction of π /K component to the above result
- Exploit correlation between neutrino and parent hadron
- ► Use different generators to assess systematics

Lepton Flavour Universality Test

10¹

10¹⁰

10⁹

- v_{τ} essentially only coming from D_s decays
- v_e coming from decay of all charmed hadrons (essentially D₀, D, D_s, Λ_c)

LHCC-P-016

▶ R₁₃ only depends only on charm hadronisation fractions and Brs

$$R_{13} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\tau + \overline{\nu}_\tau}} = \frac{\sum_i \tilde{f}_{c_i} \tilde{B} r(c_i \to \nu_e)}{\tilde{f}_{D_s} \tilde{B} r(D_s \to \nu_\tau)},$$

- v_{μ} produced also in decays of π/K
 - ▶ Above 600 GeV, ~flat contamination around 35%
- Decay modes are essentially the same
 - negligible systematic from Brs and charm hadronisation

$$R_{12} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\mu + \overline{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/k}} \underbrace{\underset{\bullet}{\cdot \cdot \cdot}}_{\text{from } \pi/k}$$

Feebly interacting particles (example)

<u>JHEP03 (2022) 006</u>

Production example: a scalar χ particle coupled to the SM via a leptophobic portal:

$$\mathcal{L}_{\text{leptophob}} = -g_B V^{\mu} J^B_{\mu} + g_B V^{\mu} (\partial_{\mu} \chi^{\dagger} \chi + \chi^{\dagger} \partial_{\mu} \chi),$$

Meson decay

Drell-Yan

Detection: χ elastic/inelastic scattering off nucleons of the target

SND@LHC: Detector Layout (additional details)

Further SciFi Performance studies

Run 3 SND@LHC Preliminary

Muon tracking efficiency

SND@LHC Preliminary

SND@LHC at HL-LHC

Upgrade of SND@LHC in view of an extended run during Run 4:

- ▶ Extension of the physics case
- New technologies and detector layout
- Two detectors

AdvSND-Far (7.2 < < 8.4)

possible locations: TI18, Future Forward Facility

AdvSND-Near (4< <5)

possible locations: existing caverns close to IPFiducial volume cuts

AdvSND-Near: 4< η <5