PSD13

St. Catherine's College September 3-8, 2023

Gas Based Detectors

Anna Colaleo University and INFN Bari

A. Colaleo – Gas based detectors

Embracing the Renaissance of Gaseous Detectors

SHAKEBARBARBARB GE

CMS GEM

Transfer Can **第四項統制的第四章 第四章 第四章 (F)** Transfer Gap

 2_{mm}

THGEM

ALICE TPC upgrade

Hybrid design THGEM + MM

COMPASS RICH

Boosting the LHC upgrade and upcoming experiments MicroMegas (MM)

- enhancing Muon Tracking and Triggering with MPGDs, iRPC
- new Generation TPCs with MPGD-Based Readouts@ALICE/T2K
- ex. New Cylindrical Drift Chambers for MEGII, Novel StrawTubes at Mu2e, COMETI/II, Panda/@Fair...

, Offering competitive performance

Time Precision with MRPC@Alice TOF and PICOSEC concept

Pioneering Approach: New technologies, Materials, Architectures, and Hybrid Technology

ATLAS new small wheels

A. Colaleo – Gas based detectors

iRPC

ATLAS BIS7&BIS8 and CMS RE3/1 & RE4/1

 $sakelit$ e: 1.8 mm \rightarrow 1.2 m

Gaseous detectors at LHC

(including HL-LHC), supported by aging mitigation, advanced electronics, repair accessibility, and a sustainable approach (environmental-friendly)

Gaseous detector upgrade at HL-LHC

Advancements in MPGDs:

Fueling ATLAS, CMS, ALICE Upgrades in Run 3

- ATLAS New Small Wheel with Micromegas
- CMS GE1/1 with 3-GEM
- ALICE TPC with 4-GEM TPC

Three ground breaking LHC upgrades, incorporating MPGDs, embarked on their several year R&D journeys in close collaboration with RD51, leveraging dedicated facilities at the GDD-RD51 Laboratory.

Resistive Micromegas (MM) + small Thin Gap Chambers (sTGCs) for Trigger & Track Reco @ HL-LHC

- Precision tracking (∼ 100 μm/plane, > 90% efficiency) for _σp_t/p_t< 15% at muon *p*₇≈ 1 TeV
- particle flux: up to 20 kHz/cm² rejecting fake triggers.

Peculiarities of ATLAS NSW Muon Upgrade's Resistive MM:

- Screen-printed resistive strips capacitive-coupled to Cu strips.
- Araldite passivation on edges for uniformity, less edge effects. 128 µm²
- Thin metallic micro-mesh at ground potential.
- "Floating" mesh integrated in drift panel
- Operates at -60 V with 93/5/2% Ar/CO2/isobutane mixture.

1200m2 resistive MM: installation ended beginning 2022

3GEM+ Cathode Strip Chambers (CSC) allows for muon momentum measurement in a single station, which helps reduce considerably L1 trigger rate@ HL-LHC

GE1/1: 144 100 3-GEM (72 per endcap)1.55 $<$ $|n|$ $<$ 2.18

CMS triple-GEM detectors peculiarities:

- 3/1/2/1 mm gaps
- Single-mask GEM technology
- mechanical foil stretching technique
- 15-years-long R&D on design, components and materials (longevity, outgassing studies, etc.)
- High rate O(MHz/cm2)
- Efficiency > 98%
- Space (time) resolution ≈ 300 μm (8 ns)
	- Gas mixt: Ar/CO₂ 70/30 (low GWP)

GEM GE1/1 chambers installed: Sept. 2020

A. Colaleo – Gas based detectors

New readout chambers which enables continuous readout@50 kHz in Pb-Pb

\rightarrow choice of 4-GEM

- § Total effective gain ~ 2000
- Energy res. $σ(E)E < 12%$
- § Intrinsic ion-blocking capabilities (IB <1%)
- Keep space-charge distortions at a tolerable level
- Mixture Ne-CO2-N2 (90-10-5) (high ion mobility)

R&D synergies between the ILC TPC and the T2K-II ND TPC.

TPC reinstallation in the ALICE cavern (August 2020)

 870.5 mm $-$

OROC3

OROC₂

OROC1

IROC

Steps toward a long term detector R&D program

Main target projects of Gaseous Detector R&D

Rare event search, fixed target (LFV, Kaon physics)

DM, solar axions, ββ0ν-decay, neutrino, nuclear, astroparicle

Colaleo – Gas based detectors **10** DarkSide 20 and ARGO 10 **DarkSide20 and ARGO**

Muon system: ex. FCC-ee/CEPC/Muon Collider

- New, innovative, possibly more costeffective concept
- Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system
- 3 muon stations in the return yoke

Based on CLIC detector design; technology developments carried out for LCs

- All silicon vertex detector and tracker
- 3D-imaging highly-granular calorimeter system
- Coil outside calorimeter system
- 6-7 muon stations in the return yoke

3 - 6 Muon Stations

Space res, σ_{x} , of O(100)um Efficiency \sim 98-99% Time res.: <ns (trigger/BX-id, bkg rej, LPP..) . Rate: few KHz/cm2 – MHz/cm2 Low GWP gas mixture

A. Colaleo – Gas based detectors 11

- $RPC -30 \times 30$ mm² cells @CLD/CEPC
- MPGD/RPC@ Muon collider

μRWell 50x50 cm² (tiles) also for pre-shower @FCC

@High Rate: Different Grounding schema for fast current evacuation at high rate

Silver Grid (SG)

• Single DLC layer grounded by condutive strip lines realized on ttop of he DLC layer)

Double resistive layer (DRL)

• Double DLC layers connected through matrices of conductive vias to the readout electrodes

Inner & central tracking with PID: Drift chambers

Approach at construction technique of high granularity and high transparency Drift Chambers@ **FCC-ee/CEPC/SCTF → Main studies for IDEA cylindrical drift chamber (DCH)**

The wire net created by the combination of + and - orientation generates a more uniform equipotential surface

- High wire number requires a non ٠ standard wiring procedure and needs a feed-through-less wiring system.
- A novel wiring procedure developed for the construction of the ultra-light MEG-II drift chamber
- Large number of channels,
- gas gains ∼**5**×**105**
- long drift times (slow drift velocity),
- trigger rate $(Z_0$ -pole at FCC-ee) = 25kHz/cm²

The dE/dx \lt 3%, momentum resolution: $\sigma(pT)/pT \approx 0.4\%$ at 100 GeV/c with cluster counting, a desirable achievement :

- on-line real time data reduction algorithms
- new wire material studies
- new wiring systems for high granularities/ new end-plates / new materials

- \Box GAS: 90% He 10% iC₄H₁₀
- \Box Radius $0.35 2.00$ m
- \Box Total thickness: 1.6% of X_0 at 90^o

Particle Separation (dE/dx vs dN/dx)

Inner & central tracking with PID: straw chamb

Self-supporting straw tubes with thin anode wire and an aluminised Mylar cathoger combination of short drift time, low mass, and high spatial resolution tracking by using meters) and small diameter (< 1 cm) straws, arranged in planar layers.

Innovative straw detectors are foreseen at both future storage rings and fixed target facilities.

$Straw$ 1.2%

P. Wintz

COSY-TOF Straw tracker

NA62 is the state-of-the-art straw tracker

- Breakthrough: ultrasonic welding technique to close the straw and to keep them straight and withstand the vacuum pressure without breaking
- rates up to 40 kHz/cm (500 kHz/straw), ageing resistance up to ~ 1 C/cm/wire
- material budget of a straw module ~ 0.7% X/X0

Inner/Central tracking with PID: TPC with MPGD-based Readout

ILC-TPC: Target requirement: point resolution 100 um in transverse plane and dE/dx resolution < 5% reached with all technologies (**GEM, MM and GridPix**)

If dE/dx combined with ToF using SiECAL, P < 10GeV region for pion-K separation covered

 $ions/cm³$ \rightarrow track distortions < 5 µm

Gas amplification 10³ \rightarrow distortions of 60 µm \rightarrow gating device is needed

 \rightarrow Exploit ILC bunch structure as 1 ms long bunch trains will arrive every 200 ms **Gating GEM** gate opens 50 us before the 1st bunch and closes 50 us after the last bunch:

Measured electron transparency >80 % (as in simulations) for $\Delta V \sim 5V$

Inner/Central tracking with PID: TPC with MPGD-based Readout

CEPC/FCC: No bunch structure → continuous beam (cfr. ALICE) $\frac{6}{3}$ 10³

- **HZ/WW/tt running**è Pad readout (MM + GEM)
- **Z** pole running($@10^{36}$): primary ion density 1000 ions/cm³
	- \rightarrow tracks distortions O(mm) \rightarrow Pixelated readout \rightarrow GridPix
	- Single ionisation electrons are detected with high efficiency
	- dE/dx by cluster counting
	- Measuring IBF for Gridpix is a priority, expected $O(1\%)$

Quad 2018

Single chip

MM grid (InGrid) on Timepix chip

2017

Module - 2019

The maximum possible information from a track is acquired:

50 cm track length with ~ 3000 hits

- \rightarrow each is electron from the primary ionisation
- \rightarrow for track reconstruction, in case of curved tracks
	- A. Colaleo Gas based detectors 15

Micromegas + GEM studies for CEPC / FCC-ee to minimize ion backflow

Calorimeter

The Particle-flow approach

- high granularity (σ_{xy} = 50um, σ_t = 5ns) at low cost
- Low pad multiplicity
- radiation hard detector
- good energy resolution, bkg rejection:

Studies done within CALICE collaboration:

- AHCAL Scint+SiPM 3×3 cm² granularity
- DHCAL glass RPC 1 x 1 cm² granularity
- SDHCAL RPC/MICROMEGAS/RPWELL 1 x 1 cm² granularity

New handle: Fast- timing

- If pico-second-time and energy information at each point along the track
	- \Rightarrow 5D imaging reconstruction
- better assignment of deposit to PV timing
- Better construction of the shower

\rightarrow 1x1 cm² pad: energy resolution in SDHCAL same as AHCAL with software compensation

Facilities: (ILC/C3, FCC-ee, CEPC, Muon collider, Hadron Physics).

 E_{beam} [GeV]

Large area Fast timing gaseous detectors

Multi-Gap Resistive Plate Chambers (MRPC):

- \checkmark ALICE TOF detector (160m² achieved time res. ~ 60 ps)
- \checkmark New studies with MRPC with 20 gas gaps using a low-resistivity 400 µm-thick glass

 \rightarrow down to 20 ps time resolution

Single pad (2016) ø1 om

10x10 module $= 1$ cm

https://indioo.oern.oh/event/1040906/oontributions/4398412/ attachments/2265036/3845651/PICOSEC-update-final.pdf

17

Large area Fast timing gaseous detectors

Multi-Gap Resistive Plate Chambers (MRPC):

- \checkmark ALICE TOF detector (160m² achieved time res. ~ 60 ps)
- \checkmark New studies with MRPC with 20 gas gaps using a low-resistivity 400 µm-thick glass
	- \rightarrow down to 20 ps time resolution

Gaseous Detectors: Micromegas with Timing (RD51 Picosec Collaboration)

Single pad (2016) ø1 om

10x10 module

 $= 1 cm$

 \mathbf{D} icosec

Large area Fast timing gaseous detectors

Multi-Gap Resistive Plate Chambers (MRPC):

- \checkmark ALICE TOF detector (160m² achieved time res. ~ 60 ps)
- \checkmark New studies with MRPC with 20 gas gaps using a low-resistivity 400 µm-thick glass
	- \rightarrow down to 20 ps time resolution

DRD1 Collaboration implementation

R&D FRAMEWORK R&D PROJECTS

- **Collaboration type: Community-driven** with the **R&D environment:** common infrastructures (labs, workshops), common R&D tools (software and electronics), cross-disciplinary exchange
- **Scientific organization in Working Groups:** provides a platform for sharing knowledge, expertise, and efforts, by supporting strategic detector R&D directions, facilitating the establishment of joint projects between institutes.

- **Work Packages (WP):** long-term **projects** addressing strategic R&D goals, **outlined in the ECFA Detector R&D roadmap** with dedicated funding lines.
- **Common Projects (CP):** short-term **bluesky R&D** or common tool development with limited time and resources, supported by the Collaboration Common funds.

* See backup

Strategic R&D = Work Pac[kage](https://drd1.web.cern.ch/wp/wp2)

Group together institutes research interests around **Applications** with a specific task(s) devoted to a specific challenge (Detector R&D theme^{*}), typ specific Detector Technologies and to the development of specific tool or

Currently en

- \cdot WP1: tracke
- •WP2: Drift C
- $•WP3:$ Straw
- •WP4: Tracki
- •WP5: Calorii
- $•$ WP6: Photon
- \cdot WP7: Timing
- •WP8: Reacti

Additional WP on beyond fundamental physics also considered

* DRDT: See backup

A. Colaleo – Gas based detectors

DRD1 PROPOSAL

https://drd1.web.cern.ch/ https://cernbox.cern.ch/s/B

Expression of interest form 118 institutes from 30 countries

First draft subm July 31

DRD1 Work Package: example Photon detectors (WP6)

Challenges for the photon detectors

Preserving Photocathode Efficiency:

- 1. Suppressing ion backflow
- 2. Developing more robust photoconverters

1.Front-End Electronics (FEE):

- 1. Development of very low noise FEE
- 2. Large dynamic range FEE

2.Detector Performance Improvement:

- 1. Enhanced spatial resolution
- 2. Improved time resolution
- 3. Fast charge collection for maximum rate capability

3.TRD System Enhancement:

1. Better separation between transition radiation and ionization process in TRD systems

Area of application: nuclear physics, hadron physics, future ee, and eA machines. Timeline: >2030

WPs are currently in preparation: interested institutes are drafting confidential documents with detailed information about milestones, deliverables over the years and available/needed resources for the R&D program accomplishment. A. Colaleo – Gas based detectors and accomplishment. 23

Conclusion and remarks

Technological Advancements

in innovative materials, new architectures and cutting-edge technical solutions have ushered in a new era in the operational capabilities of gas detector, enabling these detectors to work under increasingly demanding conditions.

 \checkmark These remarkable developments stand to greatly benefit both upcoming and future experiments.

A strategic approach

is focused on knowledge-sharing, hybridization of technologies, combined features in the same detector (5D detector)

Success of Collaborative Efforts

the experience of RD51 has vividly demonstrated that collaborative endeavors yield success and pave the way for sustainable developments in our field.

DRD1 Collaboration

will unite groups engaged in diverse applications, leveraging various technologies and solutions.

 \rightarrow This presents a significant opportunity to advance our collective knowledge and capabilities.

Additional slides

Muon system for FCC-hh

with resolution of 50 um, $\sigma_{pT}/p_T \approx 5\%$ at 10TeV

- Barrel Muon system (2 layers) : 2000 m2
- Endcap Muon System (2 layers): 500 m2
- Forward Muon System: (4 layers): 320 m2

Hardest challenge

- pp collisions at 100 TeV (FCC-hh)
- Pileup: 1000 events/bunch crossing \rightarrow spatial resolution, timing

Muon barrel and endcap

- Charged rates $\sim 5x10^4$ cm⁻²s⁻¹
- photon rates $\sim 5x10^{6-8}$ cm⁻²s⁻¹
- N fluence \sim 10¹⁴ cm⁻² \rightarrow shielding can mitigate effect
- Current muon system gas detector technology will work for most of the FCC detector area
- Forward region ($r < 1$ m) \rightarrow more R&D would be needed A. Colaleo – Gas based detectors 26

TPC as reaction/decay chambers

TPCs are commonly used in rare event searches.

Lens-like Effect: Density-driven magnification/demagnification.

- **Different Readouts**: Charge, negative-ion, dual-phase, optical.
- Typically MPGD are used for the TPC amplification stage.

WIMP, DM & Neutrino Experiments

Nuclear Recoil Discrimination:

- **Large Tons @high pressure** : Noble liquid (Ar, Xe) + gas (MPGD) amplification and readout.
- **Light element as target:** low energy threshold and low radioactive background
	- **Ar o Ne mixture 1-10 bar with stable gain and without energy degradation**

Direction of WIMP Flux

3D Reconstruction: 20 mbar - 1 bar pressure for accurate 3D tracking.

• **Various Readout Methods**: Ionization electron, negative ions, electron ionization and optically based readouts at atmospheric pressure (Cygnus)

Particle Trackers for Neutrino Oscillation NDs Pressurized Argon-based TPCs: E.g., Dune ND at 10 bar.

TPC as reaction/decay chambers

ECFA DETECTOR R&D ROADMAP CONTENT

Performance targets and main drivers from facilities

Needs/benefits for physics reach

Detector R&D Themes

DRDT 1.1 - Improve time and spatial resolution for gaseous detectors with longterm stabil

DRDT 1.2 - Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large low material budget and different read-out schemes

DRDT 1.3 - Develop environmentally friendly gaseous detectors for very large areas with

DRTD 1.4 - Achieve high sensitivity in both low and high-pressure TPCs

From TF1 to DRD1: Implementation timeline

• Ramp up of new strategic funding and R&D activities 2024-2026 A. Colaleo – Gas based detectors 30

The wide family of gaseous detectors: applications

Summary of R&D Challenges for the different applications

DRD approval process and review

1. Scientific and Resource Reporting and Review by a Detector Research and Development Committee (DRDC)

Assisted by the ECFA Detector Panel (EDP): the scope, R&D goals, and milestones should be vetted against the vision encapsulated in the Roadmap

- 2. Funding Agency involvement via a dedicated Resources Review Board (~once every two years)
- 3. Yearly follow-up by DRDC \rightarrow report to SPC \rightarrow Council
- As projects develop, **some aspects should be expected to transition into approved experiment- specific R&D** (outside the DRD programme)
- In addition, as stated in the General recommendations (GSR7) funding possibilities for **"Blue-sky" R&D** should be foreseen