A new generation experiment for Neutrinoless Double Beta Decay

EGENU

Michele Morella for the LEGEND collaboration

SICS AND COSMOLOGY

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

34th Rencontres de Blois

PAR

May 14-19 B C I S 2023

Double Beta Decay

When a single β decay is energetically not allowed...

Already observed in about 10 isotopes:

- Allowed in the Standard Model (SM)
- if β -decay final state is energetically not accessible

•
$$T_{1/2} \sim 10^{18} \div 10^{22} \text{ yr}$$

Never observed so far, not allowed in SM:

- L and B-L violation: $\Delta L = 2$
- $\nu = \overline{\nu}$ (Majorana particle)
- hint on matter/antimatter asymmetry
- information about ν mass scale and ordering

The Collaboration

LEGEND Mission: "The collaboration aims to develop a phased, ⁷⁶Ge based double beta decay experimental program with **discovery potential** at a half-life beyond 10^{28} years, using existing resources as appropriate to expedite physics results."

2023

Searching for $0\nu\beta\beta$ of ⁷⁶Ge

Advantages of Ge detectors:

• source = detector

• high density

- \Rightarrow energy deposited within 3
 - \sim **1mm**³ inside Ge detectors
- Excellent energy resolution $\rm FWHM/Q_{\beta\beta} \sim 0.1\%$
- Excellent pulse-shape discrimination performance
- High intrinsic radiopurity

sensitivity on 0
uetaeta half-life

$$\mathsf{T}_{1/2}^{0\nu} \propto \begin{cases} \epsilon \cdot \eta \cdot \sqrt{\frac{Mt}{B\sigma}} \\ \epsilon \cdot \eta \cdot Mt & \frac{\mathsf{zero-background}}{\mathsf{regime}} \end{cases}$$

Sensitivity scales linearly with exposure *Mt* when in (quasi) background free regime!

- *c*: detection efficiency
- η : ⁷⁶Ge enrichment fraction
- M: ⁷⁶Ge mass
- t: measurement time
- B: background index
- σ : energy resolution

LEGEND phases

MAJORANA Demonstrator

completed in ~2020

LEGEND-200

200 kg using GERDA infrastructure at LNGS **Background Index**² Goal: $< 2.5 \times 10^{-4}$ counts/(keV kg yr) $T_{1/2}^{0\nu} > 10^{27}$ yr after **5 years of data**

LEGEND-1000

1000 kg in new infrastructure @ SNOLAB (Alternative Site: LNGS)

Background Index² Goal: $< 1 \times 10^{-5}$ counts/(keV kg yr)

 ${\rm T}_{1/2}^{0\nu}~>10^{28}~{\rm yr}$ after 10 years of data

18/05/2023 Blois2023 Michele Morella

²Background Index: number of counts around $Q_{\beta\beta}$ divided by *M*, *t* and energy window

LEGEND Sensitivity

picture from arXiv:2202.01787 [hep-ex]

limits from A. Gando et al. (KamLAND-Zen Collaboration) Phys. Rev Lett. 122, 192501

Phase Space Element Information about the kinematic of the process

Nuclear Matrix Element and axial coupling

Probability amplitude of passing from initial to final state nucleus. Different many body models used to evaluate it.

Beyond Standard Model Physics In this case light neutrino exchange. $m_{\beta\beta}$ is called Effective Majorana Mass $m_{\beta\beta} = \sum_k U_{ek}^2 m_k$

HPGe Detectors

LEGEND

GERDA and MAJORANA detectors

- Excellent energy resolution
- Superb pulse-shape sensitivity to reject multi-site and surface background events
- **Relatively small**: <m> = 0.66 and 0.85 kg, resp.

2023

HPGe Detectors

LEGEND

GERDA and MAJORANA detectors

- Excellent energy resolution
- Superb pulse-shape sensitivity to reject multi-site and surface background events
- **Relatively small**: <m> = 0.66 and 0.85 kg, resp.

New Inverted-Coaxial Point Contact Detectors

- Large active mass up to 3kg
- Lower surface to volume ratio
- Reduced background due to lower number of channels per mass of ⁷⁶Ge
- Enriched >90% in 76 Ge
- Excellent energy resolution
- Excellent pulse-shape discrimination performance

202

s202

Bloi

Morell

Michele

⁷⁶Ge $0\nu\beta\beta$ features:

- $Q_{\beta\beta} = 2039 \text{ keV}$
- $\sim 1 \text{mm}^3$ inside Ge detector
 - single Ge hit
 - single cluster event in bulk volume

0 uetaeta analysis:

- Ge detectors (anti)coincidence
- no energy in LAr
- no surface interactions
- pulse-shape discrimination for multiple energy deposition inside same detector

Minimize structural material around Ge detectors

7

/2023

/05/

100

Blois2023

LEGEND-200

LEGEND-200: 140 kg array installation

LEGEND

Stably data taking since March 12th:

- 140 kg of detectors
- 122 kg usable for analysis
- 97-98% duty cycle
- > 2 kg·yr / week
- 100 kg·yr by the end of the year

LEGEND-200: HPGe energy scale

ICPC detectors already fulfilling L1000 goals

LEGEND-200: HPGe energy scale

extremely stable for 120 kg of detectors

LEGEND-1000 – Timeline

- Apr 2016: LEGEND collaboration formed
- Dec 2019: LEGEND-200 commissioning starts
- July 2021: DOE Portfolio Review (LEGEND-1000, nEXO, CUPID)
- Oct 2021: DOE verbally announced that LEGEND-1000 emerged as the portfolio review winner in all but one category

2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
		CD-1	CD-2	СС-3									CD-4	
	Design an	d Planning] [Enriched Ge Procurement									
				Enriched Detector Production										
				Cryostat	Installation	Ancilli	ary Installati	on	Detector In:	stallation a	nd Commissi	oning		
				First Data a				nd Pre-Opera	Pre-Operations Operations					

LEGEND-1000 – Background

LEGEND-1000 – Discovery Sensitivity

Summary

LEGEND

 $0\nu\beta\beta$ is a very promising probe to address:

- Origin of neutrinos masses,
- neutrinos mass scale,
- neutrinos mass ordering

LEGEND-200:

- built on top of previous successful experiments (GERDA, MAJORANA)
- >120 kg of detector taking high-quality data
- ~50 kg of detectors in hand or in production
- first 0
 uetaeta result in 2024
- installation of additional detectors based on background levels and sensitivity arguments

LEGEND-1000:

- top-ranked experiments by DOE
- low risk path to meeting its background goal
- optimized for discovering 0
 uetaeta
- signal visible by eye even if at the bottom of the IO

GERmanium **D**etector **A**rray

Major innovations also adopted in LEGEND:

- Ge detectors directly in contact with LAr
- LAr scintillation light read out system implemented
- Low Z shield, no Pb

Lowest Background Index in a $0\nu\beta\beta$ experiment: 5.2×10^{-4} counts/(keV kg yr)

- Located at SURF (South Dakota, US)
- Total of ~44 kg of Ge detectors divided into 2 modules
- 29.7 kg are enriched up to 88% in in 76 Ge
- Lasted from 2011 to 2022

- Radiopurity of nearby parts
- Low Noise electronics (better PSD)
- Low Energy Threshold

Best Energy resolution in the field: 2.53 ± 0.08 keV

Background Reduction – Active Vetoes

EGEND

Background Reduction – Pulse Shape Discrimination LEGEND

Ovββ signal candidate (single-site)

Surface-β-background ⁴²K (⁴²Ar) on n+ contact

γ-background (multi-site)

α -background on p+ contact

