A new Scattering and Neutrino Detector at the LHC

Blois 2023: 34th Rencontres de Blois on "Particle Physics and Cosmology"
Gaston d'Orléans - May 18th 2023

C. Battilana (Università ed INFN Bologna)
on behalf of the SND@LHC collaboration
Neutrino Experiments at the LHC

Proposals for **studying high-energy neutrinos at LHC** date back to the early 90’s

- **Measure** \(pp \rightarrow \nu X \) in an **uncovered energy domain**
 - **Achievable** with rather **small-size detectors** [*]
 - Large \(\nu \) fluxes from pp collisions **at high** \(\eta \)
 - \(E_\nu \sim [10^2 \text{ – } 10^3] \text{ GeV}, \sigma_\nu \propto E_\nu \)
- **Two experiments** presently operating
 - **FASER** \(\nu \) on-axis (\(\eta > 9 \)) [*C. Cavanagh talk*]
 - **SND@LHC** slightly off-axis (\(7.2 < \eta < 8.4 \))

[*] Further studies on the physics potential of an experiment using LHC neutrinos
Measure **charm production** at high **high** η ($gg \to c\bar{c}$)
- Due to η acceptance, νs mostly coming from charmed hadrons decay

Probe gluon PDF low momentum fraction ($x \sim 10^{-6}$)
- FCC detectors
- Extra-galactic ν observation (atmospheric ν background)

Test lepton flavour universality using νs:
- **SND@LHC** is designed to distinguish all ν flavours

Direct search of feebly-interacting particles (FIPs)
- E.g.: Dark scalars, Heavy Neutral Leptons, Dark Photons
SND@LHC: Detector Location

SND@LHC is located in the TI18 service tunnel (SPS to LEP transfer line, then dismissed)

- ~480 m away from ATLAS interaction point (IP1)
- Shielding:
 - ~100 m of rock
 - LHC magnets (deflect charged particles)
- Angular acceptance: $7.2 < \eta < 8.4$
SND@LHC: Detector Location

SND@LHC is located in the **TI18** service tunnel (SPS to LEP transfer line, then dismissed)

Machine to IP1 (left) – SND@LHC in TI18 (right)
Angular acceptance: $7.2 < \eta < 8.4$

- Veto system
- Target, Vertex detector, EM CAL
- HAD CAL, MUON SYSTEM
VETO
- **Goal**: charged particle identification
- 2 planes of stacked **scintillator bars**

Goal: charged particle identification

2 planes of stacked **scintillator bars**
Emulsion Cloud Chambers (ECC)

- **Goal:** tracking and vertex ID
 - Sub-micrometric resolution
- **Geometry**
 - 5 walls of 2x2 bricks
 - Shielding (protect from neutrons, stabilise T and humidity)
- **Brick layout**
 - 60 layers of 300 μm-thick emulsions
 - Interleaved by 1 mm tungsten plates
- **Target mass** ~830 kg
SND@LHC: Detector Layout

SciFi

- **Goals:**
 - Precise timing information
 - EM energy measurement
 - Spatial information

- **Geometry**
 - 5 planes of scintillating fibres mat pairs (x-y)
 - Mats built of 6 layers of staggered fibres

\[\sigma_t \sim 250 \text{ ps} \]

single-station (x and y)
Hadronic calorimeter

Goals:
- Timing information
- **Hadronic energy** measurement
- Spatial information

Geometry
- 5 stations of horizontal scintillation bar layers[*]
- Readout on both ends of a bar

[*] interleaved with 20 cm Fe blocks
Muon system

- **Goals:**
 - Timing information
 - **Muon tracking** and isolation

- **Geometry**
 - 3 stations of orthogonal scintillation bar layer pairs [*]
 - Horizontal bars **read out on both ends**
 - Vertical bars **read out on one end** (one additional layer in last station)

[*] interleaved with 20 cm Fe blocks
SND@LHC: Some Cornerstones

- **August 2020**
 - Letter of intent

- **January 2021**
 - Technical Proposal

- **March 2021**
 - Approval by CERN Research Board

- **April 2022**
 - Beams Back in LHC

- **July 2022**
 - Run 3 starts (√s 13.6 TeV)

SND@LHC Event Display (6th of July 2022)

- **September 2021**

- **December 2021**

- **March 2022**
Readout and DAQ

- **Trigger-less acquisition** system
- **Timestamp-based event building** from DAQ
- Multiple levels of noise filtering (FE thresholds, DAQ)

Two-staged Reconstruction

First phase: electronic detectors (event)
- Tagging of incoming charged particles (Veto, SciFi)
- Muon identification (Muon System)
- Calorimetric energy measurement (SciFi, HCAL)

Second phase: nuclear emulsions (~20 fb$^{-1}$)
- Extract, develop, scan, and analyse emulsion data
- Reconstruct ν primary and secondary vertices
- Match emulsion and electronics reconstruction
 - Timestamp
 - Complement EM energy measurement

Discriminate between $\nu_{\mu,e,\tau}$ flavours
Overview of the 2022 Data-Taking

- **Delivered lumi. (IP1):** 38.7 fb⁻¹
- **Recorded lumi.:** 36.8 fb⁻¹ ← 95%
- **4 emulsion runs**

Emulsions replaced three times over the 2022 run
Performance studies with Run3 data (highlights)

- **Event rates** were mapped to the LHC filling scheme
 - Study non-colliding bunches to assess non-collision background

- **Results**: beam 1 background < 1.0% – beam 2 background < 1.5%

- Can clearly tag events entering from the downstream detector end
Performance studies with Run3 data (highlights)

2022 data also used to study detector performance and measure muon flux

Emulsion tacks: 1 cm² x-y section – RUN0 (0.5 fb⁻¹)

Comparison of Emulsions/SciFi distributions with early data in good agreement, preliminary flux measurement agree within 10%
- Input to target replacement strategy definition

Refined muon flux studies performed with later 2022 data:
- Using data from SciFi and Muon system
- Accounting for higher order corrections (e.g. efficiency)
 - SciFi: $2.06 \cdot 10^4$ cm⁻² / fb⁻¹
 - Muon system: $2.35 \cdot 10^4$ cm⁻² / fb⁻¹
- Data/MC disagreement ~20 - 25%
Observation of ν_μ using electronic detectors

Dataset: full 2022 run, **36.8 fb$^{-1}$**

Analysis strategy
- Look for ν_μ **charged current interaction** (CC) events
- Maximise S/B, counting-based approach
- **Challenge**
 - must reach negligible background out of $\sim 10^9 \mu$ events
 - apply cuts with **strong rejection power**

Signal selection
- **Fiducial volume cuts**
 - require **neutral vertex** event from the 3rd or 4th target walls
 - select **x-y fiducial area** (25 x 26 cm2) to reject background entering from edges
- **Neutrino ID**
 - require **large hadronic activity in SciFi and HCAL**
 - timing compatible with upstream event from IP1 collision
 - reconstructed and **isolated muon track** (muon system)
Background estimation

Muon-induced background
“undetected” muons

\[N_{\mu}^{bkg} = N_{\mu} \times (1 - \epsilon_{Veto}) \times (1 - \epsilon_{SciFi1}) \times (1 - \epsilon_{SciFi2}) \approx 3 \times 10^{-3} \]

~5.3 x 10^{-12}

\[5.0 \times 10^8 \]

\[\approx 2.1 \times 10^4 \text{ cm}^2 \text{ fb} \times 36.8 \text{ fb}^{-1} \times 650 \text{ cm}^2 \]

Muons

Muon-induced neutral interactions
assessment of systematics ongoing

\[N_{\text{neutrals}}^{bkg} = N_{\text{neutrals}} \times P_{\text{inel}} \times \epsilon_{\text{sel}} \]

\[= (7.6 \pm 3.1) \times 10^{-2} \]
Observed candidates, analysis result

- Observed 8 ν_μ CC candidates
- Observation significance 7.0σ
Summary

- **After approval** by the CERN Research Board in March 2021 the SND@LHC detector was **built** and **installed** in TI18 **over just a one year span**

- **Operating since the start of the LHC Run 3**, has collected 36.8 fb\(^{-1}\) (95% uptime efficiency)

- **Incoming muon flux** was measured using **SciFi, Muon system** and **Emulsions**

- **Attempted the observation of incoming** \(\nu_\mu\) **solely based on electronics detectors**
 - Observed **8 \(\nu_\mu\) CC candidates** against an **expected background** of \((7.6 \pm 3.1) \times 10^{-2}\)
 - **Observation significance 7.0 \(\sigma\)**

Exciting times have started!

[SND@LHC Web Page](#)
Thank you!
Backup
Neutrino Physics Summary - Run3

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow \nu_e X$ cross-section</td>
<td>5%</td>
</tr>
<tr>
<td>Charmed hadron yield</td>
<td>5%</td>
</tr>
<tr>
<td>ν_e/ν_τ ratio for LFU test</td>
<td>30%</td>
</tr>
<tr>
<td>ν_e/ν_μ ratio for LFU test</td>
<td>10%</td>
</tr>
<tr>
<td>Measurement of NC/CC ratio</td>
<td>5%</td>
</tr>
</tbody>
</table>
Measure of $pp \rightarrow \nu_e X$ cross-section, then charm production

$pp \rightarrow \nu_e X$ cross section

- Simulation prediction: $\sim 90\%$ of ν_e come from charm decays
- Unfold detector response to get energy spectrum
- Assume SM σ_e

charm production

- Apply statistical subtraction of π/K component to the above result
- Exploit correlation between neutrino and parent hadron
- Use different generators to assess systematics
Lepton Flavour Universality Test

- ν_τ essentially only coming from D_s decays
- ν_e coming from decay of all charmed hadrons (essentially D_0, D, D_s, Λ_c)
- R_{13} only depends only on charm hadronisation fractions and Brs

\[
R_{13} = \frac{N_{\nu_e + \bar{\nu}_e}}{N_{\nu_\tau + \bar{\nu}_\tau}} = \sum_i \tilde{f}_c \tilde{B}r(c_i \to \nu_e) / \tilde{f}_{D_s} \tilde{B}r(D_s \to \nu_\tau),
\]

- ν_μ produced also in decays of π/K
- Above 600 GeV, ~flat contamination around 35%
- Decay modes are essentially the same
- negligible systematic from Brs and charm hadronisation

\[
R_{12} = \frac{N_{\nu_e + \bar{\nu}_e}}{N_{\nu_\mu + \bar{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/k}} \text{ contamination from } \pi/k
\]
Feebly interacting particles (example)

Production example: a scalar \(\chi \) particle coupled to the SM via a leptophobic portal:

\[
\mathcal{L}_{\text{leptophob}} = -g_B V^\mu J^B_\mu + g_B V^\mu (\partial_\mu \chi^\dagger \chi + \chi^\dagger \partial_\mu \chi),
\]

Detection: \(\chi \) elastic/inelastic scattering off nucleons of the target

\[
\begin{align*}
\bar{\chi} & \rightarrow \chi \\
&p, n \\
\chi & \rightarrow \chi
\end{align*}
\]

\[
\begin{align*}
\bar{\chi} & \rightarrow \chi \\
&p \\
\chi & \rightarrow \chi
\end{align*}
\]

\[
\begin{align*}
\bar{\chi} & \rightarrow \chi \\
\gamma & \rightarrow \chi
\end{align*}
\]

Proton bremsstrahlung

Meson decay

Drell-Yan

\[
m_\chi = 20 \text{ MeV}, \ \alpha_\chi = 0.5
\]
SND@LHC: Detector Layout (additional details)
Further SciFi Performance studies

Muon test beam data

Measured without any material between stations

Run 3 SND@LHC Preliminary

Gap between SiPM arrays

Gap between boards

\[\sigma_t \sim 250 \text{ ps} \]

single-station (x and y)
Muon tracking efficiency

SciFi + Simple tracking

Muon system + Hough transform
Upgrade of SND@LHC in view of an extended run during Run 4:

- Extension of the physics case
- New technologies and detector layout
- Two detectors
 - **AdvSND-Far (7.2< η< 8.4)**
 - possible locations: TI18, Future Forward Facility
 - **AdvSND-Near (4< η< 5)**
 - possible locations: existing caverns close to IPFiducial volume cuts