Searches for new physics in the Higgs sector at ATLAS

Imma Riu (IFAE-BIST Barcelona) on behalf of the ATLAS Collaboration Rencontres de Blois 17 May 2023

EXCELENCIA SEVERO OCHOA

> Barcelona Institute of Science and Technology

Introduction

- The Standard Model is a very successful theory but fails to:
 - Provide new sources of CP violation
 - Provide a dark matter candidate, etc.
- An **extended Higgs sector** can solve some of these problems and require additional scalar Higgs states:
 - Two Higgs doublet models (2HDM) are required in the minimal supersymmetric extension of the SM
 - Parameters: mixing angle α between neutral states, tan β (ratio of VEVs), masses
 - Higgs triplets are required in models with a type-I or type-II see saw mechanism
 - One Higgs doublet and two Higgs triplets in the **Georgi-Machacek model**
 - Parameters: mixing angle α between neutral states, ratio of doublet and triplet VEVs, masses
 - Rich phenomenology and final states

Charged CP even CP odd Η' H_3 H₅ CP even H_{5}^{+} n

18 May 2023

Status of Higgs searches exclusion in ATLAS

• Already achieved better than expected sensitivity with the full Run 2 data

- Latest results shown today:
 - H→WW, H→hh, ttH/A(tt), low mass a→μμ

Search for a heavy Higgs boson H→WW→evµv

ATLAS-CONF-2022-066 (Nov 2022)

- Introduction:
 - Studied ggF and VBF production modes separately
 - Search for new resonances with leptonic Ws (evµv final state)
 - Used m_T between $\ell\ell$ system and MET as discriminating variable

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - |\mathbf{p}_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss}|^2}$$

- Event categorization in signal and control regions (SR/CR):
 - 3 SRs: ggF, VBF 1J, VBF \geq 2J with m_{jj} \geq 500 GeV
 - 2 Top background CRs: ggF, VBF
 - 2 WW background CRs: ggF, VBF1J
- Main backgrounds:
 - tt and single-top, WW
 - Smaller backgrounds from W/Z+jets
- Interpretation in three models:
 - Spin-0 NWA, GM scalar and Radion

Searches for new physics in the Higgs sector at ATLAS

Search for new scalars in association with V

arXiv:2210.05415 (Oct 2022)

• Introduction:

- Search for a resonant hh production
- Two BSM scenarios considered: V \rightarrow VH and A \rightarrow ZH
- Final state and event categorization:
 - Leptonic V and $h \rightarrow bb$
 - 3 SRs:

```
• 4 b-jets and
0\ell / 1\ell / 2\ell for Z \rightarrow vv / W \rightarrow \ell v / Z \rightarrow \ell \ell
```

- Analysis:
 - Use of a BDT trained in each SR
 - Backgrounds estimated with MC and CRs for tt and V+jets
- Result:
 - Small excess with a local(global) significance of 3.8σ (2.8 σ) at (mA, mH) = (420, 320) GeV for LW A

18 May 2023

Imma Riu (IFAE-BIST)

Searches for new physics in the Higgs sector at ATLAS

Search for new bosons $A/H \rightarrow t\bar{t}$ decays

/bin

Events /

Bkg.

Data / F

0.1

0.2

ATLAS

Pre-Fit

Baseline SF

arXiv:2211.01136 (Nov 2022)

- Introduction: ٠
 - Search for heavy scalar or pseudo-scalar produced in association with tt with $A/H \rightarrow tt$
- Final state: ٠
 - Two (same-sign) or three charged leptons
 - 4 b-jets
 - 2 or 4 light-flavour jets
- Analysis strategy: ٠
 - Two sequential BDTs are used:
 - 1. SM BDT: to distinguish 4 tops from the rest of backgrounds
 - 2. Mass parameterised BDT (pBDT): uses SM BDT and H_{τ} as inputs to distinguish signal from all backgrounds
 - Dedicated CRs used to constrain backgrounds

SM BD1

Blois

18 May 2023

Pre-fit distr. of the SM BDT

<u>Search for $a \rightarrow \mu \mu$ in top quark pair events</u>

Events / bin

10

Obs. / Pred.

arXiv:2304.14247 (Apr 2023)

- Introduction:
 - Search for a light pseudo-scalar produced in association with tt
 - Used two signal models:
 - pp \rightarrow tta(µµ) with 15 GeV < m(a) < 72 GeV
 - pp \rightarrow tt with t \rightarrow bH⁺(Wa) and a \rightarrow µµ with 120 GeV \leq m(H[±]) \leq 160 GeV
- Signature:
 - − ≥3 jets, ≥1 b-jet, three leptons: $e\mu\mu$ or $\mu\mu\mu$
- Analysis strategy:
 - Used 2 SRs
 - Used ttZ CRs with various jet and b-jet multiplicities and tt CR with 1 non-prompt μ
 - Fit m(μμ)
- Results:
 - Local significance of 2.4σ at m(a)=27 GeV

Blois

7/16

Status of GM Higgs searches exclusion in ATLAS

ATLAS excluded regions in $(m_{H_5}, \sin \theta_H)$ plane of the GM model with Run 2

• Latest results shown today:

- Fermiophobic H⁺ \rightarrow WZ, H[±] $\pm \rightarrow \ell^{\pm} \ell^{\pm}$, H⁺ \rightarrow cb, FCNC t \rightarrow qX

Search for fermiophobic $H^+ \rightarrow WZ$

arXiv:2207.03925 (July 2022)

- Introduction:
 - Assumed triplets states heavier than fiveplet scalars
 - Fiveplet can only decay to WZ, with cross-section proportional to sin^2 $\theta_{\rm H}$
- Experimental signature:
 - Three charged leptons
 - Missing transverse energy
 - Two jets (in the forward direction)
- Analysis:
 - Used a classification NN to define CRs and SR
 - Used ZW and ZZ control regions and one SR
 - Used m(WZ) for fitting
- Result:
 - Small excess with a local (global) significance of 2.8 σ (1.6 σ) at m(WZ)=375 GeV

Post-fit m(WZ) distr. for SR

ANN score

Doubly charged Higgs $H^{\pm} \rightarrow \ell^{\pm} \ell^{\pm}$ search

arXiv:2211.07505 (Nov 2022)

- Introduction:
 - Drell-Yan production of two doubly charged Higgs in multi-lepton final states
 - Predicted by left-right symmetric models, type-II see saw models, GM model, etc.

• Selection:

- Same-charge lepton pairs with 2, 3 or 4 leptons
- Electrons or muons considered

• Analysis:

- CRs, validation and signal regions defined with various lepton charge multiplicities
- Used m($\ell^{\pm}\ell'^{\pm}$) for the fit with ℓ =(e,µ)

Search for $H^+ \rightarrow cb$ in top-quark decays

8000

7000

6000

5000

4000

3000 2000

1000

1.05

0.95

0.9^E

Data / Pred.

arXiv:2302.11739 (Feb 2023)

- Introduction: •
 - Predicted by 3HDMs:
 - 3 CP even, 2 CP odd neutral Higgs and 2H[±]
- **Experimental signature:** ٠
 - -1ℓ (e or μ), E_{τ}^{miss} , ≥ 4 jets, ≥ 3 b-tags
- Analysis: ٠
 - NN used to distinguish signal from background
 - Used CRs to correct the tt background
 - Used SRs with 4,5,6 jets and 3 b-jets or \geq 4 b-jets
- Result: •
 - Small excess with a local (global) significance of 3σ (1.6σ) at 130 GeV

Search for a scalar $X \rightarrow bb$ in FCNC top-quark decays

g Lee

arXiv:2301.03902 (Jan 2023)

- Introduction:
 - Search for new scalar in flavour-changing neutral current top quark decays
 - Predicted by the Froggatt-Nielsen mechanism
 - Introduces a flavon, a field with charge
- Experimental signature:
 - − 1 ℓ (e or μ), E_T^{miss} , ≥4 jets, ≥3 b-tags
- Analysis:
 - − Very similar strategy to the H⁺→cb search with similar $_g$ CRs and SRs with various jet and b-jet multiplicities
 - Mass-parameterised NN used to distinguish signal from background
- Result:
 - − About 2σ excess in the t→cX channel through a broad m_x range, incompatible with a X resonance

Higgs to a dark matter portal

arXiv:2301.10731 (Jan 2023)

- Introduction:
 - Many models predict a massive, stable and electrically neutral particle, χ , as a dark matter candidate
 - − The Higgs boson acts as a portal between the SM and the dark sector, $H \rightarrow \chi \chi$

• Analysis:

- Combined searches of invisible decays of the Higgs across multiple production modes and including the Run 1 results
- Result:
 - B(H→invisible) < 10.7% (7.7% expected)

B(H→invisible) upper limits vs analysis

Search for ZH, $H \rightarrow \gamma \gamma_{dark}$

10¹

10⁹

10

10²

10

10-

 10^{-2}

Data/Bkg

arXiv:2212.09649 (Dec 2022)

• Introduction:

- Search for dark photons $\gamma_{\rm d}$ from Higgs boson decays via the ZH production mode
- Dark Higgs Vector Portal:
 - U(1) gauge boson: visible photon, γ
 - + U(1)_D gauge boson: massive (or massless) dark photon, γ_d
- Experimental signature:
 - 2 leptons (ee or $\mu\mu$), one isolated γ and E_T^{miss}
 - ZH production mode provides di-lepton pair for triggering and background rejection
- Main backgrounds:
 - Fake E_T^{miss} (from data)
 - top processes, $e \rightarrow \gamma$, VV γ (from CRs in the fit)
- Analysis:
 - BDT response as discriminant

Post-fit BDT distribution for the SR

Search for Dark Higgs boson

ATLAS-CONF-2023-016 (Mar 202)

- Introduction:
 - Search for a A' produced in association with a h_p via rare decays of the Z boson
 - Motivated by a dark Abelian Higgs model:
 - Adds a U(1)_D gauge symmetry \rightarrow dark photon, A': mediator of the dark sector interactions with the SM
 - Symmetry spontaneously broken by a Higgs mechanism \rightarrow A' acquires mass, adding a dark Higgs boson, h
 - Search for $Z \rightarrow A'h_{D} \rightarrow A'A'A'^{(*)}, A' \rightarrow \ell^{+}\ell^{-}$ ($\ell = e, \mu$)
- **Experimental signature:**
 - 4 soft and isolated leptons
 - Select ≥ 2 same-flavour opposite sign leptons
- Main backgrounds:
 - qq $\rightarrow 4\ell$ (used a CR)
 - Fake factor method for non-prompt leptons
- Fit average <m_{pp}>
- Result complementary to a search by Belle

 $\overline{m}(\ell \ell)$ distribution for the SR

$\alpha_{D}\varepsilon^{2}$ limits (\propto linearly signal yield) vs m(A')

18 May 2023

Imma Riu (IFAE-BIST)

Searches for new physics in the Higgs sector at ATLAS

15/16

Summary and conclusions

- The extended Higgs sector has a rich phenomenology where to look for new physics
- Many interesting searches for additional Higgs bosons including dark Higgs and exotic Higgs boson decays are performed by ATLAS
- No significant deviation from the SM has been observed so far
 - There are however small deviations of 2 or 3σ that have to be followed up
- Further results using the full Run-2 data are to be expected in the future
- Analyses will continue in Run 3 and eventually at the HL-LHC
 - New production and decay channels will become available
- Stay tuned!

THANK YOU!