# Recent Belle II results on semileptonic B decays and LFU tests

LAU Tak-Shun (IJC lab) on behalf of the Relle II Colleboration

17<sup>th</sup> May 2023
Blois 2023: 34th Rencontres de Blois on "Particle Physics and Cosmology"







### The semileptonic B decays

• Semileptonic (SL) B decays are studied to determine the CKM elements  $|V_{ub}|$  and  $|V_{cb}|$ .

In Standard Model(SM), the CKM matrix is unitary. The measurement of the  $|V_{ub}|$  and  $|V_{cb}|$  provide the global constraint power on the Unitary Triangle (UT) fit.

The measurements can be either :

"Exclusive" – reconstruct through specific single final state. Examples :  $B \to \pi \ell \nu$ ,  $B \to D \ell \nu$ ,  $B \to D^* \ell \nu$ 

"Inclusive" – reconstruct other particles than a lepton inclusively into X. Examples :  $B \to X_u \ell \nu$ 

|           | Experiment                                     | Theory                                 |
|-----------|------------------------------------------------|----------------------------------------|
| Exclusive | Lower signal efficiency     Lower background   | Lattice QCD                            |
| Inclusive | Higher signal efficiency     Higher background | Heavy Quark Effective<br>Theory (HQET) |

Semileptonic B decays:



Exclusive decay:



Inclusive decay:



CKM Matrix:

$$V_{
m CKM} = \left(egin{array}{ccc} V_{
m ud} & V_{
m us} & V_{
m ub} \ V_{
m cd} & V_{
m cs} & V_{
m cb} \ V_{
m td} & V_{
m ts} & V_{
m tb} \ \end{array}
ight) egin{array}{c} {
m u} \ {
m c} \ V_{
m td} \ {
m s} \ {
m b} \end{array}$$

Unitary Triangle:



$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

#### **Experimental Status**

- There are 2 anomalies in the SL B decays.
- The first one, the exclusive measurement on  $|V_{cb}|$  and  $|V_{ub}|$  shows a discrepancy from the inclusive one.
- The SL B decays can also be used as a Lepton Flavour Universality (LFU) test. The ratio between the branching ratios(BR) of different flavour can be measured.

For example :  $R(D_{\tau/\ell}^*) = \frac{BR(B \to D^* \tau \nu)}{BR(B \to D^* \ell \nu)}.$ 

Here comes the second anomalies. The LFU is violated.





#### **Experimental Methods**



|                            | Tagged | Untagged |
|----------------------------|--------|----------|
| Signal Yield               | Low    | High     |
| Backgrounds                | Low    | High     |
| Neutrino<br>Reconstruction | Good   | Poor     |
| Tag calibration            | Yes    | No       |



Tagged (Full Event Interpretation\*): Both  $B_{sig}$  and  $B_{tag}$  are both explicitly reconstructed.

<sup>\*</sup> Comp. and Soft. For Big Sci. 3, 6 (2019)

### Super KEKB and Belle II

• Super KEKB :  $e^+e^- \mbox{ collider at 10.58 GeV, the } \Upsilon(4\rm S) \mbox{ resonance.}$  The peak luminosity is  $4.7 \times 10^{34} \mbox{cm}^{-2} \mbox{s}^{-1}$ .

• Belle II:





The semileptonic decay from B meson has the highest branching ratio (>10%) for both neutral mode and charged mode. With the integrated luminosity 189.3 fb<sup>-1</sup> data recorded by the Belle II detector, some interesting result was observed.

- Exclusive measurements of  $|V_{cb}|$ :

  1. untagged  $\overline{B}^0 \to D^{*+}\ell^-\overline{\nu}_\ell$  (to be submitted to PRD)

  2. tagged  $B^0 \to D^{*-}\ell^+\nu_\ell$  (arXiv: 2301.04716)

  3. untagged  $B \to D\ell\nu_\ell$  (arXiv: 2210.13143)
- Exclusive measurements of  $|V_{ub}|$ : 4. untagged  $B^0 \to \pi^- \ell^+ \nu_\ell$  (arXiv: 2210.04224) 5. tagged  $B \to \pi e \nu_e$  (arXiv: 2206.08102)
- Exclusive measurements of LFU: 6. Test of Angular asymmetries with tagged  $B^0 \to D^{*-} \ell^+ \nu_\ell$  (to be submitted to PRL)
- Inclusive measurements of LFU: 7. Measurement of  $R(X_{e/\mu})$ . (arXiv: 2301.08266)
- Other Semileptonic Measurments

# Untagged $\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_\ell$

• There are 4 main observables, including 3 angular observables  $\theta_\ell$ ,  $\theta_{\rm V}$ , and  $\chi$ . While the remaining observable w, is defined as  $w = \left(\frac{p_B}{m_B}\right) \cdot \left(\frac{p_{D^*}}{m_{D^*}}\right)$ .



• The differential cross-section is then:

 $\frac{d^4\Gamma}{dwd\cos(\theta_\ell)d\cos(\theta_{\rm v})d\chi} \propto |V_{cb}|^2 F^2(w,\cos(\theta_\ell),\cos(\theta_{\rm v}),\chi)$ 



$$|V_{cb}|_{BGL} = (40.9 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$$
  
 $|V_{cb}|_{CLN} = (40.4 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$ 



$$g(z) = \frac{1}{P_g(z)\phi_g(z)} \sum_{n=0}^{n_a - 1} a_n z^n,$$

$$f(z) = \frac{1}{P_f(z)\phi_f(z)} \sum_{n=0}^{n_b - 1} b_n z^n,$$

$$\mathcal{F}_1(z) = \frac{1}{P_{\mathcal{F}_1}(z)\phi_{\mathcal{F}_1}(z)} \sum_{n=0}^{n_c - 1} c_n z^n,$$

BGL parameterization Phys. Rev. D56, 6895 (1997)

$$h_{A_1}(z) = h_{A_1}(w = 1) \left( 1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right).$$

CLN parameterization Nucl. Phys. B530, 153 (1998)

LAU, Tak-Shun (IJC Lab)

# Untagged Tagged $B^0 \to D^{*-} \ell^+ \nu_{\ell}$

- Tagged events analysis allows a more precise understanding of  $B^0 \to D^{*-}\ell^+\nu_\ell$ , which is a stepping stone for the future measurement of  $R(D^*_{\tau/\ell})$ .
- The differential cross-section is :

$$\frac{d\Gamma}{dw} = \frac{\eta_{\rm EW}^2 G_F^2}{48\pi^3} m_{D^*}^3 (m_B - m_{D^*})^2 g(w) F^2(w) |V_{cb}|^2$$
 
$$\eta_{EW} = 1.00662 \pm 0.00016^*,$$
 and 
$$F(1) = 0.906 \pm 0.004 ({\rm stat}) \pm 0.012 ({\rm syst})^*.$$

 CLN parameterization was used to parametrize the phase space factor and the form factor.



(arXiv: 2301.04716)





\* Phys. Rev. D 89 (2014) no. 11, 114504

## Untagged $B \to D\ell\nu_{\ell}$

- Both the neutral mode  $B^0 \to D^- \ell^+ \nu_\ell$  and the charged mode  $B^+ \to \overline{D}^0 \ell^+ \nu_\ell$  were studied.
- Untagged sample was used to maximize the statistical power, but large combinatorial background from  $B \rightarrow D^* \ell \nu$  were also included.
- The differential cross-section  $d\Gamma/dw$  was studied, which is directly proportional to  $|V_{cb}|^2$  and the square of form factor. BGL parametrization was used.
- The fit result is :  $|\eta_{\rm EW}|V_{cb}| = (38.53 \pm 1.15) \times 10^{-3}$

(arXiv: 2210.13143)





- Exclusive measurements of  $|V_{cb}|$ :

  1. untagged  $\overline{B}^0 \to D^{*+}\ell^-\overline{\nu}_\ell$  (to be submitted to PRD)

  2. tagged  $B^0 \to D^{*-}\ell^+\nu_\ell$  (arXiv: 2301.04716)

  3. untagged  $B \to D\ell\nu_\ell$  (arXiv: 2210.13143)
- Exclusive measurements of  $|V_{ub}|$ : 4. untagged  $B^0 \to \pi^- \ell^+ \nu_\ell$  (arXiv : 2210.04224) 5. tagged  $B \to \pi e \nu_e$  (arXiv : 2206.08102)
- Exclusive measurements of LFU: 6. Test of Angular asymmetries with tagged  $B^0 \to D^{*-} \ell^+ \nu_{\ell}$  (to be submitted to PRL)
- Inclusive measurements of LFU: 7. Measurement of  $R(X_{e/\mu})$ . (arXiv: 2301.08266)
- Other Semileptonic Measurments

# Untagged $B^0 \to \pi^- \ell^+ \nu_\ell$

• The differential cross-section  $d\Gamma/dq^2$  with form factor provided by "Phys. Rev. D 92, 014024 (2015)" is used, where  $q^2=(p_B-p_\pi)^2$ 

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |\boldsymbol{p}_{\pi}|^3 |f_{+}(q^2)|^2$$

• To obtain the  $q^2$  distributions,  $M_{bc} = \sqrt{\left(\frac{\sqrt{s}}{2}\right)^2 - \left|\overrightarrow{p_B^*}\right|^2}$ , and  $\Delta E = E_B^* - \frac{\sqrt{s}}{2}$  was used. The 2 observables were plotted into 6 different  $q^2$  bins.

• Results:  $\begin{vmatrix} |V_{ub}|_{B^0 \to \pi^- e^+ \nu_e} = (3.60 \pm 0.18 (\mathrm{stat}) \pm 0.14 (\mathrm{syst}) \pm 0.18 (\mathrm{theo})) \times 10^{-3} \\ |V_{ub}|_{B^0 \to \pi^- \mu^+ \nu_u} = (3.71 \pm 0.16 (\mathrm{stat}) \pm 0.15 (\mathrm{syst}) \pm 0.17 (\mathrm{theo})) \times 10^{-3} \\ |V_{ub}|_{B^0 \to \pi^- \ell^+ \nu_\ell} = (3.55 \pm 0.12 (\mathrm{stat}) \pm 0.13 (\mathrm{syst}) \pm 0.17 (\mathrm{theo})) \times 10^{-3}$ 

(arXiv: 2210.04224)





#### **Untagged** Tagged $B \rightarrow \pi e \nu$

- Both neutral mode  $B^0$  and charged mode  $B^\pm$  were studied.
- Similarly as the untagged one, The differential cross-section  $d\Gamma/dq^2$  was used.
- Due to the limited sample size, only 3  $q^2$  bins were used.
- To obtain the  $q^2$  distributions,  $M_{\rm miss}^2$  was used, where  $M_{\rm miss}^2=p_{\rm miss}^2$ ,  $p_{\rm miss}=p_{B_{sig}}-p_Y$ , and Y represented the electron-pion system. Also,  $p_{B_{sig}}=(\frac{\sqrt{s}}{2},-\vec{p}_{B_{tag}})$ .
- The fit result is:

| Decay mode                  | Fitted $ V_{\rm ub} $            |
|-----------------------------|----------------------------------|
| $B^0 \to \pi^- e^+ \nu_e$ ( | $(3.71 \pm 0.55) \times 10^{-3}$ |
| $B^+ \to \pi^0 e^+ \nu_e$ ( | $(4.21 \pm 0.63) \times 10^{-3}$ |
| Combined fit (              | $(3.88 \pm 0.45) \times 10^{-3}$ |

(arXiv: 2206.08102)

#### Neutral mode $B^0$ bins 1-3:



- Exclusive measurements of  $|V_{cb}|$ :

  1. untagged  $\overline{B}^0 \to D^{*+}\ell^-\overline{\nu}_\ell$  (to be submitted to PRD)

  2. tagged  $B^0 \to D^{*-}\ell^+\nu_\ell$  (arXiv: 2301.04716)

  3. untagged  $B \to D\ell\nu_\ell$  (arXiv: 2210.13143)
- Exclusive measurements of  $|V_{ub}|$ : 4. untagged  $B^0 \to \pi^- \ell^+ \nu_\ell$  (arXiv: 2210.04224) 5. tagged  $B \to \pi e \nu_e$  (arXiv: 2206.08102)
- Exclusive measurements of LFU: 6. Test of Angular asymmetries with tagged  $B^0 \to D^{*-}\ell^+\nu_\ell$  (to be submitted to PRL)
- Inclusive measurements of LFU: 7. Measurement of  $R(X_{e/\mu})$ . (arXiv: 2301.08266)
- Other Semileptonic Measurments

# $\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_\ell$ Angular Asymmetries





- The asymmetry  $A_{\chi}$  is defined  $A_x(w) \equiv \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}w}\right)^{-1} \left[\int_0^1 \int_{-1}^0 \right] \mathrm{d}x \frac{\mathrm{d}^2\Gamma}{\mathrm{d}w\mathrm{d}x}$
- There were 5 observables defined,  $x = \cos(\theta_\ell)$ ,  $\cos(2\chi)$ ,  $\cos(\chi)\cos(\theta_{\rm v})$ ,  $\sin(\chi)\cos(\theta_{\rm v})$ , and  $\sin(2\chi)$ . They are labelled as  $A_{FB}$ ,  $S_3$ ,  $S_5$ ,  $S_7$ , and  $S_9$  respectively.
- The asymmetries were studied in 3 different w ranges, which are  $w_{\rm low} < 1.275$ ,  $w_{\rm high} > 1.275$ , and  $w_{\rm incl}$ .
- The asymmetries were studied separately for electrons  $A^e$  and muons  $A^{\mu}$ . The results were then compared by  $\Delta A = A^{\mu} A^e$ .





The observables are in agreement with the Standard Model.

# $R(X_{e/\mu})$ Measurement

- The ratio is defined as  $R(X_{e/\mu}) = \frac{BR(\overline{B} \to Xe^{-\overline{\nu}})}{BR(\overline{B} \to X\mu^{-\overline{\nu}})}$ , where X is generic hardonic final state, and B can be any flavour.
- To increase the signal purity, full event interpretation was used. Fully hadronic B-mesons were tagged. To reduce the fakes and secondary leptons,  $p_{\ell}^{B} > 1.3 \text{GeV}$  was required.
- Experimentally, the ratio is obtained by

$$R(X_{e/\mu}) = \frac{N_e^{\text{meas}}}{N_{\mu}^{\text{meas}}} \cdot \frac{N_{\mu}^{\text{sel}}}{N_e^{\text{sel}}} \cdot \frac{N_e^{\text{gen}}}{N_{\mu}^{\text{gen}}}$$

, where  $N_\ell^{sel}$  was the selected signal yield,  $N_\ell^{gen}$  was the generated events in the full space, and  $N_\ell^{meas}$  was obtained from the fit on signal region data. The signal yields were extracted with simultaneous binned maximum likelihood template fits to  $p_e^B$  and  $p_u^B$ .

The result is consistent with the SM.



And the final result:

$$R(X_{e/\mu}) = 1.007 \pm 0.009(\text{stat}) \pm 0.019(\text{stat})$$

(arXiv: 2301.08266), while the result in arXiv is not updated.

- Exclusive measurements of  $|V_{cb}|$ :

  1. untagged  $\overline{B}^0 \to D^{*+}\ell^-\overline{\nu}_\ell$  (to be submitted to PRD)

  2. tagged  $B^0 \to D^{*-}\ell^+\nu_\ell$  (arXiv: 2301.04716)

  3. untagged  $B \to D\ell\nu_\ell$  (arXiv: 2210.13143)
- Exclusive measurements of  $|V_{ub}|$ : 4. untagged  $B^0 \to \pi^- \ell^+ \nu_\ell$  (arXiv: 2210.04224) 5. tagged  $B \to \pi e \nu_e$  (arXiv: 2206.08102)
- Exclusive measurements of LFU: 6. Test of Angular asymmetries with tagged  $B^0 \to D^{*-} \ell^+ \nu_\ell$  (to be submitted to PRL)
- Inclusive measurements of LFU: 7. Measurement of  $R(X_{e/\mu})$ . (arXiv: 2301.08266)
- Other Semileptonic Measurments

#### **Other Measurement**

• The inclusive measurement  $B \to X_c \ell \overline{\nu}_\ell$  decays was performed. (arXiv : 2205.06372)

In this measurement, the spectral moments of the lepton mass squared  $< q^{2n} >$ , where n=1,2,3, and 4, were the observables. "The simultaneous analysis of these moments can determine the non-perturbative matrix elements as their contributions vary with the q2 threshold." \*

 $|V_{cb}|$  was not measured in this paper directly, but there is another paper using the same method and using both Belle and Belle II data. (arXiv: 2205.10274)

The result is 
$$|V_{cb}| = (41.69 \pm 0.63) \times 10^{-3}$$
.

• Branching ratio (BR) of TAGGED  $B \to \rho \ell \nu_{\ell}$  decays was measured. (arXiv : 2211.15270)

Both neutral mode and charged mode were measured. The signal yield was fitted by using the  $M_{\rm miss}^2$  and  $M(\pi\pi)$  distribution.

 $|V_{ub}|$  was not measured in this paper, while the BR is :

$$\mathcal{B}(B^0 \to \rho^- \ell^+ \nu_\ell) = (4.12 \pm 0.64(\text{stat}) \pm 1.16(\text{syst})) \times 10^{-4}$$
  
$$\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu_\ell) = (1.77 \pm 0.23(\text{stat}) \pm 0.36(\text{syst})) \times 10^{-4}$$



\* JHEP 01, 147 (2014)

#### Summary

- Belle-II performed both exclusive and inclusive measurements of  $|V_{cb}|$  and  $|V_{ub}|$ .
- The discrepancy between exclusive and inclusive results still exists.
- No significant LFU violation has been observed.
- With new data samples, more exciting results are expected.

# Back up Untagged $\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_\ell$

• To reconstruct the 4 main observables, w,  $\theta_\ell$ ,  $\theta_{\rm v}$ , and  $\chi$ , other variables were needed.



• B meson:

$$E_B^* = \frac{E_{\text{beam}}^*}{2}, |\vec{p}_B^*| = \sqrt{(E_{\text{beam}}^*)^2 - m_B^2}$$

• From the reconstruction of  $\ell$  and  $D^*$ :  $\cos(\theta_{BY}) = \frac{2E_B^*E_Y^* - m_B^2 - m_Y^2}{2|\vec{p}_B^*||\vec{p}_Y^*|}, \text{ where } Y \text{ is the combined } D^* \text{ and } \ell$  system.



#### Back up Some data from Particle data group\*

• 
$$|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3}$$
 (inclusive)

• 
$$|V_{cb}| = (39.4 \pm 0.8) \times 10^{-3}$$
 (exclusive)

• 
$$|V_{cb}| = (40.8 \pm 1.4) \times 10^{-3}$$
 (average)

• 
$$|V_{ub}| = (4.13 \pm 0.12^{+0.13}_{-0.14} \pm 0.18) \times 10^{-3}$$
 (inclusive)

• 
$$|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$$
 (exclusive)

• 
$$|V_{ub}| = (3.82 \pm 0.20) \times 10^{-3}$$

\* https://pdg.lbl.gov/2022/reviews/rpp2022-rev-vcb-vub.pdf