

PROGRESS TOWARDS SEAMLESS LARGE AREA X-RAY AND GAMMA-RAY DETECTORS

M. Campbell¹, J. Alozy, R. Ballabriga, P. Christodoulou, X. Llopart, F. Piernas Dias, V. Sriskaran, and L. Tlustos

> CERN, EP Department 1211 Geneva 23 Switzerland

¹ Honorary Professor at Glasgow University

Hybrid Silicon Pixel Detectors

Standard CMOS can be used allowing on-pixel signal processing

Sensor material can be changed (Si, GaAs, CdTe..)

Gas detector readout - InGrid

Semiconductor detector is replaced with charge amplification grid Permits lower energy events to be detected NB: GEM foils may be used in place of the InGrid foils

If placed in a photo tube together with a MCP visible photons may be detected (see: M. Fiorini et al 2018 J.Instrum 13 C12005)

Timepix3 Photo

Tiling larger areas

- Target to build large area detectors by combining single chip modules.
- Through-silicon vias (TSVs) are the key technology enabler.
- Medipix4 and Timepix4 use on-chip interposer for bump to pixel redistribution layer (RDL).
- The detector is fully sensitive: even above the peripheral circuit and I/O pads.

Ŋ	Medipix2 (1999 ->)	Medipix3 (2005 ->)	Medipix4 (2016 ->)
	Albert-Ludwig Universität Freiburg, Germany	Albert-Ludwig Universität Freiburg, Germany	CEA, Paris, France
ÉRN	CEA, Paris, France	AMOLF, Amsterdam, The Netherlands	CERN, Geneva, Switzerland
	CERN, Geneva, Switzerland	Brazilian Light Source, Campinas, Brazil	DESY-Hamburg, Germany
	Czech Academy of Sciences, Prague, Czechia	CEA, Paris, France	Diamond Light Source, England, UK
	ESRF, Grenoble, France	CERN, Geneva, Switzerland	IEAP, Czech Technical University, Prague, Czeciah
	IEAP, Czech Technical University, Prague, Czech Republic	DESY-Hamburg, Germany	IFAE, Barcelona, Spain
	IFAE, Barcelona, Spain	Diamond Light Source, England, UK	JINR, Dubna, Russian Federation
	Mid Sweden University, Sundsvall, Sweden	ESRF, Grenoble, France	NIKHEF, Amsterdam, The Netherlands
	MRC-LMB Cambridge, England, UK	IEAP, Czech Technical University, Prague, Czech Republic	University of California, Berkeley, USA
	NIKHEF, Amsterdam, The Netherlands	KIT/ANKA, Forschungszentrum Karlsruhe, Germany	University of Canterbury, Christchurch, New Zealand
	University of California, Berkeley, USA	Mid Sweden University, Sundsvall, Sweden	University of Geneva, Switzerland
	Universität Erlangen-Nurnberg, Erlangen, German	NIKHEF, Amsterdam, The Netherlands	University of Glasgow, Scotland, UK
	University of Glasgow, Scotland, UK	Univesridad de los Andes, Bogota, Columbia	University of Houston, USA
	University of Houston, USA	University of Bonn, Germany	University of Maastricht, The Netherlands
	University and INFN Section of Cagliari, Italy	University of California, Berkeley, USA	University of Oxford, England, UK
	University and INFN Section of Pisa, Italy	University of Canterbury, Christchurch, New Zealand	INFN, Italy
	University and INFN Section of Napoli, Italy	Universität Erlangen-Nurnberg, Erlangen, German	Chinese Spallation Neutron Source, Dongguan City, China
		University of Glasgow, Scotland, UK	Brazilian Light Source, Campinas, Brazil
		University of Houston, USA	Philippine Nuclear Research Institute, Manila, Philippines
		University of Leiden, The Netherlands	
		Technical University of Munich, Germany	
		VTT Information Technology, Espoo, Finland	

Acknowledgements – Commercial Partners

COLLABORATION NAME	Medipix2		Medipix3		Medipix4		
ASICS	Medipix2	Timepix	Timepix2	Medipix3	Timepix3	Medipix4	Timepix4
ADVACAM s.r.o., Czech Republic	Х	Х	Х	Х	Х		Х
Amsterdam Scientific Instruments, The Netherlands	Х	Х	Х	Х	Х		Х
Kromek, UK	Х	Х	Х		X		
Malvern-Panalytical, The Netherlands	Х	Х	Х	Х			
MARS Bio Imaging, New Zealand				Х			
PITEC, Brazil				Х			X
Quantum Detectors, UK				Х	Х		Х
Sydor Technologies, USA							Х
X-ray Imaging Europe, Germany	Х	Х	Х				
X-spectrum, Germany				Х			Х

X = commercial licensee X = F

X = R and D licensee

The Medipix and Timepix ASICs - Timeline

- Medipix chips aim at energy sensitive photon counting and typically use frame-based readout
- Timepix chips are more oriented towards single particle detection
- This talk will focus on Timepix4 and our efforts towards large area tiling

CMOS node	130nm
Pixel Array	256 x 256
Pixel pitch	55µm
Charge collection	e ⁻ , h ⁺
Pixel functionality	TOT (Energy) and TOA (Arrival time)
Preamp Gain	~47mV/ke ⁻
ENC	~60e ⁻
FE Linearity	Up to 12ke ⁻
TOT linearity (resolution)	Up to 200ke ⁻ (<5%)
TOA resolution*	Up to 1.6ns
Time-walk	<20ns
Minimum detectable charge	~500e ⁻ \rightarrow 2 KeV (Si Sensor)
Max Analog power (1.5V)	500 mA/chip
Digital Power (1.5V)	~400mA data driven
Maximum hit rate	80Mhits/sec (in data driven)
Readout	Data driven (44-bits/hit @ 5Gbps)

130nm
256 x 256
55µm
e ⁻ , h ⁺
TOT (Energy) and TOA (Arrival time)
~47mV/ke ⁻
~60e-
Up to 12ke ⁻
Up to 200ke ⁻ (<5%)
Up to 1.6ns
<20ns
~500e ⁻ \rightarrow 2 KeV (Si Sensor)
500 mA/chip
~400mA data driven
80Mhits/sec (in data driven)
Data driven (44-bits/hit @ 5Gbps)

130nm
256 x 256
55µm
e⁻, h⁺
TOT (Energy) and TOA (Arrival time)
~47mV/ke ⁻
~60e ⁻
Up to 12ke ⁻
Up to 200ke ⁻ (<5%)
Up to 1.6ns
<20ns
~500e ⁻ \rightarrow 2 KeV (Si Sensor)
500 mA/chip
~400mA data driven
80Mhits/sec (in data driven)
Data driven (44-bits/hit @ 5Gbps)

CMOS node	130nm
Pixel Array	256 x 256
Pixel pitch	55µm
Charge collection	e ⁻ , h ⁺
Pixel functionality	TOT (Energy) and TOA (Arrival time)
Preamp Gain	~47mV/ke ⁻
ENC	~60e ⁻
FE Linearity	Up to 12ke ⁻
TOT linearity (resolution)	Up to 200ke ⁻ (<5%)
TOA resolution*	Up to 1.6ns
Time-walk	<20ns
Minimum detectable charge	~500e ⁻ \rightarrow 2 KeV (Si Sensor)
Max Analog power (1.5V)	500 mA/chip
Digital Power (1.5V)	~400mA data driven
Maximum hit rate	80Mhits/sec (in data driven)
Readout	Data driven (44-bits/hit @ 5Gbps)

130nm
256 x 256
55µm
e ⁻ , h ⁺
TOT (Energy) and TOA (Arrival time)
~47mV/ke ⁻
~60e-
Up to 12ke ⁻
Up to 200ke ⁻ (<5%)
Up to 1.6ns
<20ns
~500e ⁻ \rightarrow 2 KeV (Si Sensor)
500 mA/chip
~400mA data driven
80Mhits/sec (in data driven)
Data driven (44-bits/hit @ 5Gbps)

CMOS node	130nm
Pixel Array	256 x 256
Pixel pitch	55µm
Charge collection	e ⁻ , h+
Pixel functionality	TOT (Energy) and TOA (Arrival time)
Preamp Gain	~47mV/ke ⁻
ENC	~60e ⁻
FE Linearity	Up to 12ke ⁻
TOT linearity (resolution)	Up to 200ke ⁻ (<5%)
TOA resolution*	Up to 1.6ns
Tim e- walk	<20ns
Minimum detectable charge	~500e ⁻ \rightarrow 2 KeV (Si Sensor)
Max Analog power (1.5V)	500 mA/chip
Digital Power (1.5V)	~400mA data driven
Maximum hit rate	80Mhits/sec (in data driven)
Readout	Data driven (44-bits/hit @ 5Gbps)

Timepix3 miniaturised readout

Advacam s.r.o., Prague

Timepix3 Demo

Tracking in a single Si layer

Test with 120GeV/c Pion Track

Single Layer Compton Camera with MiniPIX TPX3

Compton camera principle

- Typical two detectors
- primary gamma is scattered in first detector (position and energy recorded), scattered gamma continues to second detector (absorbed, position and energy recorded)
- from energies > scattering angle calculated
- from position and energies -> possible position of the source on the surface of a cone
- Multiple cones intersection > source position
- Single Timepix3 layer camera
 - Instead of 2 detectors, only single TPX3
 - Using time of charge collection to determine relative depth

Courtesy of D. Turecek, Advacam s.r.o

Single Layer Compton Camera with MiniPIX TPX3

¹³¹Iodine gamma source

- 3 different lodine solution in small bottles positioned in a room at different positions
- Distance from detector 3.5 m (activity 10's of MBq)
- Mapped on photograph of the room
- Sources located correctly within minutes
- Image took hours to collect

Reconstruction of position of three ¹³¹I gamma sources (364 keV)

Gamma camera application: Thyroid diagnostics

Thyroid cancer diagnostics and treatment monitoring:

- The second most frequent cancer for women (after breast cancer)
- Current imaging methods offer resolution of about 12 mm in 2D
- Our technology allows
 - 5 times better resolution and 3D (2.5 mm)
 - 4 times lower dose

Courtesy of D. Turecek, Advacam s.r.o

Timepix3 → Timepix4

			Timepix3 (2013)	Timepix4 (2018/19)	
Technology			130nm – 8 metal	65nm – 10 metal	
Pixe	el Size		55 x 55 µm	55 x 55 μm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448	
Sens	itive area		1.98 cm ²	6.94 cm ²	
		Mode	TOT and TOA		
	Data driven	Event Packet	48-bit	64-bit	
les	(Tracking)	Max rate	<80 Mhits/s	<365 MHz/cm ² /s	
No Vo		Max pix rate	1.3kHz/pixel	10.6kHz/pixel	
out N	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)	
Read		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr) CRW (8-bit / 16-bit) Up to 44 KHz frame @8b	
		Max count rate	82 Ghits/cm ² /s	~800 Ghits/cm ² /s	
TOT energy resolution		tion	< 2KeV	< 1Kev	
Time resolution (bin size)		n size)	1.56ns	~200ps	
Readout bandwidth		h	≤5.12Gb (8 x SLVS@640 Mbps)	≤163 Gbps (16 x 10.24 Gbps)	
Target global minimum threshold			<500 e ⁻	<500 e ⁻	

Timepix4 Pixel Schematic

Pixel Operation in TOA & TOT [DD]

Full digital double column DLL

[448 dDLL: 224 Top Matrix and 224 Bottom Matrix]

iWoRID 2018 X. Llopart et al 2019 JINST 14 C01024

- Timepix4 ~23 mW/cm² @40MHz clock with a 100 ps_{rms}
- Timepix3 ~100mW/cm² @40MHz clock with ~1.2ns skew
- Dynamic digital power consumption is distributed across the clock period

Timepix4 floorplan

- 512 x 448 of 55 x 55 µm pixels
 - 2 Matrices (TOP and BOTTOM)
- 3 'peripheries' with TSV (Through-Silicon-Vias):
 - TOP, BOTTOM (TSV, WB): Data Readout (16x 10.24 Gbps Serializers)
 - CENTER (TSV): Analog Blocks (DACs, ADC, Band-Gap...)
- On-chip bump to pixel redistribution layer (RDL):
 - Pixel matrix pixels are shorter (51.4 $\mu m)$ than sensor pixels (55 $\mu m)$
 - Equalized Cin for all pixels \rightarrow ~46 fF increase for a 460 μm periphery
- Edge peripheries include 1mm Wire Bond Extender
- Dicing options:
 - With WB (Wire-Bonds Extenders): 29.96 mm x 24.7 mm
 - >93.7% active area (28.16mm x 24.64mm)
 - Without WB (TSV Only) : 28.22 mm x 24.7 mm
 - >99.5% active area (28.16mm x 24.64mm)
 - Through Silicon Vias (TSV) requires post processing at wafer level to create
 TSV and on the ASIC back sides RDL + BGA pads

Timepix4 Bottom left detail

Dicing lar

Analog (static) power supply distribution

	Total I (chip)		2 WB	3 TSV
Nominal Analog Power [10 µA/pixel]	2200 m A	V _{drop} [VDDA-GNDA]	19.6 mV	6.9 mV
	~2300 MA	Imax pad 60 mA		57 mA
Low Analog Power	220 m A	V _{drop} [VDDA-GNDA]	1.96mV	0.69mV
[1 µA/pixel]	~230 MA	Imax pad	6 mA	5.7 mA

2 wire bonds

3 TSV

Timepix4 submissions

Uniformity of response Timepix4 (all versions)

Threshold adjustment bits

Gain slopes for different FE Gain

[TOA-TOT, few pixels]

Noise uniformity - Timepix4v0, v1 and v2

Timepix4v1 and v2: Number of Noisy pixels (>1 count) Data-Driven mode [DD]

Timepix4v2 2D VCO frequency distribution

- Measured VCO oscillation frequency in Timepix4
- Calibration is required in order to get to the designed time resolution (~60psrms)
- How could this be improved/simplified?

TOA Resolution [TOA-TOT, 1 pixel, 10000 samples, HG e-]

Timepix4 assembly (300µm Si sensor)

Data driven mode

Sr90 10 [0.000 - 10.000]s

- 10s exp. ⁹⁰Sr
- Threshold ~ 800e⁻ 6.1 M packets @ 5 Gbps

Photon counting image Timepix4

Energy calibration using test pulses

Timing test setup with laser

- Rear side metallization with holes
- Timepix4V2 bonded to a 100µm thick n-on-p Si detector:
- Biased at -150 V

- 1020nm laser pulsed with 6ps jitter generator
- Generator connected to electrical test pixels

R. Bolzonella et al., TIPP Cape Town, 4-8 Sept Under submission to JINST

Single pixel pulse resolution

- For the pixel [305,144], where the laser is focused, the standard deviation saturates at 129±1 ps rms
- Subtracting the contribution of the reference TDC (60 ps), a resolution of 111±1 ps rms is obtained
- Timing resolution dependency on cluster charge best result: $\sigma_{ToADiffAvg} = 79 \pm 1 \text{ ps rms}$
- Timing resolution subtracting reference TDC contribution: σ_{ToAAvg} =49 ± 1 ps rms

June 2023 – TSV processes TPIX4v0 delivered

Rear side Re-Distribution Layer (RDL)

Visual Inspection – front and rear side

Magnified bowing (the chip is thin: $\sim 120 \mu m$)

/14

Inspection with Electron Microscope of one TSV

Courtesy of IZM

Mounting of TSV processed chips on Nikhef carrier board

ACF: Anisotropic Conducting Film

٠

Conductive particles Temporary bonding

- We could communicate with the chip, test the DAC...
- After releasing the clamp ٠ and putting it again, chip not responding, maybe due to reusing the tape.
- Work in progress

ACP: Anisotropic Conducting Paste

- Araldite with conducting particles
- Done at UniGe (Mateus Vicente Barreto Pinto m.vicente@cern.ch)
- Flip chip bond machine

- Results Timepix4V0:
- Good communication with the chip
- **Promising low** cost approach

TSV-processed successfully mounted

Chip behaves identically to a wire bonded version

Output from TSV processed Timepix4v0

$Medipix3 \rightarrow Medipix4$

	Medipix3RX (2013)	Medipix4 (2022)	
Technology	CMOS 130nm	CMOS 130nm	
Pixel Size	55/110 µm	75/150 μm	
Matrix Size	256 x 256 / 128 x 128	320 x 320 / 160 x 160	
Tile-ability	3-side	4-side buttable	
Thresholds	1/4 Continuous RW	2/8 Continuous RW	
Readout scheme	Sequential RW & Continuous RW		
Count Rate (10% deadtime loss)	4.3 x 10 ⁶ ph/mm²/s (CSM 110)	19 x 10 ⁶ ph/mm²/s (CSM 140)	
Dynamic Range	25 Ke-	32 Ke-	
CSM energy resolution (FWHM)	~ 4.4 KeV (CSM 110)	~ 2.5KeV (CSM 150)	
Readout bandwidth	<1.6 Gbps (8x LVDS)	1,2 Serializers @5.12 or 2.56 Gbps	
Power	<1W @1.5V	<1W/cm ² @1.2V	

Status: Medipix4 chip first version under test – bugs being addressed

Conclusions

- Hybrid pixel detectors offer unique solutions for X-ray and gamma-ray imaging and have found widespread applications
- The Timepix4 (and Medipix4) chips are designed explicitly for tiling in 2 dimensions using Through Silicon Vias for IO
- Measurements with Timepix4 in data driven mode are consistent with the design values
- Single pixel time resolution is ~111ps rms
- TSVs have been successfully implemented on Timepix4v0 and the chip behaves as normal
- Future work includes demonstrating a large area implementation with minimal dead area

Thank you for your attention!

Medipix3RX images: S. Procz et al.