

Techniques for Very High Energy (VHE) Gamma-ray Astronomy

Jon Lapington

PSD13: 13th International Conference on Position Sensitive Detectors – September 3-8, 2023

School of Physics **a n d A s t r o n o m y**

Outline

- Why do VHE Gamma-ray astronomy?
- VHE Gamma-ray astronomy techniques
- Water Cherenkov detectors
- The Southern Widefield Gamma-ray Observatory
- Imaging Air Cherenkov detectors
- The Cherenkov Telescope Array
- The future of Gamma-ray astronomy in the UK

Why do VHE Gamma-ray astronomy?

Key Science Questions

GeV and TeV gamma-ray sources are ubiquitous in the universe and probe extreme particle acceleration, and the subsequent particle interactions and propagation.

- 1. How are the bulk of cosmic ray particles accelerated in our Galaxy and beyond? (one of the oldest surviving questions of astrophysics)
- 2. Can we understand the physics of jets, shocks & winds in the variety of sources we see, including pulsars, binaries, AGN, starbursts, and GRBs?
- 3. How do black holes of all sizes efficiently accelerate particles? How are the structures (e.g. jets) formed and how is the accretion energy harnessed?
- 4. What do high-energy gamma rays tell us about the star formation history of the Universe, intergalactic radiation fields, and the fundamental laws of physics?
- 5. What is the nature of dark matter, and can we map its distribution through its particle interactions?
- 6. What new unexpected phenomena will be revealed by exploring the non-thermal Universe?

VHE Gamma-ray astronomy techniques

• Observing from space e.g. Fermi Large Area Telescope

VHE Gamma-ray astronomy techniques

• Observing from space e.g. Fermi Large Area Telescope

Steeply falling spectrum:

x10 increase in Energy \rightarrow flux divides by 100-500

- Large effective area needed for detectable VHE signals not possible in space
- Natural detector: the Earth's atmosphere

Water Cherenkov Detectors

- Detect the secondary particle shower directly
- Need to be at high altitude
- Wide Field of View with TeV sensitivity
- Continuously operating (> 90% duty cycle)
- Unbiased search for transients \rightarrow multi messenger observations
- Major Water Cherenkov Observatories
	- Milagro Gamma Ray Observatory
	- High Altitude Water Cherenkov (HAWC)
	- Large High Altitude Air Shower Observatory (LHAASO)
	- Southern Widefield Gamma-ray Observatory (SWGO) © CAurore Simonnet

Milagro "1st Genersation" Water Cherenkov TeV Observatory

• 2650m elevation near Los Alamos, NM

- Covered pond of 4000 m²
- Operated 2000-2008

• Detected new Galactic sources, Galactic plane, cosmic ray anisotropy, and put upper limits on prompt emission from gamma-ray bursts

Central Water Pond (80x60 meter) 450 PMTs under 1.5 m water 273 PMTs under 6 m water

• 4800 m² pond surrounded by 40000 \textsf{m}^2 array of outriggers

- Operated from 2000-2008
- Operated 2004-2008 with outriggers (2x sensitivity)

Photo © Rick Dingus

HAWC "2nd Generation" Water Cherenkov gamma-ray detecto

• 4100m elevation near Puebla, Mexico • 300 water tanks spread over 25000 m² • Construction 2010-14, Operation 2013-19 15 x Milagro's sensitivity with 10 x lower energy threshold • Full detector inaugurated March 2015 11

CATCHING RAYS

4,400 m

China's new observatory will intercept ultra-high-energy y-ray particles and cosmic rays.

LHAASO

12 wide-field-of-view air Cherenkov telescopes

> 5,195 scintillator detectors

 $~25,000~m$

80,000-m² surfacewater Cherenkov detector

1,171 underground water Cherenkov tanl

an

14

EHAASO

LHAASO Discovery of Pevatrons

Table 1 | UHE y-ray sources

13º S

Yanque (Peru)

Peru

STATE OF ACRE

Imata (Peru) La az

AAP Pajonal (Chile)

Chile

Lake Sibinacocha (Peru)

Cochabambao

Alto Tocomar (Argentina.

ROND

24º S

Chile 4.8 k

Site shortlisting: September 2022 Site team visits: October 2022 Chacaltaya (Bolivia) Preferred Site identified: Autumn 2023 **Bolivia** On-site prototyping activities: from 2022 Santa C
de la Sie

Argentina[.]

20

SWGO – UK developments

⌾Wavelength Shifting (WLS) materials

- ^o Reduce costs by using a smaller PMT
- ^o WLS material to recover lost efficiency
- ^o However WLS degrades time resolution
- \circ Use for muon veto tank only $-$ CR rejection
- ⌾Calibration light systems
	- ^o Heritage from CTA "flashers"

Status & Plan

⌾SWGO partners [→] 2026+

- \rightarrow 47 institutes in 12 countries*
- \rightarrow + supporting scientists

⌾R&D Phase

- [→] Kick off meeting Nov 2019
- [→] Expected completion 2023
	- ✓ Site and Design Choices made
- \rightarrow Then:

⌾Preparatory Phase

- \rightarrow Detailed construction plan
- [→] **Engineering Array**
- ⌾(Full) Construction Phase

Imaging Air Cherenkov Detectors

- Large collection area
- Excellent Background Rejection
- Low Duty Cycle/Small Aperture
	- ~15% duty-cycle
	- ~4 degree field of view
	- Surveys of limited regions of sky
- High precision
	- High angular resolution
	- High Resolution Energy Spectra
	- TeV sensitivity

Potential γ -ray

• Creates purely
electromagnetic cascade

Extensive Air Shower

~ 10 km

Cherenkov Properties

 -100 m • $~10$ photons / m² (for 1 TeV γ -ray, 200 m from impact) \rightarrow Big dishes, sensors with dynamic range 1 – 1000+ p.e.

- Lasts a few ns
	- \rightarrow Fast photosensors and electronics
- Peaks at 350 nm
	- \rightarrow Blue sensitive photosensors

Potential γ -ray

• Creates purely
electromagnetic cascade

Extensive Air Shower

~ 10 km

Cherenkov Light

Cherenkov Properties

 $-100 m$ • $~10$ photons / m² (for 1 TeV γ -ray, 200 m from impact) \rightarrow Big dishes, sensors with dynamic range 1 – 1000+ p.e.

- Lasts a few ns
	- \rightarrow Fast photosensors and electronics
- Peaks at 350 nm
	- \rightarrow Blue sensitive photosensors in the sensitive photosensors in the sensitive photosensors in the sensitive photosensors in the sensitive \cdot
- Light content \rightarrow Energy of primary particle
- Orientation

 \rightarrow Direction of primary particle elescopes overlaid 25

Potential γ -ray

• Creates purely
electromagnetic cascade

Night Sky **Background**

- Stars, air-glow, Zodiacal light...
- Extra-galactic rate ~100 MHz per pixel (for $100m^2$ dish, 0.15 \degree pix)
- \rightarrow Online trigger algorithm

Cherenkov Properties

 $~100~{\rm m}$ • $~10$ photons / m² (for 1 TeV γ -ray, 200 m from impact) \rightarrow Big dishes, sensors with dynamic range 1 – 1000+ p.e.

- Lasts a few ns
	- \rightarrow Fast photosensors and electronics
- Peaks at 350 nm
	- \rightarrow Blue sensitive photosensors in the sensitive photosensors in the sensitive photosensors in the sensitive photosensors in the sensitive \cdot

Extensive Air Shower

~ 10 km

• Light content \rightarrow Energy of primary particle

• Orientation

→ Direction of primary particle_{elescopes overlaid}

Potential γ -ray

• Creates purely
electromagnetic cascade

Night Sky **Background**

- Stars, air-glow, Zodiacal light...
- Extra-galactic rate ~100 MHz per pixel (for $100m^2$ dish, 0.15 \degree pix)
- \rightarrow Online trigger algorithm

Cherenkov Properties

 $~100 \text{ m}$ • $~10$ photons / m² (for 1 TeV γ -ray, 200 m from impact) \rightarrow Big dishes, sensors with dynamic range 1 – 1000+ p.e.

- Lasts a few ns
	- \rightarrow Fast photosensors and electronics
- Peaks at 350 nm
	- \rightarrow Blue sensitive photosensors in the sensitive photosensors in the sensitive photosensors in the sensitive photosensors in the sensitive \cdot

Extensive Air Shower

~ 10 km

Cherenkov Light

Potential Cosmic-ray

- Dominates γ -ray rate, even after NSB is reduced
- Complex cascade
- Irregular images in the camera
- \rightarrow Offline image analysis

Cherenkov light pool on the ground

- Shape $\rightarrow \gamma$ /CR discrimination
- Light content
- \rightarrow Energy of primary particle
- Orientation

→ Direction of primary particle_{elescopes overlaid}

GROUND-BASED GAMMA RAY ASTRONOMY 1989

Whipple Telescope 1968

T. Weekes et al., ApJ 342 (1989) 379

"Observation of TeV Gamma Rays from the Crab Nebula using the Atmospheric Cerenkov Imaging Technique"

H.E.S.S. (Namibia) 4 x 108 m² (since 2003) 1 x 614 m² (since 2012)

The Cherenkov Telescope Array The next big step

- World's first VHE gamma-ray observatory
- Explores top 4-5 decades in energy 20 GeV to 300 TeV
- Factor of 10 improvement in sensitivity compared to current telescopes
- Full sky coverage
- Large community of users

The Cherenkov Telescope Array

32

 \mathbb{R}

25 Medium Sized Telescopes (MST)

- 12 m diameter reflector
- \cdot > 7 \circ FoV
- $~\sim$ 1 km².

4 Large Sized Telescopes (LST)

- 23 m diameter reflector
- $>4.5^\circ$ FoV
- \sim 0.1 km²

Initial Alpha configuration

- CTAO Northern Array: 4 Large-Sized Telescopes and 9 Medium-Sized Telescopes (area covered by the array of telescopes: ~0.25 km²)
- CTAO Southern Array: 14 Medium-Sized Telescopes and 37 Small-Sized Telescopes (area covered by the array of

CTA Science: Full-sky Coverage

CTA Science: Improved Sensitivity

LMC and Galactic Plane observations will provide many more detections

Expect an increase of a factor of $~10$ in the source catalogue.

CTA Science: Improved Angular Resolution

The best angular resolution of any instrument above 100 keV

Small-Sized Telescope (SST)

Three SST Designs Proposed

- Dual mirror (SST-2M) design allows use of a compact camera
	- Short focal length \rightarrow reduced plate scale \rightarrow small camera and pixels
	- Candidate sensors: MAPMTs, SiPMs
- Technical challenges
	- **•** Curved focal plane $(R_c = 1.0 \text{ m})$
		- **High density readout electronics required**
		- Low cost

Dual Mirror Designs

GCT ASTRI SST-1M

39

Three Prototype SSTs Developed

• Prototypes for all SSTs (telescopes and cameras) exist \rightarrow The dual-mirror telescope prototypes provided a test-bed for the Compact High Energy Camera (CHEC)

40

CTA Small -Sized Telescope CTA -SST dual -mirror design

- CTA-SST dual-mirror (SST-2M) telescopes
	- Uses Schwarzschild -Couder optics, as first proposed for IACTs by **Vassiliev**
	- SST -2M telescopes designed to be compatible with same camera
	- Small plate scale enables use of smaller, lower cost camera – **CHEC**
- **SST design drivers:**
	- High performance at low cost
	- Ease of production and maintenance

Prototyping the Compact High-Energy Camera CHEC-S

Prototyping the Compact High-Energy Camera CHEC-S

Prototyping the Compact High-Energy Camera Camera Architecture

CHEC Field Trials - 2019

An obvious place to put a telescope!

45

AND AT A

CHEC-S Field Trials Success!

Sicily, Southern slope of Mt. Etna at Serra La Nave Hosted by INAF-Catania 1750 m asl

30 - 25
- 35
- 35
Pixel Amplitude (p.e.) 0

• Following 2019 CTAO Harmonization review

- CHEC selected as baseline SST Camera
- ASTRI selected as baseline telescope
- **SST Camera Key Features**
	- Fine pixellation, ~9° FoV
	- SiPMs with Target ASIC readout
		- 5x lower cost than MST/LST per pixel
		- Higher detector efficiency
	- **Efficient trigger scheme**
	- Full waveform readout
- Now focused on an iteration to ensure
	- Ease of production
	- High quality
	- Ease of installation
	- Low maintenance needs

SST Camera Selection

- The UK has been central in the design of the SST Camera
- Design for production is completed and being proven
- The finalization of the CTAO ERIC is imminent
- Construction of the first 42 SSTs will begin in 2024

A future of Gamma-ray astronomy in the UK?

- CTA and SWGO strongly supported by PAAP, however ..
- UK involvement in CTAO
	- STFC have ceased funding the UK elements of the CTA SST
	- Loss of Front-End Electronics to UK industry worth >£3M
	- Jeopardises funding of the CTA Small-Sized Telescope programme
	- UK participation in CTA Key Science Projects in jeopardy
- UK involvement in SWGO Durham, Leicester, Oxford
	- Application of wavelength-shifting materials
		- \rightarrow reduce PMT size and costs
	- Calibration "flasher" systems
	- Worry that UK funding bodies will be similarly shortsighted

Thank you for your attention