PSD13

St. Catherine's College September 3-8, 2023

Gas Based Detectors

Anna Colaleo University and INFN Bari

A. Colaleo – Gas based detectors

Embracing the Renaissance of Gaseous Detectors

CENTRAL CONTRACTOR OF CENTRAL CENTRAL

CMS GEM

Transfer Can Transfer Gap

2mm

THGEM

ALICE TPC upgrade

Hybrid design THGEM + MM

COMPASS RICH

Boosting the LHC upgrade and upcoming experiments

- enhancing Muon Tracking and Triggering with MPGDs, iRPC
- new Generation TPCs with MPGD-Based Readouts@ALICE/T2K
- ex.New Cylindrical Drift Chambers for MEGII, Novel StrawTubes at Mu2e, COMETI/II, Panda/@Fair...

Offering competitive performance

Time Precision with MRPC@Alice TOF and PICOSEC concept

Pioneering Approach: New technologies, Materials, Architectures, and Hybrid Technology

ATLAS new small wheels

A. Colaleo – Gas based detectors

iRPC

ATLAS BIS7&BIS8 and CMS RE3/1 & RE4/1

Gaseous detectors at LHC

	_						
	Vertex	lnner Tracker	PID/ photo- det.	EM CALO	HAD CALO	MUON Track	MUON Trigger
ATLAS	-	TRD (straws)	-	-	-	MDT (drift tubes), CSC,	RPC, TGC,
CMS	-	-	-	-	-	Drift tubes, CSC	Drift tubes, CSC
TOTEM						GEM	GEM
LHCb	-	Straws →SciFi	-	-	-	MWPC	MWPC, GEM
ALICE	-	TPC (MWPC→ Upgrade to 4-GEM)	TOF(MRPC), PMD, HPMID (RICH-pad chamber), TRD (MWPC)	-	-	Muon pad chambers	RPC

(including HL-LHC), supported by aging mitigation, advanced electronics, repair accessibility, and a sustainable approach (environmental-friendly)

Gaseous detector upgrade at HL-LHC

	Gaseous detector upgrade at HL-LHC M.Titov								
Experiment / Timescale	Application Domain	Gas Detector Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks				
ALICE TPC UPGRADE CERN LS2	Heavy-lon Physics (Tracking + dE/dx)	4-GEM / TPC	Total area: ~ 32 m ² Single unit detect: up to 0.3m ²	Spatial res.: ~300µm Time res : ~ 100 ns dE/dx: 11 % Rad. Hard.: 50 mC/cm ²	- 50 kHz Pb-Pb rate; - Continues TPC readout - Low IBF and good energy resolution				
CMS MUON UPGRADE GE11 CERN LS2	Hadron Collider (Tracking/Triggering)	3-GEM	Total area: ~ 50 m ² Single unit detect: 0.3-0.4m ²	Max. rate: 5 kHz/cm ² Spatial res.: 0.6 – 1.2mm	Redundant tracking and triggering, improved pt resolution in trigger				
CMS MUON UPGRADE GE21 CERN L3	Hadron Collider (Tracking/Triggering)	3-GEM	Total area: ~ 105 m ² Single unit detect: 0.3-0.4m ²	– 3.0mm Time res.: ~ 7 ns	Redundant tracking and triggering, displaced muon triggering				
CMS MUON UPGRADE ME0 CERN L3	Hadron Collider (Tracking/Triggering)	3-GEM	Total area: ~ 65 m ²	Spatial res.: 0.6 – 1.3mm Time res.: ~ 7 ns Rad. Hard.: ~ 7.9 C/cm ²	Extension of the Muon System in pseudorapidity, installation behind HGCAL				
CMS MUON UPGRADE RE3.1, RE 4.1 2023-24 (CERN L3)	Hadron Collider (Tracking/Triggering)	iRPC	Total area: ~ 140 m ² Single unit detect: 2m ²	Max.rate: 2kHz/cm ²	Redundant tracking and triggering				
LHCb MUON UPGRADE CERN LS4	Hadron Collider (triggering)	P-RWELL	Total area: ~ 90 m ² Single unit detector: From 0,4x0,3 m ² To 0,8x0,3 m ²	Max.rate:900 kHz/cm ² Spatial res.: ~ cm Time res.: ~ 3 ns Rad. Hard : ~ 2 C/cm ²	About 600 detectors				
ATLAS MUON UPGRADE CERN LS2 / LS3	Hadron Collider (Tracking/Triggering)	Endcap: Res. Micromegas & STGC	Endcap area: 1200 m ² Single unit detect:(2.2x1.4m ²) ~ 2-3 m ²	Spatial res.: <100 μm Time res.: ~ 10 ns Rad. Hard.: ~ 0.5 C/cm ²	Redundant tracking and triggering; Challenging constr. in mechanical precision				
ATLAS MUON UPGRADE (BIS78 PILOT) CERN LS2	Hadron Collider (Tracking/Triggering)	Part of Inner Barrel: RPC + sMDT	Barrel area (3 layers): 140 m ² Single unit det.: ~ m ²	Spatial res.: ~ 7 mm Time res.: ~ 1 ns Rad. Hard.: 300 fb	Redundant tracking and triggering; 9 layers with 2D hit position + time				
ATLAS MUON UPGRADE (BI PROJECT) CERN LS3	Hadron Collider (Tracking/Triggering)	RPC A. (Barrel area: 1400 m ² Single unit det.: ~ m ² Colaleo – Gas based detectors	Spatial res.: ~ (0.1 x 1) cm in (η , φ) Time res.: ~ 0.5	Redundant tracking and triggering; 9 layers with 2D hit position + time 4				

Advancements in MPGDs:

Fueling ATLAS, CMS, ALICE Upgrades in Run 3

- ATLAS New Small Wheel with Micromegas
- CMS GE1/1 with 3-GEM
- ALICE TPC with 4-GEM TPC

Three ground breaking LHC upgrades, incorporating MPGDs, embarked on their <u>several year R&D journeys in</u> <u>close collaboration with RD51</u>, leveraging dedicated facilities at the GDD-RD51 Laboratory.

- Resistive Micromegas (MM) + small Thin Gap Chambers (sTGCs) for Trigger & Track Reco @ HL-LHC
- Precision tracking (~ 100 μ m/plane, > 90% efficiency) for $\sigma p_t/p_t$ < 15% at muon $p_T \approx$ 1 TeV
- particle flux: up to 20 kHz/cm² rejecting fake triggers.

Peculiarities of ATLAS NSW Muon Upgrade's Resistive MM:

- Screen-printed resistive strips capacitive-coupled to Cu strips.
- Araldite passivation on edges for uniformity, less edge effects. ^{128 μm}
- Thin metallic micro-mesh at ground potential.
- "Floating" mesh integrated in drift panel
- Operates at -60 V with 93/5/2% Ar/CO2/isobutane mixture.

3GEM+ Cathode Strip Chambers (CSC) allows for muon momentum measurement in a single station, which helps reduce considerably L1 trigger rate@ HL-LHC

GE1/1: 144 10⁰ 3-GEM (72 per endcap)1.55 < $|\eta|$ < 2.18

CMS triple-GEM detectors peculiarities:

- 3/1/2/1 mm gaps
- <u>Single-mask GEM</u> technology
- mechanical foil stretching technique
- 15-years-long R&D on design, components and materials (longevity, outgassing studies, etc.)
- High rate O(MHz/cm²)
- Efficiency > 98%
- Space (time) resolution ≈
 300 µm (8 ns)
 - Gas mixt: Ar/CO₂ 70/30 (low GWP)

GEM GE1/1 chambers installed: Sept. 2020

A. Colaleo – Gas based detectors

New readout chambers which enables continuous readout@50 kHz in Pb-Pb

→ choice of 4-GEM

- Total effective gain ~ 2000
- Energy res. σ(E)E < 12%
- Intrinsic ion-blocking capabilities (IB <1%)
- Keep space-charge distortions at a tolerable level
- Mixture Ne-CO2-N2 (90-10-5) (high ion mobility)

R&D synergies between the ILC TPC and the T2K-II ND TPC.

TPC reinstallation in the ALICE cavern (August 2020)

Steps toward a long term detector R&D program

Main target projects of Gaseous Detector R&D

astroparicle

10 DarkSide20 and ARGO

Colaleo – Gas based detectors

Muon system: ex. FCC-ee/CEPC/Muon Collider

IDEA

New, innovative, possibly more costeffective concept

- Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system
- 3 muon stations in the return yoke

Based on CLIC detector design; technology developments carried out for LCs

- All silicon vertex detector and tracker
- 3D-imaging highly-granular calorimeter system
- Coil outside calorimeter system
- 6-7 muon stations in the return yoke

3-6 Muon Stations

Space res, σ_x , of O(100)um Efficiency ~ 98-99% . Time res.: <ns (trigger/BX-id, bkg rej, LPP..) . Rate: few KHz/cm² – MHz/cm² Low GWP gas mixture

- RPC -30 × 30 mm² cells
 @CLD/CEPC
- MPGD/RPC@ Muon collider

µRWell 50x50 cm² (tiles) also for pre-shower @FCC

@High Rate: Different Grounding schema for fast current evacuation at high rate

Silver Grid (SG)

• Single DLC layer grounded by condutive strip lines realized on ttop of he DLC layer)

Double resistive layer (DRL)

 Double DLC layers connected through matrices of conductive vias to the readout electrodes

Inner & central tracking with PID: Drift chambers

Approach at construction technique of high granularity and high transparency Drift Chambers@ FCC-ee/CEPC/SCTF → Main studies for IDEA cylindrical drift chamber (DCH)

sense wires:	20 mm diameter W(Au) =>	56448 wires
field wires:	40 mm diameter Al(Ag) =>	229056 wires
f. and g. wires:	50 mm diameter Al(Ag) => 343968 wires in total	58464 wires

The wire net created by the combination of + and – orientation generates a more uniform equipotential surface

- High wire number requires a non standard wiring procedure and needs a feed-through-less wiring system.
- A novel wiring procedure developed for the construction of the ultra-light MEG-II drift chamber
- Large number of channels,
- gas gains ~**5 × 10**⁵
- long drift times (slow drift velocity),
- trigger rate (Z₀-pole at FCC-ee) = 25kHz/cm²

The dE/dx < 3% , momentum resolution: $\sigma(pT)/pT \approx 0.4\%$ at 100 GeV/c with cluster counting, a desirable achievement :

- on-line real time data reduction algorithms
- new wire material studies
- new wiring systems for high granularities/ new end-plates / new materials

- □ GAS: 90% He 10% iC₄H₁₀
- □ Radius 0.35 <u>2.00 m</u>
- □ Total thickness: <u>1.6% of X₀ at 90</u>°

Inner & central tracking with PID: straw chambers

Self-supporting straw tubes with thin anode wire and an aluminised Mylar cathode wall offers a combination of short drift time, low mass, and high spatial resolution tracking by using long (a few meters) and small diameter (< 1 cm) straws, arranged in planar layers.

Innovative straw detectors are foreseen at both future storage rings and fixed target facilities.

NA62 is the state-of-the-art straw tracker

- Breakthrough: ultrasonic welding technique to close the straw and to keep them straight and withstand the vacuum pressure without breaking
- rates up to 40 kHz/cm (500 kHz/straw), ageing resistance up to \sim 1 C/cm/wire
- material budget of a straw module $\sim 0.7\%$ X/X0

	TOF-STT [5] (COSY)	PANDA STT/FT (FAIR)	NA62 [3] (CERN-SPS)	COMET [6] (J-PARC)	COMET+	SHiP [7] (CERN-SPS)
Mylar wall	32 µm*	27 µm*	36 µm	20 µm	12 µm	36 µm
Winding	helical, 2	strips glued		longitudinal ultras	onic welding	
Manufacturer	Commercial	(LAMINA, UK)		JINR, Du	bna	
Tube diam.	10.0 mm	10.0 mm	9.8 mm	9.8 mm	5.0 mm	20 mm
Cathode	Al (30 nm)	Al (100 nm)	Cu/Au (50/20nm)	AI (70nm)	AI (70nm)	Cu/Au (50/20nm)
Tube length 1050 mm		1400 mm	2100 mm 600 -1100 mm			5000 mm
Straw no.	2704	4224 / 12224	7168			16000
In vacuum	<mark>, yes</mark> n		yes yes		yes	yes
Status	Exp. finished (2009-2013)	Prod. ongoing, exp. in 2025	Experiment ongoing	Production completed	In develop- ment	Planned
Specific R&D Vacuum tracker		Low X/X0 solenoid tracker	Vacuum tracker A. Col	Thinnest vacuum tr aleo – Gas base	acker	Long straws in vacuum

Straw tube components (for PANDA-STT 1.2% X/X0, spatial resolution~150 µm

P. Wintz

NA62 Straw station

COSY-TOF Straw tracker

Inner/Central tracking with PID: TPC with MPGD-based Readout

ILC-TPC: Target requirement: point resolution 100 um in transverse plane and dE/dx resolution < 5% reached with all technologies (GEM, MM and GridPix)

If dE/dx combined with ToF using SiECAL, P < 10GeV region for pion-K separation covered

Gas amplification $10^3 \rightarrow$ distortions of 60 µm \rightarrow gating device is needed

→ Exploit ILC bunch structure as 1 ms long bunch trains will arrive every 200 ms Gating GEM gate opens 50 us before the 1st bunch and closes 50 us after the last bunch:

• Measured electron transparency >80 % (as in simulations) for $\Delta V \sim 5V$

Inner/Central tracking with PID: TPC with MPGD-based Readout

CEPC/FCC: No bunch structure → continuous beam (cfr. ALICE) 5 10³

- HZ/WW/tt running → Pad readout (MM + GEM)
- **Z pole running**(@10³⁶): primary ion density 1000 ions/cm³
 - → tracks distortions O(mm) → Pixelated readout → GridPix
 - \checkmark Single ionisation electrons are detected with high efficiency
 - ✓ dE/dx by cluster counting
 - ✓ Measuring IBF for Gridpix is a priority, expected O(1%)

MM grid (InGrid)

on Timepix chip

Single chip 2017 Quad

2018

Module - 2019

The maximum possible information from a track is acquired:

TPC plane

50 cm track length with ~ 3000 hits

- → each is electron from the primary ionisation
- → for track reconstruction, in case of curved tracks

Micromegas + GEM studies for CEPC / FCC-ee to minimize ion backflow

Calorimeter

The Particle-flow approach

- high granularity (σ_{xy} = 50um, σ_t = 5ns) at low cost
- Low pad multiplicity
- radiation hard detector
- good energy resolution, bkg rejection:

Studies done within CALICE collaboration:

- AHCAL Scint+SiPM 3 x 3 cm² granularity
- DHCAL glass RPC 1 x 1 cm² granularity
- SDHCAL RPC/MICROMEGAS/RPWELL 1 x 1 cm² granularity

New handle: Fast- timing

- If pico-second-time and energy information at each point along the track
 - \Rightarrow 5D imaging reconstruction
- better assignment of deposit to PV timin
- Better construction of the shower

➔ 1x1 cm² pad: energy resolution in SDHCAL same as AHCAL with software compensation

Facilities: (ILC/C³, FCC-ee, CEPC, Muon collider, Hadron Physics).

Ebeam [GeV]

Large area Fast timing gaseous detectors

Multi-Gap Resistive Plate Chambers (MRPC):

- ✓ ALICE TOF detector ($160m^2$ achieved time res. ~ 60 ps)
- ✓ New studies with MRPC with 20 gas gaps using a low-resistivity 400 µm-thick glass

→ down to 20 ps time resolution

single pad (2016) e1 cm 10x10 module

https://indico.cern.ch/event/1040996/contributions/4398412/ attachments/2265036/3845651/PICOSEC-update-final.pdf

17

Large area Fast timing gaseous detectors

Multi-Gap Resistive Plate Chambers (MRPC):

- \checkmark ALICE TOF detector (160m² achieved time res. ~ 60 ps)
- \checkmark New studies with MRPC with 20 gas gaps using a low-resistivity 400 µm-thick glass
 - → down to 20 ps time resolution

Gaseous Detectors: Micromegas with Timing (RD51 Picosec Collaboration)

Cherenkov radiator + Photocathode + Micromegas

 $\sigma \sim 25 \text{ ps timing resolution (per track)}$

Single pad (2016) ø1 cm

10x10 module 1 cm

 $< 10 \mu m$

https://indico.cern.ch/event/1040996/contributions/4398412/ attachments/2265036/3845651/PICOSEC-update-final.pdf

DICOSEC

Micromegas

Large area Fast timing gaseous detectors

Multi-Gap Resistive Plate Chambers (MRPC):

- ✓ ALICE TOF detector (160 m^2 achieved time res. ~ 60 ps)
- $\checkmark\,$ New studies with MRPC with 20 gas gaps using a low-resistivity 400 μm -thick glass
 - → down to 20 ps time resolution

DRD1 Collaboration implementation

R&D FRAMEWORK

- Collaboration type: Community-driven with the R&D environment: common infrastructures (labs, workshops), common R&D tools (software and electronics), cross-disciplinary exchange
- Scientific organization in Working Groups: provides a platform for sharing knowledge, expertise, and efforts, by supporting strategic detector R&D directions, facilitating the establishment of joint projects between institutes.

R&D PROJECTS

- Work Packages (WP): long-term projects addressing strategic R&D goals, outlined in the ECFA Detector R&D roadmap with dedicated funding lines.
- Common Projects (CP): short-term bluesky R&D or common tool development with limited time and resources, supported by the Collaboration Common funds.

* See backup

Strategic R&D = Work Package

Group together institutes research interests around Applications with a focus on a specific task(s) devoted to a specific challenge (Detector R&D theme^{*}), typically related to specific Detector Technologies and to the development of specific tool or infrastructure

Currently envisaged WPs

•WP1: trackers/hodoscopes
•WP2: Drift Chambers
•WP3: Straw Chambers
•WP4: Tracking TPCs
•WP5: Calorimetry
•WP6: Photon detectors
•WP7: Timing detectors
•WP8: Reaction/Decay TPCs

Additional WP on beyond fundamental physics also considered

* DRDT: See backup

DRD1 PROPOSAL

https://drd1.web.cern.ch/

Expression of interest form 118 institutes from 30 countries

https://cernbox.cern.ch/s/BKQsu6oiuhPWDaa

First draft submitted to DRDC on July 31st 2023

DRD1 Work Package: example Photon detectors (WP6)

#	Task	Performance	DRD1	ECFA	Comments	Deliv. next 3y	Interested Insti-
T1	Increase photo- cathode efficiency and develop ro- bust photocon- verters	Goal Improve: - Longevity - QE - Extend to the visible range - Rad-hardness up to 10 ¹¹ n _{eq} /cm ²	WGs WG3 (3.1C), WG7 (7.1-4)	DRDT 1.1	- Hydrogenated nanodi- amonds - Diamond-Like Carbon	 Demonstrate the performance of nanodiamond- powder photocathodes in terms of their chemical reac- tivity and ageing Provide a detailed char- acterization of QE of new photocathode materials, e.g. DLC 	tutes INFN Trieste, CERN, Helsinki, IRFU/CEA, NISER Bhub, Coimbra Univ., LMU Munich, U Aveiro, RBI Zagreb
T2	IBF suppression, discharge protec- tions	 IBF reduction down to 10⁻⁴ and below stable, high gain operation up to 10⁵-10⁶ operation in magnetic field 	WG4, WG7 (7.1,5)	1.2	- Multi-Micromegas de- tectors - Zero IBF detectors - New structures (Co- bra, M-THGEM,) and coating materials (Mo) - Grids. bi-polar grids, gating GEM	- Demonstrate a small-area new structure or stack of structures providing stable op- eration at high gains and low IBF performance	USTC, INFN-TS, INFN-PD, INFN- PV, TU Munich, WIS, UBONN, Helsinki, IRFU/CEA, NISER Bhub, CERN, MSU, Stony Brook, JLAB, BNL, Coimbra Univ., IPPLM Poland, U Aveiro, RBI Zagreb
T3	Gas studies	- Develop eco- friendly gas radiators and in particular, ex- plore alternatives to CF ₄	WG3 (3.2A), WG4, WG7 (7.2,4)	1.1, 1.3	 Identification of eco- friendly gas mixtures free from greenhouse gases Atternatives to CF₄ for optical readout 		CERN, NISER Bhub., U Jerusalem, GSSI, INFN- PD, INFN-TS, AGH Krakow, IPPLM Poland, USC/IGFAE, U Aveiro
T4	FEE	Stability at high input C Low Noise Large dynamic range	WG5	1.2		- Present an ASIC con- cept/prototype	Sao Paulo, NISER Bhub, INFN-PD, INFN-TS, AGH Krakow, IPPLM Poland, CERN, Manchester, MSU, Stony Brook, JLAB, DIPC
T5	Enhance mechan- ics	 High-pressure operation Improve gas tightness 	WG6	1.3			NISER Bhub., U Jerusalem, GSSI, USC/IGFAE, CERN, MSU, JLAB, DIPC, IPPLM Poland, RBI Zagreb
T6	Precision mea- surements	 Time resolution ≤ 1 ns Spatial resolution ≤ 1 mm 	WG7.2		- MPGD: Picosec		CERN, IPPLM Poland

Challenges for the photon detectors

Preserving Photocathode Efficiency:

- 1. Suppressing ion backflow
- 2. Developing more robust photoconverters

1.Front-End Electronics (FEE):

- 1. Development of very low noise FEE
- 2. Large dynamic range FEE

2.Detector Performance Improvement:

- 1. Enhanced spatial resolution
- 2. Improved time resolution
- 3. Fast charge collection for maximum rate capability

3.TRD System Enhancement:

 Better separation between transition radiation and ionization process in TRD systems

Area of application: nuclear physics, hadron physics, future ee, and eA machines. Timeline: >2030

WPs are currently in preparation: interested institutes are drafting confidential documents with detailed information about milestones, deliverables over the years and available/needed resources for the R&D program accomplishment. A. Colaleo – Gas based detectors

Conclusion and remarks

Technological Advancements

in innovative materials, new architectures and cutting-edge technical solutions have ushered in a new era in the operational capabilities of gas detector, enabling these detectors to work under increasingly demanding conditions.

 These remarkable developments stand to greatly benefit both upcoming and future experiments.

A strategic approach

is focused on knowledge-sharing, hybridization of technologies, combined features in the same detector (5D detector)

Success of Collaborative Efforts

the experience of RD51 has vividly demonstrated that collaborative endeavors yield success and pave the way for sustainable developments in our field.

DRD1 Collaboration

will unite groups engaged in diverse applications, leveraging various technologies and solutions.

This presents a significant opportunity to advance our collective knowledge and capabilities.

Additional slides

Muon system for FCC-hh

Muon System, tracking and trigger capabilities with resolution of 50 um, $\sigma_{pT}/p_T \approx 5\%$ at 10TeV

- Barrel Muon system (2 layers) : 2000 m²
- Endcap Muon System (2 layers): 500 m²
- Forward Muon System: (4 layers): 320 m²

Hardest challenge

- pp collisions at 100 TeV (FCC-hh)
- Pileup: 1000 events/bunch crossing → spatial resolution, timing

Muon barrel and endcap

- Charged rates ~ 5x10⁴ cm⁻²s⁻¹
- photon rates ~ 5x10⁶⁻⁸ cm⁻²s⁻¹
- N fluence ~10¹⁴ cm⁻² → shielding can mitigate effect
- Current muon system gas detector technology will work for most of the FCC detector area
- Forward region (r < 1 m) → more R&D would be needed A. Colaleo – Gas based detectors

TPC as reaction/decay chambers

TPCs are commonly used in rare event searches.

Lens-like Effect: Density-driven magnification/demagnification.

- **Different Readouts**: Charge, negative-ion, dual-phase, optical.
- Typically MPGD are used for the TPC amplification stage.

WIMP, DM & Neutrino Experiments Nuclear Recoil Discrimination:

- Large Tons @high pressure : Noble liquid (Ar, Xe) + gas (MPGD) amplification and readout.
- Light element as target: low energy threshold and low radioactive background
 - Ar o Ne mixture 1-10 bar with stable gain and without energy degradation

Direction of WIMP Flux

3D Reconstruction: 20 mbar - 1 bar pressure for accurate 3D tracking.

• Various Readout Methods: Ionization electron, negative ions, electron ionization and optically based readouts at atmospheric pressure (Cygnus)

Particle Trackers for Neutrino Oscillation NDs Pressurized Argon-based TPCs: E.g., Dune ND at 10 bar.

TPC as reaction/decay chambers

Facility	Technologies	Challenges	Most challenging requirements at experiment
WIMP search (DRIFT, MIMAC, CYGNUS, MIGDAL, TREX-DM)	-TPC w/ MWPC/MPGD at 20-130 mbar, charge readout -TPC w/ MPGD at 66 mb/1 bar, charge and optical readout -TPC w/ MPGD at 1-10 bar, charge readout	High granularity, high gain, low background, very low noise level and fast electronics, self trigger capability, gas optimization	(CYGNUS) Gain $- O(10^6)$ Spatial resolution $- O(100 \ \mu\text{m})$ Energy Threshold $- 2 \ \text{keVee}$ Energy Resolution $- 20\%$ at 5.9 keVee Optical readout He:SF ₆ or He:CF ₄ at P = 1 bar
Solar axion helioscope (IAXO)	-TPC w/ pixelated Micromegas, GridPix, charge readout	High granularity, low background, radiopure electronics, self-trigger capability	High efficiency in ROI (0-10 keV) Spat. res = $O(100 \ \mu m)$ Background: $10^{-7} \ c/keV/cm2 \ /s$ Xe at P = 1 bar B = 6 T
Low energy nuclear physics general purpose active target (AT-TPC, ACTAR)	-TPC+MM at 0.05- 3 bar, charge readout	Electronics with large dynamic range and flexible configuration. self-trigger capability, high pressure MPGD	(AT-TPC) B - 2 T P - 0.05-1 bar 3D-layout Generic target gases (H2, He, Ar, CO2)
Neutrino physics and Neutrino-less double beta decay (DUNE-ND, NEXT, PANDAX-II)	-TPC+SiPM+PM: electroluminescence readout, -TPC+MM: charge readout	low background, energy resolution and topological rejection factors, scale to large volume, transparency and long drifting distance, high pressure, Ba++ tagging	(NEXT) P = 5-15 bar 3D-reconstruction of tracks through SiPM plane Energy resolution < 1% Ba++tagging
Neutrinos and DM search (Dune, DarkSide-20k, Argo, PandaX-4T, LZ, ARIADNE, Darwin)	- Dual-Phase TPC+MPGD	Large volume (uniform and stability response), ultra-low background, energy resolution, low energy thresholds, high granularity, charge extraction from liquid to gas, background rejection by prompt scintillation light -S1/ signal from the charge -S2 optimisation; Xenon and Argon storage and recuperation techniques	 (Darwin) 200 t x yr exposure Drift/diameter: 2.6 m / 2.6 m LXe Mass: 40 t Particle discrimination by \$1/\$2 Low-energy threshold of ~1 keVnr Robust electrode design (up to 50kV) Ultra-low intrinsic radioactivity materials 222Rn: factor 100 reduction (α,n) neutrons (from PTFE) >99.98% Electron Recoil rejection at 30% Nuclear Recoil efficiency High light yield (QE) ~ 8 PE/keV (Darkside-20k /Argo) 200 t x yr exposure /Argo = 3000 t x yr) Drift/diameter: 3.5 m / 3.5 m LAr Mass: 51.7 t /Argo - 350 t Particle discrimination by \$1/\$2 and pulse shape. Low-energy threshold of ~0.5 keVnr Highlander scintillation yield ~40 PE/KeV Membrane cryostat like the ProtoDune Low radioactivity argon in underground CO2 wells (UAr) with an activity 1400 times lower than atmospheric

ECFA DETECTOR R&D ROADMAP CONTENT: TF1

Performance targets and main drivers from facilities

Muon system	Most challenging requirements at the experiment	Challenges	Technologies	Facility
Proposed techn RPC, Muti-GBM Micromegas, mic Micromegas, µPr	(LHCb): Max. rate: 900 kHz/cm ² Spatial resolution: ~ cm Time resolution: O(ns) Radiation hardness: ~ 2 C/cm ² (10 years)	Ageing and radiation hard, large area, rate capability, space and time resolution, miniaturisation of readout, eco-gases, spark-free, low cost	RPC, Multi-GEM, resistive-GEM, Micromegas, micro-pixel Micromegas, μ-RWELL, μ-PIC	HL-LHC
Inner/central tracking with Proposed techn TPC+(multi-GEM Gridpik, drift che layers of MPGD,	(IDEA): Max. rate: 10 kHz/cm ³ Spatial resolution: -60-80 µm Time resolution: O(ns) Radiation hardness: <100 mC/cm ²	Stability, low cost, space resolution, large area, eco-gases	GEM, µ-RWELL, Micromegas, RPC	Higgs-EW-Top Factories (ee) (ILC/FCC-ee/CepC/SCTF)
Preshower/ Calorimeters Proposed techt RPC, MIPC, MIPC GBM, JPMC, MIC Micromegas galary readout, Pacific	Fluxes: > 2 MHz/cm ² (θ<8 ⁰) < 2 kHz/cm ² (θ<8 ⁰) Spatial resolution: ~100μm Time resolution: sub-ns Radiation hardness: < C/cm ²	High spatial resolution, fast/precise timing, large area, eco-gases, spark-free	Triple-GEM, μ-RWELL, Micromegas, RPC, MRPC	Muon collider
Particle ID/T0 Proposed techn RICH-AMPGD, TF MRPC, Proposed	(CBM@FAIR): Max rate: <500 kHz/cm ² Spatial resolution: < 1 mm Time resolution: ~ 15 ns Radiation hardness: 10 ¹⁰ neq/cm ² /year	High rate capability, good spatial resolution, radiation hard, eco-gases, self-triggered front-end electronics	Micromegas, GEM, RPC	Hadron physics (EIC, AMBER, PANDA/CMB@FAIR, NA60+)
TPC for rare d	Max. rate 500 Hz/cm ² Spatial resolution = 50 μm Angular resolution = 70 μrad (η=0) to get Δp/p≤10% up to 20 TeV/c	Stability, ageing, large area, low cost, space resolution, eco-gases, spark-free, fast/precise timing	GEM, THGEM, μ-RWELL, Micromegas, RPC, FTM	FCC-hh (100 TeV hadron collider)
Proposed techn TPC+MPGD ope low to very high p		ion system	Ex. Mu	

Detector R&D Themes

Needs/benefits for physics reach

			DRDT		< 203	0		2030-2035	20		45	
he experiment		Rad-hard/longevity	11									
ie experiment	Muon system	Time resolution	11				1 1 1	5 i i		• •		ė ė
	Proposed technologies:	Fine granularity	11	•							•	• •
	RPC, Multi-GEM, resistive GEM, Micromegas, micropixel	Gas properties (eco-gas)	1.3								-	ΟŎ
	Micromegas, µRweil, µPIC	Spatial resolution	11	•							ē	ðě
		Rate capability	1.3	•								
		Rad-hard/longevity	11	•				•				
	Inner/central	Low X _o	1.2					•			•	
	tracking with PID	IBF (TPC only)	1.2	Ó Ó						ÌŎŎ	ŏ	
	Proposed technologies:	Time resolution	11					•		5 i i		
	TPC+(multi-GEM, Micromegas, Gridpie), drift chembers, cylindrical	Rate capability	1.3	•	•			•		• •	•	
	layers of MPGD, straw chambers	dE/dx	1.2	•				•			•	
		Fine granularity	11	•	•			•) Ó Ó	•	
		Rad-hard/longevity	11									
	Preshower/	Low power	11							• •		ē ē
	Calorimeters	Gas properties (eco-gas)	1.3								•	• •
	Proposed technologies:	Fast timing	11									i i
	RPC, MRPC, Micromegas and GEM, µRwell, InGrid (Integrated	Fine granularity	11									ė ė
	Micromegas grid with pixel readout), Pico-sec, FTM	Rate capability	1.3							ÓÓ		ð ö
		Large array/integration	1.3								ĕ	ŏŏ
		Rad-hard (photocathode)	11	•				•				TT
	Particle ID/TOF	IBF (RICH only)	1.2	0								
	Proposed technologies:	Precise timing	11	ō (•				
	RICH+MPGD, TRD+MPGD, TOF:	Rate capability	1.3		5			ĕ				
	MRPC, Ploosec, FTM	dE/dx	1.2					T				
		Fine granularity	11					•				
An/m=109/		Low power	1.4						•			
Δp/p≤10% up		Fine granularity	1.4			i i (ŏ •			
	TPC for rare decays	Large array/volume	1.4									
	Proposed technologies:	Higher energy resolution	1.4						ÓŎ			
	TPC+MPGD operation (from very low to very high pressure)	Lower energy threshold	1.4						ŏ Ŏ.			
		Optical readout	1.4			i i i	5		ě ě			
		Gas pressure stability	1.4									
		Radiopurity	1.4									

- DRDT 1.1 Improve time and spatial resolution for gaseous detectors with longterm stability
- DRDT 1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes

DRDT 1.3 - Develop environmentally friendly gaseous detectors for very large areas with high-rate capability

DRTD 1.4 - Achieve high sensitivity in both low and high-pressure TPCs

From TF1 to DRD1: Implementation timeline

	Q4-2022/Q1-2023	Q2-2023	Q3-2023	Q4-2023	2024
-	Formation of the DRD1 proposal team Collection of interest from the institutes (survey) 1 st Workshop and	Writing the proposal (scientific and organization) that includes conclusion and feedback from the workshop and survey Collect feedback by	End July –submission of the proposal, including resource information: resources needed resources already	 Establishing continuation of existing RD51 projects and carrying resources DRD1 organization and scientific 	underway
	shaping the direction of RD.	institutes in contact with their funding agencies about the best funding schema 2 nd Community Workshop	 available Interest of institutes/FA to contribute to specific tasks 	 Follow the review revisions and 	Through 2024, collection of MoU signatures with defined contribution areas per
•	DRDC mandate reviewed and agreed • with CERN management and EDP	Mechanisms agreed with funding agencies for country specific DRD funding request.	 DRDC review (scientif milestones, feasibility, financials) 		Start monitoring progress in organization

• Ramp up of new strategic funding and R&D activities 2024-2026

The wide family of gaseous detectors: applications

Summary of R&D Challenges for the different applications

Muon System	Inner and Central tracking	Calorimetry	Photon detection	TOF	Rare decays
Radiation hardness and stability of		• Uniformity of the response of	• Preserve the photocathode	 Uniform rate capability 	• Radio-purity of the
	• High rate, unique volume, high granularity, low	the large area and dynamic	efficiency by IBF and more robust	and time resolution over	materials
hundreds of C/cm2:	mass	energy range;	photoconverters;	large detector area;	 Low background
- aging issues and discharges;	 Hydrocarbon-free mixture for long-term and 	• Optimization of weights for	• Gas radiator: alternative to CF4	• New material for high rate	 High granularity
• Operation in a stable and efficient	high-rate operation	different thresholds in digital	 Gas tightness 	(low resistivity, radiation	 For large volume
manner with incident particle flows	• Prove the cluster counting principle with the related	calorimeters	• Very low noise when coupling	hardness);	detectors: transparency over
up to ~10 MHz/cm2:	electronics	• Rate capability in detectors	large capacitance;	- uniform gas distribution;	large distance
	 Mechanics: new wiring procedure, new wire 	based on resistive materials:	• Large dynamic range of the FEE;	- thinner structures:	 Pressure stability and
elements needed to keep occupancy	materials	resistivity uniformity, discharge	• Separate the TR radiation and the	mechanical stability and	control
	 Integration: accessibility for repairing. 	issue at high rate and in large	ionization process	uniformity;	• Electronics with large
 Manufacturing, on an industrial 		area detector;	• InTDD use of cluster counting	 Eco-gas mixture; 	dynamic range and flexible
scale, large detectors at low cost, by	TPC	• R&D on sub-ns in active	technique and improve it by means	• Electronics: Low noise,	configuration.
	• R&D on detector sensors to suppress the IBF ratio	elements: resolution stables over	of a Ingrid.	fast rise time, sensitive to	 Self-trigger capability
transfer to the industry and identifies	• Optimize IBF together with energy resolution	wide range of fluxes;		small charge;	 Low noise electronics
processes transferable to industries	• Gain optimization: IBF, discharge stability	 Gas homogeneity and stable 		 Possibly optical readout; 	 Fast electronics
• Identification of eco-friendly gas	• Uniformity of the response of the sensors	over time.		 Precise clock distribution 	 Optical readout
mixture and mitigation of the issue	• Gas mixture: stability, drift velocity, ion mobility,	• Eco-friendly gas mixture for		and synchronization over	
related to the operation with high	aging	RPC;		large area.	
WGP gas mixture:	• Influence of Magnetic field on IBF)	• Stability of the gas gain: fast			
- gas tightness; gas recuperation	• High spatial resolution	monitoring of gas mixture and			
system; accessibility for repairing.	• Very low material budget (few %)	environmental conditions;			
• Study of resistive materials (RPC	• Mechanics: thickness minimization but robust for	Mechanics:			
and MPGD):	precise electrical properties for stable drift velocity.	- large area needed to avoid			
- higher gain in a single	• Integration: cooling of electronics.	dead zone: limitation on size and			
multiplication layer, with a		planarity of PCB is an issue.			
remarkable advantage for assembly,	Straw chambers	- multi-gap with ultra-thin			
mass production and cost.	• Ultra-long and thin film tubes;	modules: very thin layer of glass			
- new material and production	• "Smart" designs: self-stabilized straw module,	and HPL electrodes, gas gap			
techniques for resistive layers for	compensating relaxation;	thickness uniformity few micron			
increasing the rate capability	• Small diameter for faster timing, less occupancy,				
• Thinner layers and mechanical	high rate capability;				A CONTROL OF THE BURGET AND
precision over large area	• Reduced drift time, hit leading times and trailing				State European Strategy Group
	time resolutions, with dedicated R&D on the				
	electronics;				
	• PID by dE/dx with "standard" time readout and				European Strategy
	time-over-threshold;				
	• 4D-measurement: 3D-space and (offline) track time;				
	• Over-pressurized tubes in vacuum: control the				
	leakage rate to maintain the shape.				

DRD approval process and review

1. Scientific and Resource Reporting and Review by a Detector Research and Development Committee (DRDC)

Assisted by the ECFA Detector Panel (EDP): the scope, R&D goals, and milestones should be vetted against the vision encapsulated in the Roadmap

- Funding Agency involvement via a dedicated Resources Review Board (~once every two years)
- Yearly follow-up by DRDC→ report to SPC→ Council
- As projects develop, some aspects should be expected to transition into approved experiment- specific R&D (outside the DRD programme)
- In addition, as stated in the General recommendations (GSR7) funding possibilities for "Blue-sky" R&D should be foreseen