

Status of the Jiangmen Underground Neutrino Observatory to measure Neutrino Mass Ordering

Mariam Rifai on behalf of the JUNO collaboration 34th Rencontres de Blois 2023

Physics potential of JUNO

- J. Zhao et al., Model Independent Approach of the JUNO B8 Solar Neutrino Program, submitted to APJ.
- A. Abusleme et al., Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO, J. Cos. Astro. Phys. 10 (2022) 033.
- A. Abusleme et al., <u>JUNO sensitivity to low energy atmospheric neutrino spectra</u>, Eur. Phys. J. C 81 (2021) 887.

Others

Forschungszentrum

Jiangmen Underground Neutrino Observatory:

JUNO is the first multi-kton liquid scintillator (LS) detector ever built, located in China. Main goal: determination of the Neutrino Mass Ordering (NMO), 3σ in 6 years

47 anti-v_e /day after suppressing the cosmogenic backgrounds **vacuum oscillation pattern independent of \deltacp and \theta_{23}**

Jiangmen Underground Neutrino Observatory:

JUNO is the first multi-kton liquid scintillator (LS) detector ever built, located in China Main goal: determination of the Neutrino Mass Ordering (NMO), 3σ in 6 years

47 anti-v_e /day after suppressing the cosmogenic backgrounds **vacuum oscillation pattern independent of \deltacp and \theta_{23}**

Reactor oscillated spectrum of electron anti-neutrinos spectrum detected by inverse beta decay IBD

Page 4

JUNO requirements

- Large antineutrino statistics O(100k) @ 52.5 km baseline: 20 kton liquid scintillator powerful reactor (26.6 GW_n)
- ❑ Resolving signature wiggles in the L/E spectrum
 - excellent energy resolution 3% @ 1 MeV
 - better than 1% understanding of the intrinsically non-linear energy scale of the liquid scintillator
 - possible fine structures in the reactor spectrum under control -> JUNO-TAO detector to measure shape uncertainty
- Backgrounds:
 - o radio-purity of all materials and depth of 700 m. JUNO collaboration, JHEP 11 (2021) 102
 - Muon veto system with > 99.5% efficiency

JUNO detector design

B B B

WIN THE WIN

Construction Highlights

Updates up to April 2023

Forschungszentrum

Member of the Helmholtz Association

Neutrino mass ordering with reactor antineutrinos

Recent results

	$\Delta \chi^2_{min}$	stat. + 1 syst.		
Statistics	11.3			
Stat.+Flux error	-0.6			
Stat.+Backgrounds	-1.4			
Stat.+Nonlinearity	-0.4			
Stat.+Others	< -0.05			
Total	9.0			
		0 2 4 6 8 10 12		

doi: 10.5281/zenodo.6683749 doi: 10.5281/zenodo.6775075

 3σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure

Collaboration paper is under preparation!

Complementary to other experiments based on matter effects

Precision Measurement of Neutrino Oscillation Parameters

• JUNO will measure $\sin^2\theta_{12}$, Δm_{13}^2 , Δm_{12}^2 with <1% precision level

-> In contrast to the previous JUNO NMO sensitivity estimation, <u>F. An et al. (JUNO), J.</u> Phys. G 43, 030401 (2016),

- -> The new NMO sensitivity results consider the following changes:
 - the final location and overburden of the experimental site
 - JUNO experimental hall 60 m shallower -> 30% higher flux of cosmic muons
 - 8 reactor cores, instead of 10 cores
 - updated background estimation (Chin. Phys. C 46 (2022)no.12, 123001)
 - electron anti-neutrino spectral shape uncertainty -> TAO (arXiv:2005.08745 (2020))
 - more realistic detector response model: calibration plan (JHEP03(2021)004)
 - updated estimation of energy resolution from 3 -> 2.9 @ 1MeV, (Eur.Phys.J.C 82 (2022) 12, 1168)

-> In contrast to the previous JUNO NMO sensitivity estimation, <u>F. An et al. (JUNO), J.</u> Phys. G 43, 030401 (2016),

- -> The new NMO sensitivity results consider the following changes:
 - the final location and overburden of the experimental site
 - JUNO experimental hall 60 m shallower -> 30% higher flux of cosmic muons
 - 8 reactor cores, instead of 10 cores
 - updated background estimation (Chin. Phys. C 46 (2022)no.12, 123001)
 - electron anti-neutrino spectral shape uncertainty -> TAO (arXiv:2005.08745 (2020))
 - more realistic detector response model: calibration plan (JHEP03(2021)004)
 - updated estimation of energy resolution from 3 -> 2.9 @ 1MeV, (Eur.Phys.J.C 82 (2022) 12, 1168)

JUNO Inverse beta decay detection and backgrounds

$$\overline{V}_{e} + p \longrightarrow e^{+} + m$$
 Prompt
 $M + p \xrightarrow{\mathbb{Z}^{\sim 200} \mu s} D + \chi (2.2 \text{ NeV})$ Delayed

Rates after selection cuts

Event type	Rate [/day]	Relative rate uncertainty	Shape uncertainty	
Reactor IBD signal	60 🗲 47	-	-	
Geo-v's	1.1 -> 1.2	30%	5%	
Accidental signals	0.9 🗲 0.8	1%	negligible	
Fast-n	0.1	100%	20%	
⁹ Li/ ⁸ He	1.6 → 0.8	20%	10%	
¹³ C(<i>α</i> , <i>n</i>) ¹⁶ O	0.05	50%	50%	
Global reactors	0 → 1.0	2%	5%	
Atmospheric $v's$	0 🗲 0.16	50%	50%	

J. Phys. G 43:030401 (2016) → this update

Taishan Anti-neutrino Observatory (TAO)

Physics Goals:

- provide model-independent reference spectrum for JUNO
- provide benchmark to examine nuclear databases
- reactor monitoring, sterile neutrino...

- 2.8 ton Gd-loaded liquid scintillator detector at -50°C at ~30 m baseline from the Taishan-1 reactor core (4.6 GW th)
- reactor anti-neutrino signal ~2000/day
- < 2% energy resolution @ 1 MeV

Calibration system

How to reach <1% uncertainty on the energy scale ? Meticulous Calibration!

- 1D, 2D, 3D scan systems with many sources over the whole energy range, controlled by $\gamma/\alpha/\beta,$ UV-laser, and light pulses sources
- many positions to keep residual non-uniformity low

Updates on the energy resolution

High light yield (LY ~ 10⁴ photons/MeV)

- good transparency: $\lambda_{att} > 20 \text{ m} @ 430 \text{ nm}$
- very high PMT coverage 78%

New reference

- photo detection efficiency (PDE) 29.1% -> 30.1% (Mass PMT testing data) *Eur.Phys.J.C* 82 (2022) 12, 1168
- more realistic PMT optical model. 10.5281/zenodo.6785356
- new detector geometry. 10.5281/zenodo.6805544

NMO dependence on resolution and exposure

Excellent energy resolution 2.9% @ 1 MeV

Atmospheric neutrinos: accessible from the first year of data taking

https://www-sk.icrr.u-tokyo.ac.jp/en/sk/neutrino/about/

Measurement of energy spectra and flavor identification

Eur. Phys. J. C 81 (2021) 887

Energy spectra

Applied an unfolding method to extract the energy spectrum: 25% precision after 5 years

Flavor identification, ve/vµ, based on the charge detected by the PMTs (NPE) and the residual time

Atmospheric neutrino sensitivity to NMO

JUNO sensitivity on NMO:

0.7~1.4 σ (atmospheric only) @ ~6 yrs exposure

statistcal only (blue) and realistic (work in progress)

(red) scenarios for NMO sensitivities as a function of lifetime for the true NH

Atmospheric neutrino sensitivity to NMO

Member of the Helmholtz Association

All analysis ingredients in progress

[1] DOI: 10.5281/zenodo.6769313. [2] DOI: 10.5281/zenodo.6782362. [3] DOI: 10.5281/zenodo.6785153. [4] DOI: 10.5281/zenodo.6804861 [5]DOI: 10.5281/zenodo.6774990 [6]DOI: 10.5281/zenodo.6785153

Summary and outlook

- neutrino mass ordering: 3σ in about 6 years with reactor antineutrinos
- joint analysis with atmospheric neutrinos will enhance the sensitivity (release expected this year)
- $\sin^2\theta_{12}$, Δm_{13}^2 , Δm_{12}^2 sub-percent level in 6 years
- several others goal in neutrinos and astroparticle physics

Thank you!

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	SYSU	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China	Tsinghua U.	Germany	U. Tuebingen
Brazil	PUC	China	UCAS	Italy	INFN Catania
Brazil	UEL	China 📁	USTC	Italy	INFN di Frascati
Chile	PCUC	China	U. of South China	Italy	INFN-Ferrara
Chile 🔧	SAPHIR	China	Wu Yi U.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China	Beijing Normal U.	China	Xiamen University	Italy	INFN-Perugia
China	CAGS	China	Zhengzhou U.	Italy	INFN-Roma 3
China	ChongQing University	China	NUDT	Latvia	IECS
China	CIAE	China	CUG-Beijing	Pakistan 👘 🏠	PINSTECH (PAEC)
China	DGUT	China	ECUT-Nanchang City	Russia	INR Moscow
China	Guangxi U.	China	CDUT-Chengdu	Russia	JINR
China	Harbin Institute of Technology	Czech	Charles U.	Russia	MSU
China	IHEP	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National Taiwan U.
China	Nanjing U.	France	CPPM Marseille	Taiwan-China	National United U.
China	Nankai U.	France	IPHC Strasbourg	Thailand	NARIT
China	NCEPU 🕊 🗕	France	Subatech Nantes	Thailand	PPRLCU
China	Pekin U.	Germany	RWTH Aachen U.	Thailand	SUT
China	Shandong U.	Germany	TUM	U.K.	U. Warwick
China	Shanghai JT U.	Germany	U. Hamburg	USA	UMD-G
China	IGG-Beijing	Germany	FZJ-IKP	USA	UC Irvine

75 institutes, over 650 collaborators

Electron antineutrino detection :

 $E_{vis} = E_{\overline{v}_e} - 0.78 \text{ MeV}$

Non oscillated spectrum: Reactor $\overline{\nu}_e$ flux + IBD cross section

Golden channel for neutrino detection:

• High cross section (about ×10 wrt. ve -elastic scattering @3 MeV)

- Two-signal coincidence:
 - Prompt signal: annihilation of positron.
 - Delayed signal: neutron capture after ~200 μs.
- Neutrino energy can be reconstructed from positron energy
 - Threshold of 1.8 MeV

Detection via the Inverse Beta Decay (IBD)

- Golden channel for neutrino detection:
 - High cross section (about ×10 wrt. ve -elastic scattering @3 MeV)
- Two-signal coincidence:
 - Prompt signal: annihilation of positron.
 - Delayed signal: neutron capture after ~200 μ s.
- Neutrino energy can be reconstructed from positron energy
 - Threshold of 1.8 MeV

$$E_{\bar{\nu}_e} = E_{e^+} + (m_n - m_p)$$

Geoneutrinos

Main goal: understanding the radiogenic heat distribution in the Earth

- Detected channel: inverse beta decay
- Geo-neutrinos from 238U and 232Th decay chains in earth: 400/year
- High Statistic of IBD

Event / 225 keV

• Significant constraint from the reactor neutrinos

IBD spectrum - 1 year simulated data

Solar Neutrinos: ⁸B

~0.2 ktons of ¹³C in the LS -> potential model independent observation of B8 solar neutrino (CC, NC and ES)

Low threshold of 2 MeV for elastic scattering (ES)

Potential to measure 8B solar neutrinos with 5% precision in 10 years

Solar Neutrinos: ⁷Be, pep, CNO

Potential to improve the precision of the existing Borexino measurements

- 7Be: in 1-2 years time < 2.7% for all radiopurity scenarios
- pep: in 1-2 years time < 17%, for the most radiopurity scenario
- CNO: 20% precision might be feasible for the first time without constraint on

210Bi internal background (constraining pep solar neutrino rate is crucial)

Critical backgrounds:

- $7Be \rightarrow 85Kr$, 226Ra, 210Po
- $pep \rightarrow 11C$, TFC parameters
- CNO \rightarrow 210Bi, (pep), 11C, TFC parameters

Supernova Neutrinos

99% of a supernova burst's energy is released via neutrinos

- JUNO is able to observe the 3 supernova phases
- Better understanding of supernova models
- Obtain informations about Mass Hierarchy
- Take part in multi-messenger astronomy
 - part of SNEWS (SuperNova Early Warning System)

J. Phys. G: Nucl. Part. Phys. 43 (2016) 030401

Forschungszentrum

Visible energy distribution in JUNO of a typical SN at 10 kpc

Diffuse Supernova Neutrino Background

"Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO," JCAP 10 (2022), 033

- DSNB: isotropic flux of neutrinos from extra-galactic supernovae
- Detection via inverse beta decay (IBD)
- It holds precise information on the
 - The average core-collapse SN neutrino spectrum
 - The cosmic star formation rate
 - The fraction of failed black hole forming SNe
- Background:
 - NC interaction of atmo -v -> pulse shape discrimination (eff 80%)
 - Reactor neutrinos -> go above 10 MeV

JÜLICH Forschungszentrum

DSNB discovery potential: 3σ in 3 years with nominal models

Core Collapse Supernova Neutrinos

See poster 10.5281/zenodo.6785184 from Neutrino 2022, paper in preparation

- Capability to detect pre-SN neutrinos from close SN-candidates
- >50% efficiency to detect CCSN up to 250–300 kpc
 - For reference: Milky Way diameter ~30 kpc; Andromeda galaxy distance ~ 780 kpc

Satellite detectors of JUNO

1. The JUNO OSIRIS detector (Online Scintillator Internal Radioactivity Investigation System) IDea: Monitors scintillation radiopurity during filling

Idea: Detect radioactive contaminated scintillator

- After purification
- Before filling into acrylic vessel
- 18t LS volume (Ø=3 m, H=3 m)
- Instrumented by
 - 64 20" PMTs for the scintillator
 - 16 20" PMTs for the water cherenkov veto

Central

detector of JUNO

- Can reach the sensitivity of 10⁻¹⁶ g/g of 238U and 232Th
- Requirements for JUNO:
- solar v : < 10⁻¹⁶ g/g
- MH (IBD) : < 10⁻¹⁵ g/g

Purification plant being tested at Daya Bay

Page 33

OSIRIS

Satellite detectors of JUNO- Taishan Anti-neutrino Observatory (TAO)

- 2.8 ton Gd-loaded liquid scintillator detector at ~30 m
- Baseline From the Taishan (1 reactor core).
- Measure the reactor spectrum for JUNO
 - \circ $\,$ Provide model-independent reference for JUNO $\,$
 - Possible improvement of nuclear databases
 - 30 × JUNO statistics
- ~Full coverage with SiPMs with ~50% PDE (@-50°C)
 - ~4500 p.e./MeV
 - 1.5% energy resolution @1 MeV
 - <2% resolution at 1 MeV

Muon veto strategy

Selection Criterion	Efficiency (%)	IBD Rate /day ⁻¹
All IBDs	100.0	57.4
Fiducial Volume	91.5	52.5
IBD Selection	98.1	51.5
Energy Range	99.8	1.777
Time Correlation (ΔT_{p-d})	99.0	-
Spatial Correlation (ΔR_{p-d})	99.2	
Muon Veto (Temporal⊕Spatial)	91.6	47.1
Combined Selection	82.2	47.1

