

Techniques for Very High Energy (VHE) Gamma-ray Astronomy

Jon Lapington

1

PSD13: 13th International Conference on Position Sensitive Detectors – September 3-8, 2023

School of Physics and Astronomy

Outline

- Why do VHE Gamma-ray astronomy?
- VHE Gamma-ray astronomy techniques
- Water Cherenkov detectors
- The Southern Widefield Gamma-ray Observatory
- Imaging Air Cherenkov detectors
- The Cherenkov Telescope Array
- The future of Gamma-ray astronomy in the UK

Why do VHE Gamma-ray astronomy?

Key Science Questions

GeV and TeV gamma-ray sources are ubiquitous in the universe and probe extreme particle acceleration, and the subsequent particle interactions and propagation.

- 1. How are the bulk of cosmic ray particles accelerated in our Galaxy and beyond? (one of the oldest surviving questions of astrophysics)
- 2. Can we understand the physics of jets, shocks & winds in the variety of sources we see, including pulsars, binaries, AGN, starbursts, and GRBs?
- 3. How do black holes of all sizes efficiently accelerate particles? How are the structures (e.g. jets) formed and how is the accretion energy harnessed?
- 4. What do high-energy gamma rays tell us about the star formation history of the Universe, intergalactic radiation fields, and the fundamental laws of physics?
- 5. What is the nature of dark matter, and can we map its distribution through its particle interactions?
- 6. What new unexpected phenomena will be revealed by exploring the non-thermal Universe?

VHE Gamma-ray astronomy techniques

• Observing from space e.g. Fermi Large Area Telescope

VHE Gamma-ray astronomy techniques

• Observing from space e.g. Fermi Large Area Telescope

Steeply falling spectrum:

x10 increase in Energy \rightarrow flux divides by 100-500

- Large effective area needed for detectable VHE signals not possible in space
- Natural detector: the Earth's atmosphere

Water Cherenkov Detectors

- Detect the secondary particle shower directly
- Need to be at high altitude
- Wide Field of View with TeV sensitivity
- Continuously operating (> 90% duty cycle)
- Unbiased search for transients → multi messenger observations
- Major Water Cherenkov Observatories
 - Milagro Gamma Ray Observatory
 - High Altitude Water Cherenkov (HAWC)
 - Large High Altitude Air Shower Observatory (LHAASO)
 - Southern Widefield Gamma-ray Observatory (SWGO)

©Aurore Simonnet

Milagro "1st Genersation" Water Cherenkov TeV Observatory

2650m elevation near Los Alamos, NM

- Covered pond of 4000 m²
- Operated 2000-2008
- Detected new Galactic sources, Galactic plane, cosmic ray anisotropy, and put upper limits on prompt emission from gamma-ray bursts

Central Water Pond (80x60 meter) 450 PMTs under 1.5 m water 273 PMTs under 6 m water

- 4800 m² pond surrounded by 40000 m² array of outriggers
- Operated from 2000-2008
- Operated 2004-2008 with outriggers (2x sensitivity)

Photo © Rick Dingus

HAWC "2nd Generation" Water Cherenkov gamma-ray detector

4100m elevation near Puebla, Mexico
300 water tanks spread over 25000 m²
Construction 2010-14, Operation 2013-19
15 x Milagro's sensitivity with 10 x lower energy threshold
Full detector inaugurated March 2015

CATCHING RAYS

4.400 m

China's new observatory will intercept ultra-high-energy γ-ray particles and cosmic rays.

LHAASO

12 wide-field-of-view air Cherenkov telescopes

5,195 scintillator detectors

~25,000 m

80,000-m² surfacewater Cherenkov detector

1,171 underground water Cherenkov tank

diss

EHAASO

LHAASO Discovery of Pevatrons

Table 1 | UHE γ-ray sources

Source name	RA (°)	dec. (°)	Significance above 100 TeV (×σ)	E _{max} (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 - 0.10+0.16	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

Chile 4.8 k

Chile

Peru

Site shortlisting: September 2022 Site team visits: October 2022 Preferred Site identified: Autumn 2023 On-site prototyping activities: from 2022

Argentina 4

Peru 4.9 k19

SWGO – UK developments

OWavelength Shifting (WLS) materials

- Reduce costs by using a smaller PMT
- WLS material to recover lost efficiency
- However WLS degrades time resolution
- Use for muon veto tank only CR rejection
- Ocalibration light systems
 - Heritage from CTA "flashers"

Status & Plan

SWGO R&D Phase MilestonesM1R&D Phase Plan EstablishedM2Science Benchmarks DefinedM3Reference Configuration & Options DefinedM4Site Shortlist CompleteM5Candidate Configurations DefinedM6Performance of Candidate Configurations EvaluatedM7Preferred Site IdentifiedM8Design FinalisedM9Construction & Operation Proposal Complete		
 M1 R&D Phase Plan Established M2 Science Benchmarks Defined M3 Reference Configuration & Options Defined M4 Site Shortlist Complete M5 Candidate Configurations Defined M6 Performance of Candidate Configurations Evaluated M7 Preferred Site Identified M8 Design Finalised M9 Construction & Operation Proposal Complete 		SWGO R&D Phase Milestones
 M2 Science Benchmarks Defined M3 Reference Configuration & Options Defined M4 Site Shortlist Complete M5 Candidate Configurations Defined M6 Performance of Candidate Configurations Evaluated M7 Preferred Site Identified M8 Design Finalised M9 Construction & Operation Proposal Complete 	M1	R&D Phase Plan Established
 M3 Reference Configuration & Options Defined M4 Site Shortlist Complete M5 Candidate Configurations Defined M6 Performance of Candidate Configurations Evaluated M7 Preferred Site Identified M8 Design Finalised M9 Construction & Operation Proposal Complete 	M2	Science Benchmarks Defined
 M4 Site Shortlist Complete M5 Candidate Configurations Defined M6 Performance of Candidate Configurations Evaluated M7 Preferred Site Identified M8 Design Finalised M9 Construction & Operation Proposal Complete 	M3	Reference Configuration & Options Defined
 M5 Candidate Configurations Defined M6 Performance of Candidate Configurations Evaluated M7 Preferred Site Identified M8 Design Finalised M9 Construction & Operation Proposal Complete 	M4	Site Shortlist Complete
 M6 Performance of Candidate Configurations Evaluated M7 Preferred Site Identified M8 Design Finalised M9 Construction & Operation Proposal Complete 	M5	Candidate Configurations Defined
M7Preferred Site IdentifiedM8Design FinalisedM9Construction & Operation Proposal Complete	M6	Performance of Candidate Configurations Evaluated
M8Design FinalisedM9Construction & Operation Proposal Complete	M7	Preferred Site Identified
M9 Construction & Operation Proposal Complete	M8	Design Finalised
	M9	Construction & Operation Proposal Complete

⊙SWGO partners

N

- \rightarrow 47 institutes in 12 countries^{*}
- \rightarrow + supporting scientists

R&D Phase

- → Kick off meeting Nov 2019
- → Expected completion 2023
 - Site and Design Choices made
- → Then:
- OPreparatory Phase
 - Detailed construction plan
 - > Engineering Array
- ○(Full) Construction Phase → 2026+

Imaging Air Cherenkov Detectors

- Large collection area
- Excellent Background Rejection
- Low Duty Cycle/Small Aperture
 - ~15% duty-cycle
 - ~4 degree field of view
 - Surveys of limited regions of sky
- High precision
 - High angular resolution
 - High Resolution Energy Spectra
 - TeV sensitivity

Potential γ-ray

• Creates purely electromagnetic cascade

Extensive Air Shower

~ 10 km

— Cherenkov Light

Cherenkov Properties

• ~10 photons / m² (for 1 TeV γ -ray, 200 m from impact) ~ 100 m \rightarrow Big dishes , sensors with dynamic range 1 – 1000+ p.e.

• Lasts a few ns

 \rightarrow Fast photosensors and electronics

• Peaks at 350 nm

 \rightarrow Blue sensitive photosensors

Potential γ-ray

• Creates purely electromagnetic cascade

Extensive Air Shower

~ 10 km

— Cherenkov Light

Cherenkov Properties

• ~10 photons / m² (for 1 TeV γ -ray, 200 m from impact) ~ 100 m \rightarrow Big dishes , sensors with dynamic range 1 – 1000+ p.e.

Lasts a few ns

 \rightarrow Fast photosensors and electronics

• Peaks at 350 nm

 \rightarrow Blue sensitive photosensors

Light content
 → Energy of primary particle

Orientation

→ Direction of primary particleelescopes overlaid

Potential γ-ray

• Creates purely electromagnetic cascade

Night Sky Background

- Stars, air-glow, Zodiacal light... •
- Extra-galactic rate ~100 MHz per pixel (for 100m² dish, 0.15° pix)
- \rightarrow Online trigger algorithm

Cherenkov Properties

• ~10 photons / m² (for 1 TeV γ -ray, 200 m from impact) ~ 100 m \rightarrow Big dishes , sensors with dynamic range 1 – 1000+ p.e.

Lasts a few ns •

 \rightarrow Fast photosensors and electronics

Peaks at 350 nm •

 \rightarrow Blue sensitive photosensors

Extensive Air Shower

10 km

Cherenkov Light

Light content • \rightarrow Energy of primary particle

Orientation •

→ Direction of primary particleelescopes overlaid

Potential γ-ray

Creates purely
electromagnetic cascade

Night Sky-Background

- Stars, air-glow, Zodiacal light...
- Extra-galactic rate ~100 MHz per pixel (for 100m² dish, 0.15° pix)
- \rightarrow Online trigger algorithm

Cherenkov Properties

• ~10 photons / m² (for 1 TeV γ -ray, 200 m from impact) ~ 100 m \rightarrow Big dishes , sensors with dynamic range 1 – 1000+ p.e.

• Lasts a few ns

ightarrow Fast photosensors and electronics

- Peaks at 350 nm
 - \rightarrow Blue sensitive photosensors

Extensive Air Shower

~ 10 km

— Cherenkov Light

—Potential <mark>Cosmic-ray</mark>

- Dominates γ-ray rate, even after NSB is reduced
- Complex cascade
- Irregular images in the camera
- \rightarrow Offline image analysis

Cherenkov light pool on the ground

- Shape $\rightarrow \gamma$ /CR discrimination
- Light content
- \rightarrow Energy of primary particle
- Orientation

→ Direction of primary particleelescopes overlaid

GROUND-BASED GAMMA RAY ASTRONOMY 1989

Whipple Telescope 1968

T. Weekes et al., ApJ 342 (1989) 379

"Observation of TeV Gamma Rays from the Crab Nebula using the Atmospheric Cerenkov Imaging Technique"

H.E.S.S. (Namibia) 4 x 108 m² (since 2003) 1 x 614 m² (since 2012)

The Cherenkov Telescope Array The next big step

- World's first VHE gamma-ray observatory
- Explores top 4-5 decades in energy 20 GeV to 300 TeV
- Factor of 10 improvement in sensitivity compared to current telescopes
- Full sky coverage
- Large community of users

The Cherenkov Telescope Array

4 Large Sized Telescopes (LST)

- 23 m diameter reflector
- >4.5° FoV
- ~0.1 km²

CTA Science: Full-sky Coverage

CTA Science: Improved Sensitivity

LMC and Galactic Plane observations will provide many more detections

Expect an increase of a factor of ~10 in the source catalogue.

CTA Science: Improved Angular Resolution

The best angular resolution of any instrument above 100 keV

Small-Sized Telescope (SST)

Three SST Designs Proposed

- Dual mirror (SST-2M) design allows use of a compact camera
 - Short focal length \rightarrow reduced plate scale \rightarrow small camera and pixels
 - Candidate sensors: MAPMTs, SiPMs
- Technical challenges
 - Curved focal plane (R_c = 1.0 m)
 - High density readout electronics required
 - Low cost

GCT

Dual Mirror Designs

ASTR

SST-1M

Three Prototype SSTs Developed

Prototypes for all SSTs (telescopes and cameras) exist
 The dual-mirror telescope prototypes provided

 a test-bed for the Compact High Energy Camera (CHEC)

41

CTA Small-Sized Telescope CTA-SST dual-mirror design

- CTA-SST dual-mirror (SST-2M) telescopes
 - Uses Schwarzschild-Couder optics, as first proposed for IACTs by Vassiliev
 - SST-2M telescopes designed to be compatible with same camera
 - Small plate scale enables use of smaller, lower cost camera – CHEC
- SST design drivers:
 - High performance at low cost
 - Ease of production and maintenance

Prototyping the Compact High-Energy Camera CHEC-S

Prototyping the Compact High-Energy Camera CHEC-S

Prototyping the Compact High-Energy Camera Camera Architecture

CHEC Field Trials - 2019

An obvious place to put a telescope!

Sec. 1

45

CHEC-S Field Trials Success!

Sicily, Southern slope of Mt. Etna at Serra La Nave Hosted by INAF-Catania 1750 m asl

j.		És;	
	66		

• Following 2019 CTAO Harmonization review

- CHEC selected as baseline SST Camera
- ASTRI selected as baseline telescope
- SST Camera Key Features
 - Fine pixellation, ~9° FoV
 - SiPMs with Target ASIC readout
 - 5x lower cost than MST/LST per pixel
 - Higher detector efficiency
 - Efficient trigger scheme
 - Full waveform readout
- Now focused on an iteration to ensure
 - Ease of production
 - High quality
 - Ease of installation
 - Low maintenance needs

SST Camera Selection

- The UK has been central in the design of the SST Camera
- Design for production is completed and being proven
- The finalization of the CTAO ERIC is imminent
- Construction of the first 42 SSTs will begin in 2024

A future of Gamma-ray astronomy in the UK?

- CTA and SWGO strongly supported by PAAP, however ...
- UK involvement in CTAO
 - STFC have ceased funding the UK elements of the CTA SST
 - Loss of Front-End Electronics to UK industry worth >£3M
 - Jeopardises funding of the CTA Small-Sized Telescope programme
 - UK participation in CTA Key Science Projects in jeopardy
- UK involvement in SWGO Durham, Leicester, Oxford
 - Application of wavelength-shifting materials
 - \rightarrow reduce PMT size and costs
 - Calibration "flasher" systems
 - Worry that UK funding bodies will be similarly shortsighted

Thank you for your attention