Search for new physics

A LOUGH

with long-lived and unconventional signatures (in CMS)

Soham Bhattacharya (DESY) on behalf of the CMS Collaboration

34th Rencontres de Blois

2023

Long-lived particles

- Mechanism of macroscopic lifetimes:
 - Small coupling
 - Reduced phase space small mass difference with final state particle(s)
 - Heavy off-shell mediator
- The Standard Model has several particles with macroscopic lifetimes

The Compact Muon Solenoid (CMS)

"Ah, it's the one other than ATLAS?"

– from a conversation at Blois

Let me try to convince you that even CMS has a very mature and diverse search program for long-lived and non-conventional signatures

Long-lived particle (LLP) signatures

- Long-lived BSM particles can produce a wide range of unconventional signatures
- Non-standard backgrounds
- Traditional techniques may be inefficient
- May need:
 - Dedicated triggers
 - Special reconstruction

[from Heather Russell: source]

- Different sub-detectors relevant for different lifetimes
- Need a wide variety of searches to explore different scenarios

Searches with unconventional signatures

Unconventional: not only long-lived!

Number	Title	Status	Date
PAS-EXO-21-013 NEW!	Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and an electron, muon, or tau lepton	PAS (Preliminary)	18 March 2023
EXO-19-009 NEW!	A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer	Submitted to EPJC	8 March 2023
PAS-EXO-20-010 NEW!	Search for inelastic dark matter in events with two displaced muons and missing transverse momentum in proton-proton collisions at $\sqrt{s}=13$ TeV	PAS (Preliminary)	3 March 2023
EXO-21-014	Search for long-lived particles using out-of-time trackless jets in proton-proton collisions at \sqrt{s} =13 TeV	Accepted by JHEP	13 December 2022
PAS-EXO-19-006	Search for fractionally charged particles in pp collisions at \sqrt{s} =13 TeV	PAS (Preliminary)	29 November 2022
EXO-21-006	Search for long-lived particles decaying to a pair of muons in proton-proton collisions at \sqrt{s} =13 TeV	Accepted by JHEP	17 May 2022
EXO-20-014	Search for long-lived particles decaying into muon pairs in proton-proton collisions at \sqrt{s} = 13 TeV collected with a dedicated high-rate data stream	JHEP 04 (2022) 062 27	27 December 2021
EXO-20-003	Search for long-lived particles produced in association with a Z boson in proton-proton collisions at \sqrt{s} =13 TeV	JHEP 03 (2022) 160	25 October 2021
EXO-18-003	Search for long-lived particles decaying to leptons with large impact parameter in proton-proton collisions at \sqrt{s} =13 TeV	EPJC 82 (2022) 153	10 October 2021
EXO-20-015	Search for long-lived particles decaying in the CMS endcap muon detectors in proton-proton collisions at \sqrt{s} =13 TeV	PRL 127 (2021) 261804	10 July 2021
EXO-19-013	Search for long-lived particles decaying to jets with displaced vertices in proton-proton collisions at \sqrt{s} =13 TeV	PRD 104 (2021) 052011	28 April 2021

... and many more: http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html

- Several very interesting results
- Will only show results from a (biased) selection (in bold)

Trackless and out-of-time jets

TD jet tagger

DNN > 0.996 w. p.

False positive rate (%)

8

Displaced di-muon

- Hidden Abelian Higgs Model (HAHM):
 - Dark photon (Z_D) \rightarrow muons H
- Simplified model:
 - Exotic heavy neutral scalar (Φ) \rightarrow LL scalar (X) \rightarrow muons
- **Dedicated di-muon triggers**
 - require 2 muons to be reconstructed in the muon system, without using tracker

 $H_{\rm D}$

- Search categories defined based on the subdetector used to reconstruct the muon
- Bin in terms of di-muon mass (no excess)

For 20<m(Z_D)<60 GeV and B(H \rightarrow $Z_DZ_D=1\%$): $c\tau(Z_D)$ excluded up to ~100m. 97.6 fb⁻¹ (13 TeV

Displaced di-muon

- Lower m(Z_D) covered in previous search: EXO-20-014 (2112.13769)
- This also includes scalar resonance in b hadron (h_b) decay:
 - Singlet scalar field ϕ mixes with H
 - Weak coupling of scalar φ with SM fermions φ is long-lived

10

Heavy neutral leptons (HNLs)

DESY.

EXO-21-013

- See-saw mechanism sterile HNLs
 - HNL (**N**) is long-lived for small coupling strength with e, μ, τ (f_e , f_μ , $f_τ$)^{\overline{q}}
 - Dirac HNL: (l₁, l₂) have OS
 Majorana HNL: (l₁, l₂) can have OS or SS
- Dedicated displaced jet (neural network) tagger
- Events categorized based on:
 - Lepton flavor

Transverse impact parameter significance: $d^{sig}_{xy} = d_{xy}/\sigma(d_{xy})$

W

 $\land \land \land \land \land$

- Lepton pair sign
- Resolved or boosted (l₂, q and q' within a jet)
- Bin in terms of d^{sig}_{xy} of l_2

Lower limit on m(N) for cτ(N) = 1 mm

No excess

Strongest limits for pure muon

coupling: $|coupling|^2 > 5(4)x10^{-7}$ excluded for Dirac (Majorana) HNL

Inelastic dark matter

DESY.

- Two DM states X₁ and X₂
 - Small mass gap (Δ = m₂-m₁ = xm₁; x=0.1, 0.4)
 - Inelastically coupled
 - X₂ is long-lived
- Kinetically mixed heavy dark photon: m(A') = 3m₁
- Soft, collimated decay products
 - X₁ collimated with muons
- Dedicated displaced standalone (dSA) muon reconstruction algorithms
- Require #dSA muons ≥ 2
 - Bin in terms of #dSA muons matched to standard muons (with tracker)
 - 0-match bin contains highly displaced muons

(13 TeV)

- For small Δ, DM annihilation rate largely depends on [1508.03050]: y (interaction strength) and m₁
- First ever search for inelastic dark matter (iDM) at hadron colliders

Displaced vertices

101 fb⁻¹ (13 TeV)

Background template

Multijet signals, m = 1600 Ge\

EXO-19-013 (2104.1347

CMS

- **R**-parity violating benchmark models
 - Pair production of long-lived neutralinos, gluinos and top squarks
- Multiple jets: use H_T triggers
- Dedicated Kalman-Filter based vertex reconstruction
 - Using only tracks with large impact parameter significance $(d_{xy}/\sigma_{dxy} \ge 4)$
 - Signal vertices are required to have ≥ 5 tracks

 $\tilde{\chi}^0, \tilde{g}$

RPV

SUSY

UDD, $\ddot{g} \rightarrow tbs$, $m_{\ddot{\sigma}} = 2500 \text{ GeV}$

UDD, $\ddot{a} \rightarrow tbs$, $m_{\ddot{a}} = 2500 \text{ GeV}$

UDD, $t \rightarrow \overline{dd}$, m = 1600 GeV

UDD. $t \rightarrow dd$. m = 1600 GeV

LOD, $\ddot{t} \rightarrow bl$, $m_{\tilde{t}} = 600 \text{ GeV}$

 $IOD, \tilde{t} \rightarrow bl, m = 460 \text{ GeV}$

LOD, $\tilde{t} \rightarrow b/$, $m_{\tilde{t}} = 1600 \text{ GeV}$

GMSB, $\ddot{a} \rightarrow a\ddot{G}$, $m_d = 2450 \text{ GeV}$

GMSB, $\ddot{a} \rightarrow a\ddot{G}$, $m_{d} = 2100 \text{ GeV}$

Stopped $\tilde{t}, \tilde{t} \rightarrow t \chi_1^0, m_{\tilde{t}} = 700 \text{ GeV}$

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Sensitivity to a lifetimes spanning several orders of magnitude (depending on the model) .

Other unconventional signatures

Fractionally charged particles (FCPs)

- Charge Q lower than 1e:
 - Ionization loss: dE/dx ∝ Q²: softer dE/dx spectrum
 - More hits with low dE/dx (N^{low dE/dx}hits); threshold for "low" layer dependent
- Account for radiation damage:
 - Hits from pixel layer closest to the beam not counted
 - Signal dE/dx spectrum independently corrected for each layer
 - Period and layer dependent "low" dE/dx threshold (~1 to ~2.2 MeV/cm)
- Search region count N^{low dE/dx}hits in:
 - Events with only 1 track
 - Events with 2 tracks with invariant mass <80 or >100 GeV

- No excess
- FCP of mass up to 636 GeV excluded for a charge Q=2/3e
- Best limits in this phase space

Search with the precision proton spectrometer

- CMS TOTEM precision proton spectrometer (CT-PPS)
 - Reconstruct flight path of protons from the interaction point
- Generic search for massive heavy BSM particle X
 - central exclusive production
- Extract 4-momentum of X from the balance between:
 - 2 forward protons and tagged SM particles
- Missing mass (m_{miss}) approach (~2% CMS+CT-PPS mass resolution)
 - No assumption about the decay properties of X
- Dominant background from Z/γ+jets with 2 pileup protons:
 - Fully data-driven

Complements model specific searches

Summary

- Significant progress in exploiting the full capability of the detector
 - A wide variety of models and signatures explored
 - Presented only a small subset
 - Tremendous work in developing specialized triggers, reconstruction, etc.

What to look forward to

Unforunately Duke Gaston of Orléans Could not Complete his Château *****

Unforunately Duke Gaston of Orléans could not complete his Château

Run-3

Deploying more dedicated software level triggers

upcoming search program

We are more optimistic about completing our Phase-2 (HL-LHC) New subdetectors with Increased granularity Improved timing capability Improved hardware level triggers (including tracks) More complex software level triggers (running on GPUs)

Long live the particles!

Thank you!

Backup

Table 1: Number of tracks observed, expected for background events, and expected for signal events, in the highest $N_{\text{hits}}^{\text{low dE/dx}}$ bin, for each data set. The corresponding systematic uncertainties are also listed. The results for an FCP scenario at a mass of 100 GeV and a charge of 2/3 e (i.e. the most sensitive scenario) is also shown.

	Early 2016	Late 2016	2017	2018
$N^{ m observed}$	0	1	0	1
N ^{expected} Background	0.04	0.09	0.22	0.09
Fit function	$\pm 3771\%$	$\pm 159\%$	$\pm 231\%$	$\pm 19\%$
Fit range	$\pm 30\%$	$\pm 0.3\%$	$\pm 14\%$	$\pm 28\%$
N ^{expected} N ^{signal}	602	988	2720	3622
L1 trigger inefficiency	5.0%	5.0%	5.0%	5.0%
Energy loss sim. in muon system	+3.8%-2.7%	+3.8%-2.7%	+3.8%-2.7%	+3.8%-2.7%
Muon detector inefficiency	3.0%	3.0%	3.0%	3.0%
Luminosity	2.5%	2.5%	2.3%	2.5%
Selection	2.0%	2.0%	2.0%	2.0%
dE/dx corrections	3.8%	1.1%	2.3%	1.7%
Limited signal sample	$<\!1\%$	$<\!1\%$	$<\!\!1\%$	$<\!\!1\%$

EXO-19-013

Systematic effect	Dijet uncertainty (%)	Multijet uncertainty (%)	
Vertex reconstruction	11–41	1–36	
PDF and α_S uncertainty	1–8	1–8	
Integrated luminosity	2–3	2–3	
Jet energy scale	5	5	
Jet energy resolution	2	2	
Pileup	2	2	
Trigger efficiency	1	1	
Changes in run conditions	1	1	
Total	13-42	7–36	

	Systematic uncertainty (%)		
Systematic effect	0-0.4 mm	0.4-0.7 mm	0.7–40 mm
Closure in 3-track control sample	10	14	50
≥5-track template normalization factor	24	24	24
Difference from 3-track vertices to \geq 5-track vertices:			
Modeling of vertex pair survival efficiency	9	20	25
Modeling of $\Delta \phi_{VV}$	3	6	6
Variation of b quark fraction	1	3	6
Variation of b tagging correction factors	0.5	0.5	1
Total	28	35	61