Searches for new physics in CMS in events with jets, leptons, and photons in the final state

Devin Mahon on behalf of the CMS Collaboration 34th Rencontres de Blois 18 May 2023

University of Minnesota

Outline

- SUSY Search in 1 photon + jets + $p_{\mathrm{T}}^{\mathrm{miss}}$ Events
- Stealth SUSY Search in 2 photon + jets Events
- Search for dark matter in ${\rm W^+W^-} + p_{\rm T}^{\rm miss}$ Events
- Low-mass Dimuon Resonance Search

Huge diversity within CMS in... phenomenologies motivating models advanced analysis techniques

Many brand new Run 2 results and much more in the works!

See also Soham Bhattacharya's upcoming talk on CMS LLP & unconventional searches

SUSY Search in 1 Photon + Jets + $p_{\rm T}^{\rm miss}$ Events: Strategy

- Targets both strong and electroweak (EW) SUSY production of neutralinos and charginos
 - Considers several models of squark- and gluino-mediated production
 - High $N_{
 m jets}$ final states with GMSB decay ${ ilde \chi}^0_{1/2} o \gamma { ilde G}$
- Analysis regions defined by $p_{\mathrm{T}}^{\mathrm{miss}}$, b/V/H-tag, N_{jets} bins
 - 37 SRs + 8 CRs optimized for strong and EW production, all orthogonal
- Data-driven background estimation using ABCD method or transfer factors (TFs)

			Additional Strong Selections No V- or H-tag					
b-tags jets	$N^{>0}_{\geq 7}$	29	30	31	32	33		
2	$N_{5-6}^{>0}$	24	25	26	27		28	
	$N_{2-4}^{>0}$ 19 $N_{\ge 7}^{0}$ 14		20	21	22	23		
			15	16	17	18		
	N_{5-6}^{0}	8	9	10	11	12	13	
	N_{2-4}^{0}	1	2	3	4	5	6	7
200 300 370 450 600 750 900 p_T ^{miss} (GeV)								

SUS-21-009

 $\frac{\text{Baseline Selections}}{p_{\text{T}}^{\text{miss}} > 300 \text{ GeV}}$ $N_{\text{jets}} \ge 2, N_{\gamma} \ge 1, N_{l} = 0$ $S_{\text{T}} \left(\sum_{j,\gamma}^{p} p_{\text{T}}\right) \ge 300 \text{ GeV}$

SUSY Search in 1 Photon + Jets + $p_{\rm T}^{\rm miss}$ Events: Strategy SUS-21-009

- Considers several models of squark- and gluino-mediated production
- High N_{jets} final states with GMSB decay $\tilde{\chi}^0_{1/2} \rightarrow \gamma \tilde{G}$
- Analysis regions defined by $p_{\rm T}^{\rm miss}$, b/V/H-tag, $N_{\rm jets}$ bins
 - 37 SRs + 8 CRs optimized for strong and EW production, all orthogonal
- Data-driven background estimation using ABCD method or transfer factors (TFs)

Baseline Selections
$p_{\mathrm{T}}^{\mathrm{miss}}$ > 300 GeV
$N_{\rm jets} \ge 2$, $N_{\gamma} \ge 1$, $N_l = 0$
$S_{\mathrm{T}}\left(\sum_{j,\gamma}p_{\mathrm{T}} ight) \ge 300 \;\mathrm{GeV}$

	Major Backgrounds					
Process	$W\gamma + jets$ $t\bar{t}\gamma + jets$	W + jets $t\bar{t}$ + jets	$Z(\nu\nu)\gamma$ + jets	γ + jets QCD multijet		
Phenomenology	decay where lepton is "lost"	electron mid-ID'd as photon	irreducible	$p_{\mathrm{T}}^{\mathrm{miss}}$ from mismeasurement jet mid-ID'd as photon (QCD)		
Estimation Method	TF from 1 <i>1</i> CRs	TF from 1 <i>e</i> ,0γ CRs	TF from $Z(11)\gamma$ CRs	ABCD method: $\Delta \phi(j, p_{\mathrm{T}}^{\mathrm{miss}})$ VS. $p_{\mathrm{T}}^{\mathrm{miss}}$		
		•••••••••••	••••••••••			

SUSY Search in 1 Photon + Jets + $p_{\rm T}^{\rm miss}$ Events: Results

SUSY Search in 2 Photon + Jets Events: Strategy

• Stealth SUSY:

- Stealth sector of light particles coupled to MSSM with absent/weak couplings to SUSY breaking sector
- Hidden sector singlino $\tilde{\mathbf{S}}$ decays to nearly mass degenerate scalar singlet \mathbf{S} and light LSP $\tilde{\mathbf{G}}$ (carries away little $p_{\mathrm{T}}^{\mathrm{miss}}$)
- Strong production decaying via ewkinos yields 2 photons, high N_{jets}
- Data-driven background estimation:
 - Dominant background: QCD multijet with 2 photons in initial scatter
 - Relies on invariance of S_T after jet fragmentation above a threshold to make S_T shape independent of N_{jets}
 - $S_{\rm T}$ shape derived from $N_{\rm jets}$ = 2 sideband, normalization from 1200 $\leq S_{\rm T} \leq$ 1300 GeV sideband
 - Modeled using adaptive Gaussian kernel (AGK)
 - MC-based correction to shape for selection efficiency biases
 - Fits performed in N_{jets} bins (4, 5, \ge 6)

Devin Mahon

University of Minnesota

SUSY Search in 2 Photon + Jets Events: Results

Devin Mahon

Dark Matter Search in $W^+W^- + p_T^{miss}$ Events: Strategy EX0-21-012

• Dark Higgs model with new U(1) gauge symmetry:

- Higgs singlet s
- Majorana dark matter (DM) particle χ , whose mass can be generated via Higgs mechanism
- $\hfill \mathsf{M}$ Massive spin-1 vector boson mediator \mathbf{Z}'
- s can be lighter than χ
 - New annihilation channels accessible
 - DM freeze-out relic abundance can readily match observations
- Two final state channels based on $\mathbf{W^+W^-}$ decays:
 - Di-leptonic: 2D profiled fit to $m_{\rm T}(l_2,p_{\rm T}^{\rm miss})$ and m_{ll}
 - Semi-leptonic: 1D binned fit of BDT score, based on lepton and $p_{\rm T}^{\rm miss}$ kinematic variables
- Backgrounds modeled by MC, normalizations from independent data CRs
 - ${}^{\blacktriangleright}$ Main di-leptonic bkgs: $t{\bf W},\,t{\bf \bar{t}},\,{\bf W}^+{\bf W}^-$, and Drell-Yan
 - Main semi-leptonic bkgs: tW, tt̄, and W + jets

	<u>Di-leptonic Channe</u>	<u>Semi-leptonic Channel</u>
N_l / N_j	<i>N_l</i> = 2	N_l = 1, N_j = 2
Lepton Flavor	$e\mu, \mu e$	e/µ
epton Charge	Opposite	N/A
$p_{\mathrm{T}}^{\mathrm{miss}}$	>20 GeV	>60 GeV
b-tagged jets	0	O (from non W candidate)
		$\Delta R_{l,jj} < 3$
Angular cuts	$\Delta R_{ll} < 2.5$	$\Delta \phi_{l,jj}$ < 1.8
3 SRs (high	by dark Higgs boost: ΔR_{ll} = 0-), 1-1.5 (medium), 1,5-2.5 (low)	$\Delta R_{l,p_{\rm T}^{\rm miss}} > 2$

Dark Matter Search in $W^+W^- + p_T^{miss}$ Events: Results

Devin Mahon

CMS

Low-Mass Dimuon Resonance Search: Strategy

• Search for light BSM mediator with dimuon decay

- Two motivating models:
 - ${}^{\scriptstyle \bullet}$ Dark photon \mathbf{Z}_{D} with kinetic mixing ϵ
 - Two-Higgs-doublet model + complex scalar singlet (2HDM+S)
- Narrow-resonance from primary vertex (PV) in 2 discrete $m_{\mu\mu}$ ranges: 1.1-2.6 GeV (low) and 4.2-7.9 GeV (high)
 - Excludes J/ψ , ψ' , $\Upsilon(1S)$ resonances
- Using data scouting: reduced event information, lower trigger thresholds
 - ${}^{\scriptstyle \bullet}$ Scouting trigger: 2 muons with $p_{\rm T}$ > 3 GeV
- Dedicated muon ID using two BDTs
 - Trained with J/ψ and $\Upsilon(1S)$ samples
- Component added to bkg fit for $D \rightarrow KK(K\pi)$ decays that are ID'd as dimuon pairs with resonances at 1.58 (1.72) GeV
 - Using MC, get PDF and transfer factor from high- σ_L CR to SR
- Fit to $m_{\mu\mu}$ spectrum in windows ±5x detector resolution (~1.3%)

Low-Mass Dimuon Resonance Search: Results

11

Devin Mahon

Conclusions

- Highlighted a sampling of recent CMS searches with jets, leptons, and photons
 - Wide variety of signatures, models, and advanced techniques
 - All push the boundaries of explored phase space
- Many more results—including Run 3 searches—to come, stay tuned!

Backup

SUSY Search in 1 Photon + Jets + $p_{\rm T}^{\rm miss}$ Events: Models

SUSY Search in 1 Photon + Jets + $p_{\rm T}^{\rm miss}$ Events: CRs & TFs

Devin Mahon

SUSY Search in 1 Photon + Jets + $p_{\mathrm{T}}^{\mathrm{miss}}$ Events: Systematics

Table 2: The systematic uncertainties in the predicted background and signal event yields (in %). A dash (—) indicates that the source of uncertainty is not applicable or negligible.

Source	Lost lepton	Misidentified e	$Z(\nu\nu)\gamma$	Multijet+ γ	Signal
Luminosity	_	_	_	_	1.6
Limited number of CR events	3-100	5-20	8-28	2-100	—
Limited number of simulated events	2-10	2-20	2-70	10-50	0.7-38
b tagging	0-1	0–1	_	—	0-10
PDF	3	_	_	—	1–2
$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	2	—	_	—	0.3-5
JEC	0–6	0–3	_	—	1–2
JER	0–6	0-4	_	—	1–2
Pileup	_	—	_	_	0.1-0.3
Trigger efficiency	—	_	_	_	3-10
Collinear γ	4	—	_	—	_
α	_	20	_	_	_
Modeling of γp_T	—	—	18-40	—	_
κ modeling	—	_	_	10-36	_
low- $p_{\rm T}^{\rm miss}$ C/A data stat.	—	—	_	10-50	_
Isolated track veto	_	_	_	_	2
Jet ID	—	_	_	—	1

SUSY Search in 1 Photon + Jets + $p_{\rm T}^{\rm miss}$ Events: Limits

SUSY Search in 1 Photon + Jets + $p_{\rm T}^{\rm miss}$ Events: Limits

18

••••

Devin Mahon

SUSY Search in 2 Photon + Jets Events: S_{T} Fits

Devin Mahon

••••

Search for Dark Matter in $W^+W^- + p_T^{miss}$ Events: CRs

• tW and tt CR:

- Reversed b-tag requirement (>0)
- **W**+**W** CR:
 - Reversed ΔR_{ll} requirement ($\Delta R_{ll} > 2.5$)
- Drell-Yan CR:
 - Inverted $m_{\rm T}(ll, p_{\rm T}^{\rm miss})$ requirement $(m_{\rm T}(ll, p_{\rm T}^{\rm miss}) < 50 \text{ GeV})$
- W + jets CR:
 - Inverted m_{jj} requirement (65 GeV < m_{jj} < 105 GeV)

Semi-leptonic channel

Di-leptonic channel

Search for Dark Matter in $W^+W^- + p_T^{miss}$ Events: 1*l* Fits

Devin Mahon

.

Search for Dark Matter in $W^+W^- + p_T^{miss}$ Events: 21 Fits

Devin Mahon

•• 六

Search for Dark Matter in $W^+W^- + p_T^{miss}$ Events: Limits

University of Minnesota

Low-Mass Dimuon Resonance Search: Scouting Trigger Efficiencies

Low-Mass Dimuon Resonance Search: Overall Efficiencies

