

Position Sensitive Detectors in Nuclear Physics

Marina Petri

School of Physics, Engineering and Technology University of York

13th International Conference on Position Sensitive Detectors, Oxford, September 3rd-8th 2023

Frontier science: studies of exotic nuclei

Why do we study exotic nuclei?

Or	ig	ir		of	t	he	9 (el	e	m	e	nt	S				NIVE fy	rsity ork
	H^1 Li^3 N^{11}	Be^4											5 B	C 6	7 N 15	O 8	F 9	He^{2} $\frac{10}{Ne}$ 18
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	Al 31 Ga	S1 32 Ge	P 33 As	S Se ³⁴	Cl 35 Br	Ar 36 Kr
	Rb 55 Cs	Sr ³⁸ 56 Ba	Y ³⁹ 57 La	$\frac{Zr^{40}}{T^2}$	Nb 73 Ta	42 Mo 74 W	Tc 75 Re	Ru 76 Os	Rh ⁴⁵ 77 Ir	Pd ⁴⁶ 78 Pt	Ag 79 Au	$\frac{\text{Cd}^{48}}{\text{Hg}}$	In 81 Tl	Sn Sn 82 Pd	Sb 83 Bi	Te 84 Po	I 85 At	Xe 86 Rn
	87 Fr	88 Ra	89 Ac	104 Rf	105 Ha	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds		Į						

58	59	60	61	62	63	64	65	66	67	68	69		71
Ce	Pr	Nd	Pm	Sm	Eu	Gď	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Nucleosynthesis: How are the elements made?

UNIVERSITY

Nucleosynthesis: How are the elements made?

masses, neutron capture cross sections, beta decays and fission properties (e.g., barriers and yield distribution) for very n-rich nuclei

Supernova

Can we predict?

Away from available data, predictions still vary widely.

Can we measure?

162

The landscape of possible nuclei

s-Process 'Slow process' via chain Number of protons rp-Process of stable nuclei through 'Rapid proton process' neutron capture via unstable proton-rich nuclei through Lead-82 proton capture **Proton dripline** (edge of nuclear stability) Tin-50 r-Process 'Rapid process' via Nickel-28 82 unstable neutron-rich nuclei **Neutron dripline** (edge of nuclear stability) 50 Fusion up to iron Number of neutrons

The synergy between theory and experiment

Theory is when you know everything but nothing works.

Practice is when everything works but no one knows why.

In this lab, theory and practice are combined: nothing works and no one knows why.

Advance our understanding of **nuclear structure:** oxygen "anomaly"

Nature | Vol620 | 31August2023 | 965

https://doi.org/10.1038/s41586-023-06352-6
Received: 13 October 2022
Accepted: 21 June 2023
Published online: 30 August 2023
🖲 Check for updates

Y. Kondo¹²⁵³, N. L. Achouri³, H. Al Falou⁴⁵, L. Atar⁶, T. Aumann^{6,28}, H. Baba², K. Boretzky⁷, C. Caesar³⁷, D. Calvet⁷, H. Cha⁶⁰, N. Chiga², A. Corsi⁹, F. Delauna³, A. Bolbar⁴, Q. Deshayes³, Za. Dombrád¹¹, C. A. Douma¹³, A. Ekström¹³, Z. Eleke³¹, C. Forssén¹³, I. Gašparić^{2,444}, J.-M. Gheller⁹, J. Gibelin², A. Gillibert⁶, G. Hagen¹⁸⁴⁶, M. N. Harakeh¹⁷², A. Hirayama¹, C. R. Hoffman¹⁷, M. Holl⁶⁵, A. Horvat¹, Å. Horvat¹⁸⁴, M. Marag¹³²⁰, T. Isobe², W. G. Jiang¹³, J. Kahlbow²⁶, N. Kalantar-Nayestanakl¹⁷, S. Kawase²¹, S. Kim¹⁰²⁰, K. Kisamori⁷, T. Kobayashi²², D. Körper⁷, S. Koyama⁵³, I. Kuti¹¹, V. Lapoux⁹, S. Lindber³, F. M. Marqués³, S. Masuoka²⁴, J. Mayer⁵⁵, K. Miki²², T. Murakami⁷⁶, M. Najafi¹⁷, T. Nakamura¹², K. Nakano⁷¹, N. Nakatsuka⁴⁷, T. Nilsson¹⁹, A. Obertell¹⁸, K. Ogata^{2728,19}, F. de Oliveira Santos⁵⁹, N. A. Orr³, H. Otsu⁷, T. Otsuka²²³, T. Ozakl¹, V. Panin⁷, T. Papenbrock^{15,16}, S. Paschalis⁶, A. Revel^{13,30}, D. Rossi⁶, A. T. Saito¹, T. N. Shimizu¹⁷, Y. Shimizu¹⁷, H. Simon⁷, D. Sohler¹⁷, O. Sorlin⁷⁹, S. Sthou^{15,16}, T. Tomai¹⁴, S. Takeuchi¹⁷, M. Tanaka²⁰, M. Thomaca^{15,4}, T. Useaka²⁷, Y. Useaka²⁷, Y. Togano^{15,4}, T. Tomai¹⁴, J. Tscheuschner⁴, J. Subota¹, N. Tsunda¹⁴, T. Useaka²⁷, Y. Usuno³³, I. Vernon³⁴, H. Wang⁷, Z. Yang⁷, M. Yasuda¹, K. Yoneda² & S. Yoshida²⁷

T. Otsuka *et al.*,

K. Hebeler et al., Annu. Rev. Nucl. Part. Sci. **65**, 457 (2015)

PRL 87 (2001) 082502, PRL 95 (2005) 232502, PRL 104 (2010) 012501, PRL 105 (2010) 032501

¹⁶O core

Advance our understanding of **nuclear structure:** correlated four-neutron system A 60 year-long quest

⁸He(p,pα)⁴n Quasi-free reaction to probe the four-neutron system

Nature | Vol606 | 23June2022 | 678

Article

Observation of a correlated free four-neutron system

https://doi.org/10.1038/s41586-022-04827	7-
Received: 4 August 2021	
Accepted: 28 April 2022	
Published online: 22 June 2022	
Open access	
Check for updates	

M. Duer¹⁵³, T. Aumann^{12,3}, R. Gernhäuser⁴, V. Panin^{2,5}, S. Paschalis¹⁶, D. M. Rossi¹, N. L. Achouri⁷, D. Ahn⁵¹⁶, H. Baba⁵, C. A. Bertulani⁹, M. Böhmer⁴, K. Boretzky², C. Caesar^{12,3}, N. Chiga⁶, A. Corsi⁹, D. Cortina-Gil¹⁰, C. A. Douma¹, F. Dufter⁴, Z. Elekes¹², J. Feng¹³, B. Fernánd ez-Domínguez¹⁰, U. Forsberg⁶, N. Fukuda⁵, I. Gasparic^{15,14}, Z. Ge⁵, J. M. Gheller⁹, J. Gibelin⁷, A. Gilliber⁴, K. I. Hahn^{15,16}, Z. Halász¹², M. N. Harakeh¹¹, A. Hirayama¹⁷, M. Holl¹, N. Inabe⁵, T. Isobe⁵, J. Kahlbow¹, N. Kalantar-Nayestanaki¹¹, D. Kim¹⁶, S. Kim¹¹⁶, T. Kobayashi¹⁸, Y. Kondo¹⁷, D. Körper², P. Koseoglou¹, Y. Kubota⁵, I. Kut¹¹², P. J. Li¹⁹, C. Lehr¹, S. Lindberg²⁰, Y. Liu¹³, F. M. Marqués⁷, S. Masuoka²¹, M. Matsumoto¹⁷, J. Mayer²², K. Mikl¹¹⁸, B. Monteagudo⁷, T. Nakamura¹⁷, T. Nilsson²⁰, A. Obertell¹¹⁹, N. A. Orr⁷, H. Ostu³, S. Y. Park⁵¹⁶, M. Parlog⁷, P. M. Potlog²³, S. Reichert⁴, A. Revel^{152,4}, A. T. Saito¹⁷, M. Sasano⁵, H. Scheit¹, F. Schindler¹, S. Shimoura²¹, H. Simon⁷, L. Stuhl^{16,21}, H. Suzuki⁵, D. Symochko¹, H. Takeda⁵, J. Tanaka¹⁵, Y. Togano¹⁷, T. Tomai¹⁷, H. T. Törnqvist¹², J. Tscheuschner¹, T. Uesaka⁵, V. Wagner¹, H. Yamada¹⁷, B. Yang¹³, L. Yang², Z. H. Yang⁵, M. Yasuda¹⁷, K. Yoneda⁶, L. Zanetti¹, J. Zenihiro^{5,25} &

A near-threshold resonance-like structure: $E_r = 2.37 \pm 0.38(\text{stat.}) \pm 0.44(\text{sys.}) \text{ MeV}$ $\Gamma = 1.75 \pm 0.22(\text{stat.}) \pm 0.30(\text{sys.}) \text{ MeV}$

Challenges for experiments with exotic nuclei

- The observables we're interested in for stable nuclei are the same ones we're interested in for exotic systems (e.g. half-life, mass, decay modes, electric/magnetic moments, cross-sections, momentum distributions, transition probabilities,
- Most techniques translate as well... but radioactive nuclei add some experimental challenges.

Biggest challenges:

- Half-life → how do you study an isotope that lives for a fraction of a second (ms timescale for beta-unstable nuclei)
- Production \rightarrow how do you study nuclei with low yields?

We need new tools and techniques

We need to upgrade our armoury

State-of-the-art tools and techniques

Light charge-particle detection

Gamma-ray detection

State of the art semiconductor arrays

Gamma-ray spectroscopy

has been one of the most sensitive probes of nuclear structure over the past decades and continues to play a major role in our current understanding of the structure of atomic nuclei

In <u>fast-beam experiments</u> the measurement is hindered by the high beam energies and by the necessary use of thick targets to increase the yield

Broadening of detected gamma-ray energy:

- velocity change in target (unknown interaction depth), momentum spread
 - E.g. thin target or particle tracking for reaction vertex reconstruction
- Δθ due to opening angle detector and trajectory of nucleus
 - E.g. position resolution of gamma-ray detector and spectrometer/detector

ADVANCED GAMMA TRACKING ARRAY

Gamma-ray tracking: Principle of operation

A 3D position sensitive HPGe detector

- Electrically segmented
- Pulse shape analysis

of position sensitive signals

Doppler correction using position information

Current challenges

signal basis generation

Experimental (scanning)

- long acquisition times
- different conditions between scanning and experiment, e.g. noise, radiation damage
- mechanical alignment

Analytical (calculated)

- intrinsic space-charge density
- the electron/hole mobility
- crystal temperature and
- crystal orientation
- passivated and contact thickness
- shape of charge cloud

Self-calibration concept

Generate signal basis in experimental way

S. Heil, S. Paschalis, and M. Petri, Eur. Phys. J. A (2018) **54**: 172

> Group interaction points from different gammarays into hit collections

Optimise coordinates of hit collection using the tracks that link their constituent points and Compton formula

Use Compton formula to order interaction points

Define tracks between interaction points that also link the hit collections with each other

- Produce pulse shape basis for all detectors simultaneously
- Strong gamma source illuminate the whole array
- Compton formula optimize scattering events

Self-calibration concept

racks between action points that also ank the hit collections with each other

- Strong gamma source illuminate the whole array
- Compton formula optimize scattering events

State-of-the-art tools and techniques

Light charge-particle detection

Gamma-ray detection

State of the art semiconductor arrays

γRIBF-UK: Scintillator-based high-resolution γ-ray spectrometer at RIBF

PI: Marina Petri

Partners: UYork, DL, UWS, NPL

Science and Technology Facilities Council

Scintillators vs HPGe?

- Where the HPGe supreme energy resolution (ER ~ 0.2%) is compromised due to beam properties (ER > 1.0 %) and Nal/CsI arrays (ER ~ 8%) are inadequate
- Where high counting rate dictates detector response time
- Where fast timing <1ns is essential
- Where the price tag hinders progress

Scintillator array based on HR-GaGG and $CeBr_3$ to gradually upgrade DALI2 array

Geometry of the DALI2+ scintillator array at RIBF. The new array with compatible geometry

Hybrid array of 384 HR-GaGG(Ce) (yellow) and 624 CeBr3 (grey) crystals covering angles up to 120 degrees in the laboratory frame

Comparison to DALI2+

1) **higher efficiency** with respect to DALI2+ (from 35% 0)

- 2) better energy resolution (from 10% to \leq 5%)
- 3) superior Peak-to-Total (P/T) (from 0.5 to \geq 0.7)
- 4) superior time resolution (from several ns to ≤ 1 ns),

important for background suppression, while

opening up the way to perform lifetime

measurements

All these superior performance parameters result in an overall improvement in sensitivity of x5

Position sensitive scintillator detectors

S. Paschalis, Developments through York STFC IPS and FoF projects (Kromek industrial partner)

x (mm)

⁷⁸Ni revealed as a doubly magic stronghold against nuclear deformation

R. Taniuchi et al., Nature 569 (2019) 53

220 MeV/u ⁷⁹Cu(*p*,2*p*)⁷⁸Ni on LH2 target, 5mm vertex resolution, 60pnA 10days

Simulations: S. Chen

State-of-the-art tools and techniques

Light charge-particle detection

Gamma-ray detection

State of the art semiconductor arrays

European Research Council Established by the European Commission

Compact TPC – vertex reconstruction

PI: A. Obertelli

Eur. Phys. J. A (2014) **50**: 8 DOI 10.1140/epja/i2014-14008-y

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Experimental Physics

MINOS: A vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei

A. Obertelli^{1,a}, A. Delbart¹, S. Anvar¹, L. Audirac¹, G. Authelet¹, H. Baba², B. Bruyneel¹, D. Calvet¹, F. Château¹,

A. Corsi¹, P. Doornenbal², J.-M. Gheller¹, A. Giganon¹, C. Lahonde-Hamdoun¹, D. Leboeuf¹, D. Loiseau¹,

A. Mohamed¹, J.-Ph. Mols¹, H. Otsu², C. Péron¹, A. Peyaud¹, E.C. Pollacco¹, G. Prono¹, J.-Y. Rousse¹,

C. Santamaria¹, and T. Uesaka²

The R3B setup and the function of the Target Recoil Tracker (TRT) device

Construction of the TRT device has been recently approved as UK-led for R3B

TRT detects light charged particles that scatter at large angles from the target (e.g. QFS protons)

It measures primarily the angle and serves two purposes:

- 1. Reaction-vertex reconstruction
- 2. Missing-mass reconstruction

Its material budget should be as little as possible, it directly affects and dominates the reconstructed resolution!

1. Reaction vertex reconstruction

2. Missing-mass reconstruction (when combined with CALIFA)

R3B TRT device will employ the ALPIDE sensor of the ALICE collaboration

Pixel Sensor CMOS 180 nm Imaging Process (TowerJazz)

In-pixel amplification In-pixel discrimination In-pixel (multi-) hit buffer

29 um x 27 um pixel pitch Continuously active front-end Global shutter Zero-suppressed matrix readout Triggered or continuous readout modes

G. Aglieri Rinella, NIM A845 (2017) 583
A. Di Mauro, NIM A936 (2019) 625
F.Reidt, NIM A 1032 (2022) 166632

Stave module components for the R3B TRT

Conclusions

- Position sensitive detectors play an ever increasing role in Nuclear Physics
- Greater synergies between different scientific communities are emerging
- Combination of new instrumentation, upgraded facilities and advancement of nuclear theory brings us closer to understanding the atomic nucleus from first principles

Thank you !