Probing heavy neutrino physics

Juraj Klarić 34th Rencontres de Blois May 18th 2023

Some puzzles for physics beyond the Standard Model

Neutrino masses

The Baryon Asymmetry of the Universe

$$n_B/n_{\gamma} = 6.05(7) \times 10^{-10}$$

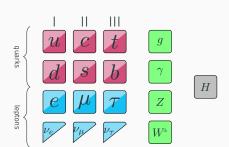


Image credits: Kamioka Observatory, ICRR, U. Tokyo; ESA and the Planck Collaboration

Some puzzles for physics beyond the Standard Model

Neutrino masses

[Minkowski 1977...]

The Baryon Asymmetry of the Universe

 $n_B/n_{\gamma} = 0$ GENES $\times 10^{-10}$

[Fukugita/Yanagida '86...]

Image credits: Kamioka Observatory, ICRR, U. Tokyo; ESA and the Planck Collaboration

The Seesaw Lagrangian

$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & 0 \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

Active neutrino masses

$$m_{\nu} = m_D$$

The Seesaw Lagrangian

$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & \pmb{M_M} \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

Active neutrino masses

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

[Minkowski '77 Gell-Mann/Ramond/Slansky '79 Mohapatra/Senjanović '80 Yanagida '79 Schechter/Valle '80] canonical type-i seesaw

The Seesaw Lagrangian

$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

Active neutrino masses

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

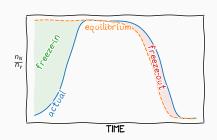
[Minkowski '77 Gell-Mann/Ramond/Slansky '79 Mohapatra/Senjanović '80 Yanagida '79 Schechter/Valle '80] canonical type-I seesaw

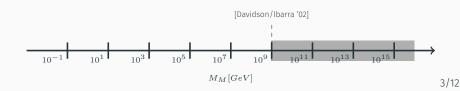
The Seesaw Lagrangian

$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

Active neutrino masses

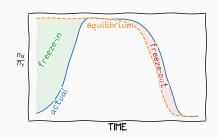
$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

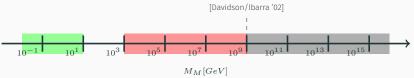

[Mohapatra '93 Mohapatra/Valle '86 Bernabeu/Santamaria/Vidal/Mendez/Valle '86 Gavela/Hambye/Hernandez/Hernandez '09 Branco/Grimus/Lavoura '89 Malinsky/Romao/Layoura '89 1 low-scale


[Minkowski '77 Gell-Mann/Ramond/Slansky '79 Mohapatra/Senjanović '80 Yanagida '79 Schechter/Valle '80]

The Sakharov Conditions

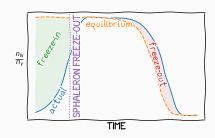
- Baryon number violation sphaleron processes
- 2. C and CP violation
- 3. Deviation from equilibrium freeze-in and freeze-out of RHN

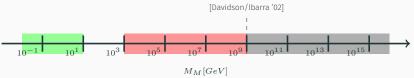



The Sakharov Conditions

- Baryon number violation sphaleron processes
- 2. C and CP violation
- 3. Deviation from equilibrium

freeze-in and freeze-out of RHN

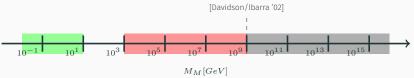

[Akhmedov/Rubakov/Smirnov '98 Asaka/Shaposhnikov '05] leptogenesis via oscillations [Liu/Segre '93 Pilaftsis '97 Pilaftsis/Underwood '04;'05] resonant leptogenesis


The Sakharov Conditions

- Baryon number violation sphaleron processes
- 2. C and CP violation
- 3. Deviation from equilibrium

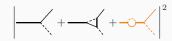
freeze-in and freeze-out of RHN

[Akhmedov/Rubakov/Smirnov '98 Asaka/Shaposhnikov '05] leptogenesis via oscillations [Liu/Segre '93 Pilaftsis '97 Pilaftsis/Underwood '04;'05] resonant leptogenesis


The Sakharov Conditions

- Baryon number violation sphaleron processes
- 2. C and CP violation
- 3. Deviation from equilibrium

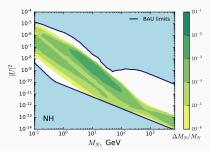
freeze-in and freeze-out of RHN


[Akhmedov/Rubakov/Smirnov '98 Asaka/Shaposhnikov '05] leptogenesis via oscillations [Liu/Segre '93 Pilaftsis '97 Pilaftsis/Underwood '04;'05] resonant leptogenesis

The low-scale leptogenesis mechanisms

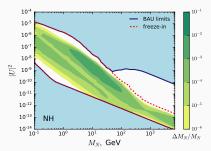
Resonant leptogenesis

 $\boldsymbol{\cdot}$ assymetry produced in HNL decays

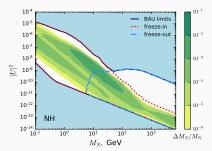


- · asymmetry diverges when $M_2 o M_1$
- relativistic effects can typically be neglected
- heavy neutrino decays require $M\gtrsim T \text{, not clear what happens for } \\ M\lesssim 130~\text{GeV}$

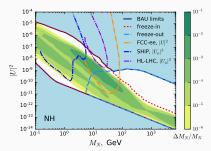
Leptogenesis via oscillations


- all asymmetry is generated during RHN equilibration (freeze-in)
- HNL scatterings dominate over decays
- important to distinguish the helicities of the RHN
- the comoving HNL equilibrium distribution is approximately constant $Y_{\rm N}^{\rm eq} \approx 0$

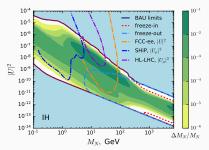
both can be described by the same density-matrix equations


[JK/Timiryasov/Shaposhnikov 2103.16545]

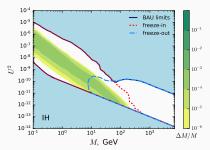
- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - · optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- Well understood analytically (c.f. [Drewes/Garbrecht/Gueter/JK 1606.06690] and [Hernández/López-Pavón/Rius/Sandner 2207.01651])


[JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - · optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- well understood analytically (c.f. [Drewes/Garbrecht/Gueter/JK 1606.06690] and [Hernández/López-Pavón/Rius/Sandner 2207.01651])

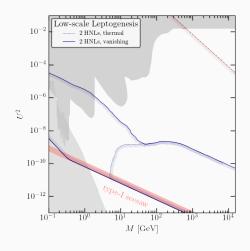

[JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - · optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- Well understood analytically (c.f. [Drewes/Garbrecht/Gueter/JK 1606.06690] and [Hernández/López-Pavón/Rius/Sandner 2207.01651])


[JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - · optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- Well understood analytically (c.f. [Drewes/Garbrecht/Gueter/JK 1606.06690] and [Hernández/López-Pavón/Rius/Sandner 2207.01651])

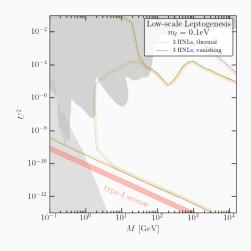
[JK/Timiryasov/Shaposhnikov 2103.16545]


- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - · optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- Well understood analytically (c.f. [Drewes/Garbrecht/Gueter/JK 1606.06690] and [Hernández/López-Pavón/Rius/Sandner 2207.01651])

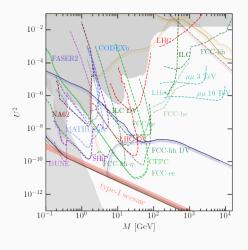
[JK/Timiryasov/Shaposhnikov 2103.16545]


- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - · optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- Well understood analytically (c.f. [Drewes/Garbrecht/Gueter/JK 1606.06690] and [Hernández/López-Pavón/Rius/Sandner 2207.01651])

- leptogenesis consistent with all U^2 for experimentally accessible masses
- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- the maximal value of U^2 depends on m_1

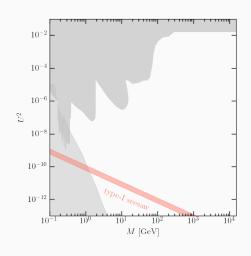

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

- leptogenesis consistent with all U^2 for experimentally accessible masses
- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- the maximal value of U^2 depends on m_1

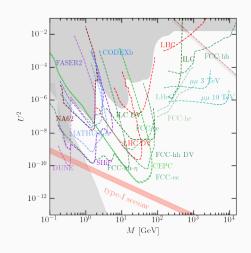

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

- leptogenesis consistent with all U^2 for experimentally accessible masses
- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- the maximal value of U^2 depends on m_1

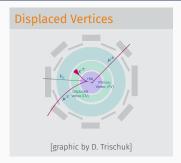
[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

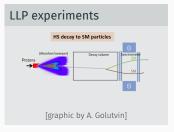

- leptogenesis consistent with all U^2 for experimentally accessible masses
- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- the maximal value of U^2 depends on m_1

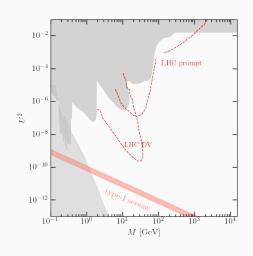
[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

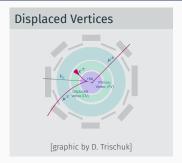

Direct probes of HNLs

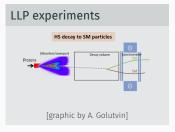
HNL mixing $(m_D)_{ai}$ $U_{ai}^2 \equiv \left| \left(m_D M_M^{-1} \right)_{ai} \right|^2$ $U^2 = \sum_{a,i} U_{ai}^2$ $U^2 \geq m_{\nu}/M$

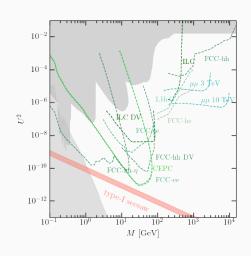


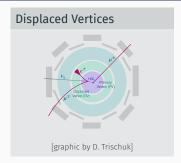

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

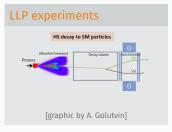

HNL mixing $(m_D)_{ai}$ $U_{ai}^2 \equiv \left| \left(m_D M_M^{-1} \right)_{ai} \right|^2$ $U^2 = \sum_{a,i} U_{ai}^2$ $U^2 \gtrsim m_{\nu}/M$

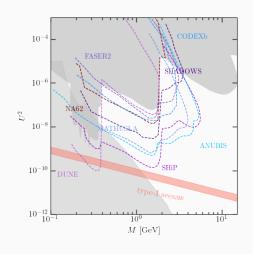

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

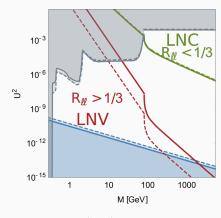


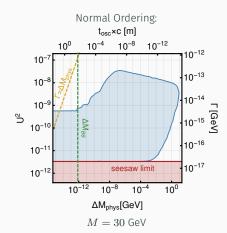



[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

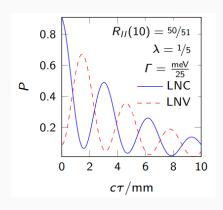




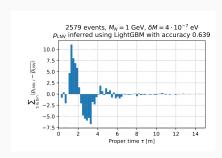

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]



[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

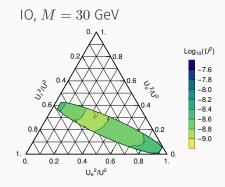

[Drewes/Klose/JK 1907.13034]

- for $\Delta M_N \ll \Gamma_N$ lepton number is conserved Dirac HNLs
- for $\Delta M_N \gtrsim \Gamma_N$ lepton number is violated Majorana HNLs
- fine tuning practically implies lower limit on the mass splitting $\Delta M_N \gtrsim \Delta m_{
 u}$
- large range of ΔM_N are consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- tiny mass splittings can be probed via HNL oscillations

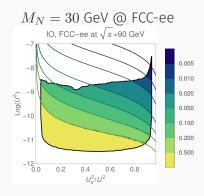

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

- for $\Delta M_N \ll \Gamma_N$ lepton number is conserved Dirac HNLs
- for $\Delta M_N \gtrsim \Gamma_N$ lepton number is violated Majorana HNLs
- fine tuning practically implies lower limit on the mass splitting $\Delta M_N \gtrsim \Delta m_{
 u}$
- large range of ΔM_N are consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few}\%)$
- tiny mass splittings can be probed via HNL oscillations

[Antusch/Hajer/Rosskopp 2210.10738]

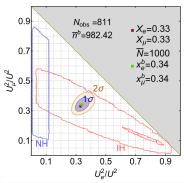

- for $\Delta M_N \ll \Gamma_N$ lepton number is conserved Dirac HNLs
- for $\Delta M_N \gtrsim \Gamma_N$ lepton number is violated Majorana HNLs
- · fine tuning practically implies lower limit on the mass splitting $\Delta M_N \gtrsim \Delta m_
 u$
- · large range of ΔM_N are consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few}\%)$
- tiny mass splittings can be probed via HNL oscillations

[Tastet/Timiryasov 1912.05520]

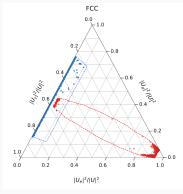

- for $\Delta M_N \ll \Gamma_N$ lepton number is conserved Dirac HNLs
- for $\Delta M_N \gtrsim \Gamma_N$ lepton number is violated Majorana HNLs
- \cdot fine tuning practically implies lower limit on the mass splitting $\Delta M_N \gtrsim \Delta m_
 u$
- large range of ΔM_N are consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- tiny mass splittings can be probed via HNL oscillations

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- similar sensitivity @ SHiP
- · strong constraints on flavour for large ΔM
- even more predictive when combined with discrete flavour and CP symmetries (in the case with 3 RHN)

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

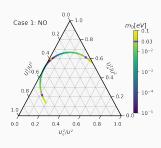

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- · similar sensitivity @ SHiP
- · strong constraints on flavour for large ΔM
- even more predictive when combined with discrete flavour and CP symmetries (in the case with 3 RHN)

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]


- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- similar sensitivity @ SHiP
- · strong constraints on flavour for large ΔM
- even more predictive when combined with discrete flavour and CP symmetries (in the case with 3 RHN)

[Snowmass HNL WP 2203.08039]

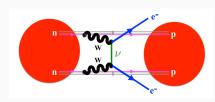
- the HNL branching ratios are constrained for a fixed U^2
- * large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- similar sensitivity @ SHiP
- strong constraints on flavour for large ΔM
- even more predictive when combined with discrete flavour and CP symmetries (in the case with 3 RHN)



$$\Delta M/M = 10^{-2}$$

[Hernández/López-Pavón/Rius/Sandner 2207.01651]

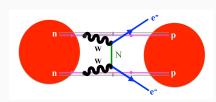
Measuring flavor ratios at experiments


- the HNL branching ratios are constrained for a fixed U^2
- * large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- similar sensitivity @ SHiP
- strong constraints on flavour for large ΔM
- even more predictive when combined with discrete flavour and CP symmetries (in the case with 3 RHN)

[Drewes/Georis/HagedornKlaric 2203.08538]

[Drewes/Georis/HagedornKlaric 230a.bcde]

Indirect probes of HNLs

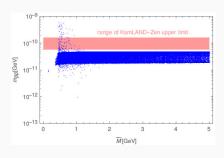


[figure from 1910.04688]

HNL contribution to $0\nu\beta\beta$

$$\begin{split} m_{\beta\beta} &\simeq \left| [1 - f_A(\bar{M})] m_{\beta\beta}^{\nu} \right. \\ &\left. + 2 f_A^2(\bar{M}) \frac{\bar{M}^2}{\Lambda^2} \frac{\Delta M(\Theta_{e1}^2 - \Theta_{e2}^2)} \right| \end{split}$$

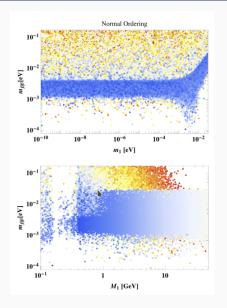
- HNLs can contribute to $m_{\beta\beta}$ when $M\sim 100$ MeV
- the HNL contribution suppressed when $\Delta M \ll M$ approximate lepton number conservation
- leptogenesis imposes bounds on the size of ΔM and Θ_{ei}^2
- parts of the leptogenesis parameter space can already be excluded in existing experiments
- much large parameter space with 3 HNLs
 - · $m_{lightest} \neq 0$
 - · larger rates due to wider range of ΔM_{ij}
 - · large HNL contribution implies $M \lesssim 1$ GeV

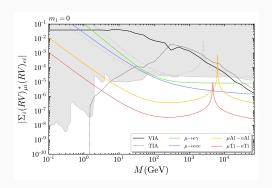


[figure from 1910.04688]

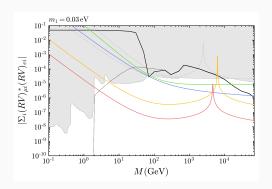
HNL contribution to $0\nu\beta\beta$

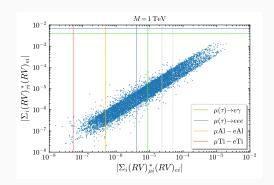
$$\begin{split} m_{\beta\beta} &\simeq \left| [1 - f_A(\bar{M})] m_{\beta\beta}^{\nu} \right. \\ &\left. + 2 f_A^2(\bar{M}) \frac{\bar{M}^2}{\Lambda^2} \frac{\Delta M(\Theta_{e1}^2 - \Theta_{e2}^2)}{\right| \end{split}$$

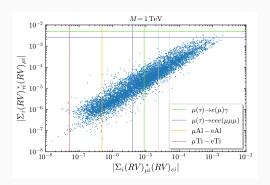

- HNLs can contribute to $m_{\beta\beta}$ when $M\sim 100$ MeV
- the HNL contribution suppressed when $\Delta M \ll M$ approximate lepton number conservation
- leptogenesis imposes bounds on the size of ΔM and Θ_{ei}^2
- parts of the leptogenesis parameter space can already be excluded in existing experiments
- much large parameter space with 3 HNLs
 - · $m_{lightest} \neq 0$
 - · larger rates due to wider range of ΔM_{ij}
 - · large HNL contribution implies $M \lesssim 1$ GeV


[Eijima/Drewes 1606.06221,

Hernández/Kekic/López-Pavón/Salvado 1606.06719]


- · HNLs can contribute to m_{etaeta} when $M\sim 100~{
 m MeV}$
- the HNL contribution suppressed when $\Delta M \ll M$ approximate lepton number conservation
- leptogenesis imposes bounds on the size of ΔM and Θ_{ei}^2
- parts of the leptogenesis parameter space can already be excluded in existing experiments
- much large parameter space with 3 HNLs
 - · $m_{lightest} \neq 0$
 - · larger rates due to wider range of ΔM_{ij}
 - · large HNL contribution implies $M \lesssim 1$ GeV


- HNLs can contribute to $m_{\beta\beta}$ when $M \sim 100$ MeV
- · the HNL contribution suppressed when $\Delta M \ll M$
- leptogenesis imposes bounds on the size of ΔM and Θ_{ei}^2
- parts of the leptogenesis parameter space can already be excluded in existing experiments
- much large parameter space with 3 HNLs
 - · $m_{lightest} \neq 0$
 - · larger rates due to wider range of ΔM_{ij}
 - · large HNL contribution implies $M\lesssim 1$


- parameters space in the TeV region already severly constrained by cLFV observables
- future $\mu \to e$ conversion experiments can probe a large part of the leptogenesis parameter space with 3 HNLs
- simultaneous LFV possible in several channels

- parameters space in the TeV region already severly constrained by cLFV observables
- future $\mu \to e$ conversion experiments can probe a large part of the leptogenesis parameter space with 3 HNLs
- · simultaneous LFV possible in several channels

- parameters space in the TeV region already severly constrained by cLFV observables
- future $\mu \to e$ conversion experiments can probe a large part of the leptogenesis parameter space with 3 HNLs
- simultaneous LFV possible in several channels

- parameters space in the TeV region already severly constrained by cLFV observables
- future $\mu \to e$ conversion experiments can probe a large part of the leptogenesis parameter space with 3 HNLs
- simultaneous LFV possible in several channels

Conclusions

- right-handed neutrinos can offer a minimal solution to the origins of neutrino masses and the baryon asymmetry of the Universe
- the existence right-handed neutrinos can be tested at existing and near-future experiments
 - excellent synergy between direct and indirect probes!
- leptogenesis is a viable baryogenesis mechanism for all heavy neutrino masses above the $\mathcal{O}(100)$ MeV scale
- HNLs could lead to very rich phenomenology displaced vertices, LFV ($\mu \to e \gamma$), LNV ($0 \nu \beta \beta$), HNL oscillations...

Thank you!

How is $3 \neq 2$?: Leptogenesis

· asymmetry can be generated even without washout

[Akhmedov/Rubakov/Smirnov hep-ph/9803255]

· large hierarchy in the washout is possible

[Canetti/Drewes/Garbrecht 1404.7144]

· level crossing between the heavy neutrinos

[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]

How is $3 \neq 2$?: Leptogenesis

asymmetry can be generated even without washout

[Akhmedov/Rubakov/Smirnov hep-ph/9803255]

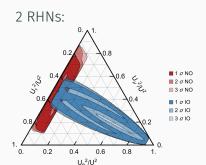
- Sakharov II: CP
- ullet more CP phases than in the case with two RHN
- · large hierarchy in the washout is possible

[Canetti/Drewes/Garbrecht 1404.7144]

- Sakharov III: non-equilibrium
- · level crossing between the heavy neutrinos

[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]

· Sakharov II: CP


Hierarchy in the washout

- lepton asymmetry can survive washout if hidden in a particular flavor
- · washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

- for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- for 3 RHN $\mathfrak{f} \ll 1$ possible
- · slow equilibration

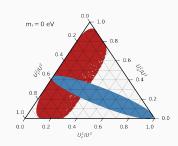
$$\frac{\Gamma_I}{\Gamma} \sim \frac{U_I^2}{U^2}$$

[Snowmass White Paper 2203.08039]

[Drewes/Garbrecht/Gueter/JK 1609.09069]

[Caputo/Hernandez/Lopez-Pavon/Salvado 1704.08721]

Hierarchy in the washout


- lepton asymmetry can survive washout if hidden in a particular flavor
- · washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

- for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- for 3 RHN $\mathfrak{f} \ll 1$ possible
- slow equilibration

$$\frac{\Gamma_I}{\Gamma} \sim \frac{U_I^2}{U^2}$$

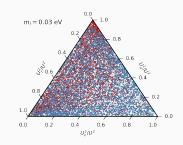
3 RHNs:

[Drewes/Georis/JK 230x.xxxx]

[Chrzaszcz/Drewes/Gonzalo/Harz/Krishna-

murthy/Weniger 1908.02302]

Hierarchy in the washout

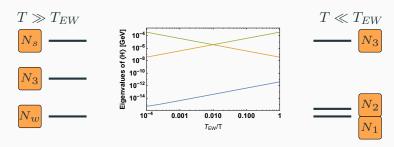

- lepton asymmetry can survive washout if hidden in a particular flavor
- · washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

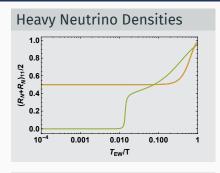
- for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- for 3 RHN $\mathfrak{f} \ll 1$ possible
- slow equilibration

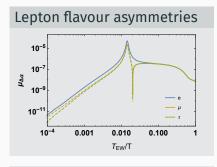
$$\frac{\Gamma_I}{\Gamma} \sim \frac{U_I^2}{U^2}$$

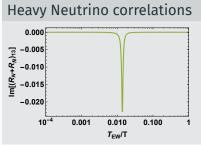
3 RHNs:

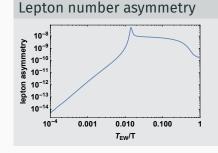

[Drewes/Georis/JK 230x.xxxx]

[Chrzaszcz/Drewes/Gonzalo/Harz/Krishna-


murthy/Weniger 1908.02302]


Enhancement due to level crossing


- in the B-L symmetric limit two heavy neutrinos form a pseudo-Dirac pair
- the "3rd" heavy neutrino can be heavier than the pseudo-Dirac pair
- for $T\gg T_{EW}$, the pseudo-Dirac pair also has a thermal mass



Enhancement due to level crossing

